vision-agent 0.2.10__py3-none-any.whl → 0.2.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -489,6 +489,7 @@ class VisionAgent(Agent):
489
489
  image: Optional[Union[str, Path]] = None,
490
490
  reference_data: Optional[Dict[str, str]] = None,
491
491
  visualize_output: Optional[bool] = False,
492
+ self_reflection: Optional[bool] = True,
492
493
  ) -> str:
493
494
  """Invoke the vision agent.
494
495
 
@@ -501,6 +502,7 @@ class VisionAgent(Agent):
501
502
  {"image": "image.jpg", "mask": "mask.jpg", "bbox": [0.1, 0.2, 0.1, 0.2]}
502
503
  where the bounding box coordinates are normalized.
503
504
  visualize_output: Whether to visualize the output.
505
+ self_reflection: boolean to enable and disable self reflection.
504
506
 
505
507
  Returns:
506
508
  The result of the vision agent in text.
@@ -512,6 +514,7 @@ class VisionAgent(Agent):
512
514
  image=image,
513
515
  visualize_output=visualize_output,
514
516
  reference_data=reference_data,
517
+ self_reflection=self_reflection,
515
518
  )
516
519
 
517
520
  def log_progress(self, description: str) -> None:
@@ -538,6 +541,7 @@ class VisionAgent(Agent):
538
541
  image: Optional[Union[str, Path]] = None,
539
542
  reference_data: Optional[Dict[str, str]] = None,
540
543
  visualize_output: Optional[bool] = False,
544
+ self_reflection: Optional[bool] = True,
541
545
  ) -> Tuple[str, List[Dict]]:
542
546
  """Chat with the vision agent and return the final answer and all tool results.
543
547
 
@@ -550,6 +554,7 @@ class VisionAgent(Agent):
550
554
  {"image": "image.jpg", "mask": "mask.jpg", "bbox": [0.1, 0.2, 0.1, 0.2]}
551
555
  where the bounding box coordinates are normalized.
552
556
  visualize_output: Whether to visualize the output.
557
+ self_reflection: boolean to enable and disable self reflection.
553
558
 
554
559
  Returns:
555
560
  A tuple where the first item is the final answer and the second item is a
@@ -625,20 +630,25 @@ class VisionAgent(Agent):
625
630
  reflection_images = [image]
626
631
  else:
627
632
  reflection_images = None
628
- reflection = self_reflect(
629
- self.reflect_model,
630
- question,
631
- self.tools,
632
- all_tool_results,
633
- final_answer,
634
- reflection_images,
635
- )
636
- self.log_progress(f"Reflection: {reflection}")
637
- parsed_reflection = parse_reflect(reflection)
638
- if parsed_reflection["Finish"]:
639
- break
633
+
634
+ if self_reflection:
635
+ reflection = self_reflect(
636
+ self.reflect_model,
637
+ question,
638
+ self.tools,
639
+ all_tool_results,
640
+ final_answer,
641
+ reflection_images,
642
+ )
643
+ self.log_progress(f"Reflection: {reflection}")
644
+ parsed_reflection = parse_reflect(reflection)
645
+ if parsed_reflection["Finish"]:
646
+ break
647
+ else:
648
+ reflections += "\n" + parsed_reflection["Reflection"]
640
649
  else:
641
- reflections += "\n" + parsed_reflection["Reflection"]
650
+ self.log_progress("Self Reflection skipped based on user request.")
651
+ break
642
652
  # '<ANSWER>' is a symbol to indicate the end of the chat, which is useful for streaming logs.
643
653
  self.log_progress(
644
654
  f"The Vision Agent has concluded this chat. <ANSWER>{final_answer}</ANSWER>"
@@ -660,12 +670,14 @@ class VisionAgent(Agent):
660
670
  image: Optional[Union[str, Path]] = None,
661
671
  reference_data: Optional[Dict[str, str]] = None,
662
672
  visualize_output: Optional[bool] = False,
673
+ self_reflection: Optional[bool] = True,
663
674
  ) -> str:
664
675
  answer, _ = self.chat_with_workflow(
665
676
  chat,
666
677
  image=image,
667
678
  visualize_output=visualize_output,
668
679
  reference_data=reference_data,
680
+ self_reflection=self_reflection,
669
681
  )
670
682
  return answer
671
683
 
@@ -5,7 +5,9 @@ from .tools import ( # Counter,
5
5
  TOOLS,
6
6
  BboxArea,
7
7
  BboxIoU,
8
+ ObjectDistance,
8
9
  BoxDistance,
10
+ MaskDistance,
9
11
  Crop,
10
12
  DINOv,
11
13
  ExtractFrames,
@@ -9,6 +9,7 @@ import numpy as np
9
9
  import requests
10
10
  from PIL import Image
11
11
  from PIL.Image import Image as ImageType
12
+ from scipy.spatial import distance # type: ignore
12
13
 
13
14
  from vision_agent.image_utils import (
14
15
  b64_to_pil,
@@ -544,7 +545,7 @@ class VisualPromptCounting(Tool):
544
545
  -------
545
546
  >>> import vision_agent as va
546
547
  >>> prompt_count = va.tools.VisualPromptCounting()
547
- >>> prompt_count(image="image1.jpg", prompt="0.1, 0.1, 0.4, 0.42")
548
+ >>> prompt_count(image="image1.jpg", prompt={"bbox": [0.1, 0.1, 0.4, 0.42]})
548
549
  {'count': 23}
549
550
  """
550
551
 
@@ -554,52 +555,60 @@ class VisualPromptCounting(Tool):
554
555
  usage = {
555
556
  "required_parameters": [
556
557
  {"name": "image", "type": "str"},
557
- {"name": "prompt", "type": "str"},
558
+ {"name": "prompt", "type": "Dict[str, List[float]"},
558
559
  ],
559
560
  "examples": [
560
561
  {
561
562
  "scenario": "Here is an example of a lid '0.1, 0.1, 0.14, 0.2', Can you count the items in the image ? Image name: lids.jpg",
562
- "parameters": {"image": "lids.jpg", "prompt": "0.1, 0.1, 0.14, 0.2"},
563
+ "parameters": {
564
+ "image": "lids.jpg",
565
+ "prompt": {"bbox": [0.1, 0.1, 0.14, 0.2]},
566
+ },
563
567
  },
564
568
  {
565
- "scenario": "Can you count the total number of objects in this image ? Image name: tray.jpg",
566
- "parameters": {"image": "tray.jpg", "prompt": "0.1, 0.1, 0.2, 0.25"},
569
+ "scenario": "Can you count the total number of objects in this image ? Image name: tray.jpg, reference_data: {'bbox': [0.1, 0.1, 0.2, 0.25]}",
570
+ "parameters": {
571
+ "image": "tray.jpg",
572
+ "prompt": {"bbox": [0.1, 0.1, 0.2, 0.25]},
573
+ },
567
574
  },
568
575
  {
569
- "scenario": "Can you count this item based on an example, reference_data: '0.1, 0.15, 0.2, 0.2' ? Image name: shirts.jpg",
576
+ "scenario": "Can you count this item based on an example, reference_data: {'bbox': [100, 115, 200, 200]} ? Image name: shirts.jpg",
570
577
  "parameters": {
571
578
  "image": "shirts.jpg",
572
- "prompt": "0.1, 0.15, 0.2, 0.2",
579
+ "prompt": {"bbox": [100, 115, 200, 200]},
573
580
  },
574
581
  },
575
582
  {
576
- "scenario": "Can you build me a counting tool based on an example prompt ? Image name: shoes.jpg",
583
+ "scenario": "Can you build me a counting tool based on an example prompt ? Image name: shoes.jpg, reference_data: {'bbox': [0.1, 0.1, 0.6, 0.65]}",
577
584
  "parameters": {
578
585
  "image": "shoes.jpg",
579
- "prompt": "0.1, 0.1, 0.6, 0.65",
586
+ "prompt": {"bbox": [0.1, 0.1, 0.6, 0.65]},
580
587
  },
581
588
  },
582
589
  ],
583
590
  }
584
591
 
585
- # TODO: Add support for input multiple images, which aligns with the output type.
586
- def __call__(self, image: Union[str, ImageType], prompt: str) -> Dict:
592
+ def __call__(
593
+ self, image: Union[str, ImageType], prompt: Dict[str, List[float]]
594
+ ) -> Dict:
587
595
  """Invoke the few shot counting model.
588
596
 
589
597
  Parameters:
590
598
  image: the input image.
599
+ prompt: the visual prompt which is a bounding box describing the object.
591
600
 
592
601
  Returns:
593
602
  A dictionary containing the key 'count' and the count as value. E.g. {count: 12}
594
603
  """
595
604
  image_size = get_image_size(image)
596
- bbox = [float(x) for x in prompt.split(",")]
597
- prompt = ", ".join(map(str, denormalize_bbox(bbox, image_size)))
605
+ bbox = prompt["bbox"]
606
+ bbox_str = ", ".join(map(str, denormalize_bbox(bbox, image_size)))
598
607
  image_b64 = convert_to_b64(image)
599
608
 
600
609
  data = {
601
610
  "image": image_b64,
602
- "prompt": prompt,
611
+ "prompt": bbox_str,
603
612
  "tool": "few_shot_counting",
604
613
  }
605
614
  resp_data = _send_inference_request(data, "tools")
@@ -878,7 +887,7 @@ class SegIoU(Tool):
878
887
  ],
879
888
  "examples": [
880
889
  {
881
- "scenario": "If you want to calculate the intersection over union of the segmentation masks for mask_file1.jpg and mask_file2.jpg",
890
+ "scenario": "Calculate the intersection over union of the segmentation masks for mask_file1.jpg and mask_file2.jpg",
882
891
  "parameters": {"mask1": "mask_file1.png", "mask2": "mask_file2.png"},
883
892
  }
884
893
  ],
@@ -947,6 +956,46 @@ class BboxContains(Tool):
947
956
  }
948
957
 
949
958
 
959
+ class ObjectDistance(Tool):
960
+ name = "object_distance_"
961
+ description = "'object_distance_' calculates the distance between two objects in an image. It returns the minimum distance between the two objects."
962
+ usage = {
963
+ "required_parameters": [
964
+ {"name": "object1", "type": "Dict[str, Any]"},
965
+ {"name": "object2", "type": "Dict[str, Any]"},
966
+ ],
967
+ "examples": [
968
+ {
969
+ "scenario": "Calculate the distance between these two objects {bboxes: [0.2, 0.21, 0.34, 0.42], masks: 'mask_file1.png'}, {bboxes: [0.3, 0.31, 0.44, 0.52], masks: 'mask_file2.png'}",
970
+ "parameters": {
971
+ "object1": {
972
+ "bboxes": [0.2, 0.21, 0.34, 0.42],
973
+ "scores": 0.54,
974
+ "masks": "mask_file1.png",
975
+ },
976
+ "object2": {
977
+ "bboxes": [0.3, 0.31, 0.44, 0.52],
978
+ "scores": 0.66,
979
+ "masks": "mask_file2.png",
980
+ },
981
+ },
982
+ }
983
+ ],
984
+ }
985
+
986
+ def __call__(self, object1: Dict[str, Any], object2: Dict[str, Any]) -> float:
987
+ if "masks" in object1 and "masks" in object2:
988
+ mask1 = object1["masks"]
989
+ mask2 = object2["masks"]
990
+ return MaskDistance()(mask1, mask2)
991
+ elif "bboxes" in object1 and "bboxes" in object2:
992
+ bbox1 = object1["bboxes"]
993
+ bbox2 = object2["bboxes"]
994
+ return BoxDistance()(bbox1, bbox2)
995
+ else:
996
+ raise ValueError("Either of the objects should have masks or bboxes")
997
+
998
+
950
999
  class BoxDistance(Tool):
951
1000
  name = "box_distance_"
952
1001
  description = "'box_distance_' calculates distance between two bounding boxes. It returns the minumum distance between the given bounding boxes"
@@ -957,7 +1006,7 @@ class BoxDistance(Tool):
957
1006
  ],
958
1007
  "examples": [
959
1008
  {
960
- "scenario": "Calculate the distance between the bounding boxes [0.2, 0.21, 0.34, 0.42] and [0.3, 0.31, 0.44, 0.52]",
1009
+ "scenario": "Calculate the distance between these two bounding boxes [0.2, 0.21, 0.34, 0.42] and [0.3, 0.31, 0.44, 0.52]",
961
1010
  "parameters": {
962
1011
  "bbox1": [0.2, 0.21, 0.34, 0.42],
963
1012
  "bbox2": [0.3, 0.31, 0.44, 0.52],
@@ -976,6 +1025,34 @@ class BoxDistance(Tool):
976
1025
  return cast(float, round(np.sqrt(horizontal_dist**2 + vertical_dist**2), 2))
977
1026
 
978
1027
 
1028
+ class MaskDistance(Tool):
1029
+ name = "mask_distance_"
1030
+ description = "'mask_distance_' calculates distance between two masks. It is helpful in checking proximity of two objects. It returns the minumum distance between the given masks"
1031
+ usage = {
1032
+ "required_parameters": [
1033
+ {"name": "mask1", "type": "str"},
1034
+ {"name": "mask2", "type": "str"},
1035
+ ],
1036
+ "examples": [
1037
+ {
1038
+ "scenario": "Calculate the distance between the segmentation masks for mask_file1.jpg and mask_file2.jpg",
1039
+ "parameters": {"mask1": "mask_file1.png", "mask2": "mask_file2.png"},
1040
+ }
1041
+ ],
1042
+ }
1043
+
1044
+ def __call__(self, mask1: Union[str, Path], mask2: Union[str, Path]) -> float:
1045
+ pil_mask1 = Image.open(str(mask1))
1046
+ pil_mask2 = Image.open(str(mask2))
1047
+ np_mask1 = np.clip(np.array(pil_mask1), 0, 1)
1048
+ np_mask2 = np.clip(np.array(pil_mask2), 0, 1)
1049
+
1050
+ mask1_points = np.transpose(np.nonzero(np_mask1))
1051
+ mask2_points = np.transpose(np.nonzero(np_mask2))
1052
+ dist_matrix = distance.cdist(mask1_points, mask2_points, "euclidean")
1053
+ return cast(float, np.round(np.min(dist_matrix), 2))
1054
+
1055
+
979
1056
  class ExtractFrames(Tool):
980
1057
  r"""Extract frames from a video."""
981
1058
 
@@ -1110,10 +1187,9 @@ TOOLS = {
1110
1187
  Crop,
1111
1188
  BboxArea,
1112
1189
  SegArea,
1113
- BboxIoU,
1114
- SegIoU,
1190
+ ObjectDistance,
1115
1191
  BboxContains,
1116
- BoxDistance,
1192
+ SegIoU,
1117
1193
  OCR,
1118
1194
  Calculator,
1119
1195
  ]
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: vision-agent
3
- Version: 0.2.10
3
+ Version: 0.2.12
4
4
  Summary: Toolset for Vision Agent
5
5
  Author: Landing AI
6
6
  Author-email: dev@landing.ai
@@ -17,6 +17,7 @@ Requires-Dist: pandas (>=2.0.0,<3.0.0)
17
17
  Requires-Dist: pillow (>=10.0.0,<11.0.0)
18
18
  Requires-Dist: pydantic-settings (>=2.2.1,<3.0.0)
19
19
  Requires-Dist: requests (>=2.0.0,<3.0.0)
20
+ Requires-Dist: scipy (>=1.13.0,<1.14.0)
20
21
  Requires-Dist: tabulate (>=0.9.0,<0.10.0)
21
22
  Requires-Dist: tqdm (>=4.64.0,<5.0.0)
22
23
  Requires-Dist: typing_extensions (>=4.0.0,<5.0.0)
@@ -149,7 +150,7 @@ you. For example:
149
150
 
150
151
  #### Custom Tools
151
152
  You can also add your own custom tools for your vision agent to use:
152
-
153
+
153
154
  ```python
154
155
  from vision_agent.tools import Tool, register_tool
155
156
  @register_tool
@@ -187,6 +188,7 @@ find an example that creates a custom tool for template matching [here](examples
187
188
  | BboxIoU | BboxIoU returns the intersection over union of two bounding boxes normalized to 2 decimal places. |
188
189
  | SegIoU | SegIoU returns the intersection over union of two segmentation masks normalized to 2 decimal places. |
189
190
  | BoxDistance | BoxDistance returns the minimum distance between two bounding boxes normalized to 2 decimal places. |
191
+ | MaskDistance | MaskDistance returns the minimum distance between two segmentation masks in pixel units |
190
192
  | BboxContains | BboxContains returns the intersection of two boxes over the target box area. It is good for check if one box is contained within another box. |
191
193
  | ExtractFrames | ExtractFrames extracts frames with motion from a video. |
192
194
  | ZeroShotCounting | ZeroShotCounting returns the total number of objects belonging to a single class in a given image. |
@@ -5,7 +5,7 @@ vision_agent/agent/easytool.py,sha256=oMHnBg7YBtIPgqQUNcZgq7uMgpPThs99_UnO7ERkMV
5
5
  vision_agent/agent/easytool_prompts.py,sha256=Bikw-PPLkm78dwywTlnv32Y1Tw6JMeC-R7oCnXWLcTk,4656
6
6
  vision_agent/agent/reflexion.py,sha256=4gz30BuFMeGxSsTzoDV4p91yE0R8LISXp28IaOI6wdM,10506
7
7
  vision_agent/agent/reflexion_prompts.py,sha256=G7UAeNz_g2qCb2yN6OaIC7bQVUkda4m3z42EG8wAyfE,9342
8
- vision_agent/agent/vision_agent.py,sha256=DVcvT02GjY85mCjhHgJGrhI_dpUvjZhoYzYik9bkHQA,26243
8
+ vision_agent/agent/vision_agent.py,sha256=5W5Xr_h4yDMsFvIk2JWcfMlYoPYmTv3JZnrDDumuZgM,26842
9
9
  vision_agent/agent/vision_agent_prompts.py,sha256=moihXFhEzFw8xnf2sUSgd_k9eoxQam3T6XUkB0fyp5o,8570
10
10
  vision_agent/fonts/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
11
  vision_agent/fonts/default_font_ch_en.ttf,sha256=1YM0Z3XqLDjSNbF7ihQFSAIUdjF9m1rtHiNC_6QosTE,1594400
@@ -14,12 +14,12 @@ vision_agent/llm/__init__.py,sha256=BoUm_zSAKnLlE8s-gKTSQugXDqVZKPqYlWwlTLdhcz4,
14
14
  vision_agent/llm/llm.py,sha256=1BkrSVBWEClyqLc0Rmyw4heLhi_ZVm6JO7-i1wd1ziw,5383
15
15
  vision_agent/lmm/__init__.py,sha256=nnNeKD1k7q_4vLb1x51O_EUTYaBgGfeiCx5F433gr3M,67
16
16
  vision_agent/lmm/lmm.py,sha256=gK90vMxh0OcGSuIZQikBkDXm4pfkdFk1R2y7rtWDl84,10539
17
- vision_agent/tools/__init__.py,sha256=HfUr0JQUwk0Kyieen93df9lMbbdpVf9Q6CcVFmKv_q4,413
17
+ vision_agent/tools/__init__.py,sha256=uWySwcIeQMH57PVN6lVIknTx-SFmN_J0mvn_HbGlXcQ,451
18
18
  vision_agent/tools/prompts.py,sha256=V1z4YJLXZuUl_iZ5rY0M5hHc_2tmMEUKr0WocXKGt4E,1430
19
- vision_agent/tools/tools.py,sha256=EvNDLUxe-Ed8-meHInTIiX3aySLUXFBsAWwL0Is5S1o,43823
19
+ vision_agent/tools/tools.py,sha256=kqwmKPbuSAGOWjzv2LCjsvUAp2mfRk8X5a1DrP2B4i8,47007
20
20
  vision_agent/tools/video.py,sha256=xTElFSFp1Jw4ulOMnk81Vxsh-9dTxcWUO6P9fzEi3AM,7653
21
21
  vision_agent/type_defs.py,sha256=4LTnTL4HNsfYqCrDn9Ppjg9bSG2ZGcoKSSd9YeQf4Bw,1792
22
- vision_agent-0.2.10.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
23
- vision_agent-0.2.10.dist-info/METADATA,sha256=2uCVxAWBCbaFvxFnd6xoRoPNSo1UXaTLkeZ5qVOSM84,8930
24
- vision_agent-0.2.10.dist-info/WHEEL,sha256=7Z8_27uaHI_UZAc4Uox4PpBhQ9Y5_modZXWMxtUi4NU,88
25
- vision_agent-0.2.10.dist-info/RECORD,,
22
+ vision_agent-0.2.12.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
23
+ vision_agent-0.2.12.dist-info/METADATA,sha256=IWJjflG4JW4ZuMzyTw1Rq6IHK-YuO_YCfp_nJ-J0LiY,9073
24
+ vision_agent-0.2.12.dist-info/WHEEL,sha256=7Z8_27uaHI_UZAc4Uox4PpBhQ9Y5_modZXWMxtUi4NU,88
25
+ vision_agent-0.2.12.dist-info/RECORD,,