virgo-modules 0.4.5__py3-none-any.whl → 0.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of virgo-modules might be problematic. Click here for more details.

@@ -0,0 +1,91 @@
1
+ import numpy as np
2
+ import pandas as pd
3
+
4
+ from sklearn.base import BaseEstimator, ClassifierMixin
5
+
6
+ class MyStackingClassifierMultiClass(BaseEstimator, ClassifierMixin):
7
+ def __init__(self, estimators, meta_estimators,targets,perc=None,stack_size=None, **kwargs):
8
+ self.estimators = estimators
9
+ self.meta_estimators = meta_estimators
10
+ self.targets = targets
11
+ if stack_size and perc:
12
+ raise Exception('just one option')
13
+ if not stack_size and not perc:
14
+ raise Exception('set one option')
15
+ self.stack_size = stack_size
16
+ self.perc = perc
17
+ def get_index_training(self, X):
18
+ if self.stack_size:
19
+ unique_dates = list(X.index.get_level_values('Date_i').unique())
20
+ unique_dates.sort()
21
+ stack_chunk = unique_dates[-self.stack_size:]
22
+ base_indexes = X[~X.index.get_level_values('Date_i').isin(stack_chunk)].index.get_level_values('i')
23
+ meta_indexes = X[X.index.get_level_values('Date_i').isin(stack_chunk)].index.get_level_values('i')
24
+ elif self.perc:
25
+ meta_indexes = X.sample(frac = self.perc).index.get_level_values('i')
26
+ base_indexes = X[~X.index.get_level_values('i').isin(meta_indexes)].index.get_level_values('i')
27
+ else:
28
+ raise Exception("error", self.stack_size, self.perc)
29
+ return base_indexes, meta_indexes
30
+ def train_base_learner(self, classifier, X, y,indexes):
31
+ base_X = X[X.index.get_level_values('i').isin(indexes)]
32
+ base_y = y[y.index.get_level_values('i').isin(indexes)]
33
+ classifier.fit(base_X, base_y)
34
+ def fit(self, X, y):
35
+ # #base learners
36
+ base_indexes, meta_indexes = self.get_index_training(X)
37
+ for name,estimator in self.estimators:
38
+ self.train_base_learner(estimator,X, y, base_indexes)
39
+
40
+ #stack meta learner
41
+ metas_pred = dict()
42
+ for i,cont in enumerate(self.estimators, start=1):
43
+ _,estimator = cont
44
+ meta_pred = estimator.predict_proba(X[X.index.get_level_values('i').isin(meta_indexes)])
45
+ metas_pred[f"meta{i}0"] = meta_pred[0][:,1]
46
+ metas_pred[f"meta{i}1"] = meta_pred[1][:,1]
47
+ meta_preds_df = pd.DataFrame(metas_pred)
48
+
49
+ for i,metaest in enumerate(self.meta_estimators,start=0):
50
+ _,metaest = metaest
51
+ metacols = [f"meta{j}{i}" for j in range(1,len(self.estimators)+1)]
52
+ metaest.fit(
53
+ meta_preds_df[metacols],
54
+ y[X.index.get_level_values('i').isin(meta_indexes)][self.targets[i]]
55
+ )
56
+
57
+ def predict_proba(self, X):
58
+ metas_pred = dict()
59
+ for i,cont in enumerate(self.estimators, start=1):
60
+ _,estimator = cont
61
+ meta_pred = estimator.predict_proba(X)
62
+ metas_pred[f"meta{i}0"] = meta_pred[0][:,1]
63
+ metas_pred[f"meta{i}1"] = meta_pred[1][:,1]
64
+ self.meta_preds_df__ = pd.DataFrame(metas_pred)
65
+
66
+ prediction_vector = list()
67
+ for i,cont in enumerate(self.meta_estimators, start=0):
68
+ _,estimator = cont
69
+ metacols = [f"meta{j}{i}" for j in range(1,len(self.estimators)+1)]
70
+ preds = estimator.predict_proba(self.meta_preds_df__[metacols].values)
71
+ prediction_vector.append(preds)
72
+ return prediction_vector
73
+
74
+ def predict(self, X):
75
+ prediction_vector = list()
76
+ _ = self.predict_proba(X)
77
+ for i,cont in enumerate(self.meta_estimators, start=0):
78
+ _,estimator = cont
79
+ metacols = [f"meta{j}{i}" for j in range(1,len(self.estimators)+1)]
80
+ preds = estimator.predict(self.meta_preds_df__[metacols].values)
81
+ prediction_vector.append(preds)
82
+
83
+ p = np.array(tuple(prediction_vector))
84
+ return p.reshape((p.shape[1],p.shape[0]))
85
+
86
+ def get_params(self, deep=True):
87
+ return {k:v for k, v in self.__dict__.items()}
88
+
89
+ def set_params(self, **parms):
90
+ for k,v in parms.items():
91
+ setattr(self,k,v)
@@ -1,11 +1,12 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: virgo-modules
3
- Version: 0.4.5
3
+ Version: 0.5.0
4
4
  Summary: data processing and statistical modeling using stock market data
5
5
  Home-page: https://github.com/miguelmayhem92/virgo_module
6
6
  Author: Miguel Mayhuire
7
7
  Author-email: miguelmayhem92@gmail.com
8
8
  License: MIT
9
+ Platform: UNKNOWN
9
10
  Classifier: License :: OSI Approved :: MIT License
10
11
  Classifier: Programming Language :: Python :: 3.9
11
12
  Classifier: Operating System :: OS Independent
@@ -13,7 +14,7 @@ Requires-Python: >=3.9
13
14
  Description-Content-Type: text/markdown
14
15
  License-File: LICENSE
15
16
  Provides-Extra: dev
16
- Requires-Dist: pytest >=7.0 ; extra == 'dev'
17
+ Requires-Dist: pytest (>=7.0) ; extra == 'dev'
17
18
 
18
19
  # Virgo Package
19
20
 
@@ -34,3 +35,4 @@ obj = stock_eda_panel(stock_code = 'PEP', n_days = 20)
34
35
  obj.get_data()
35
36
  print(obj.df.shape)
36
37
  ```
38
+
@@ -11,8 +11,9 @@ virgo_modules/src/edge_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NM
11
11
  virgo_modules/src/edge_utils/conformal_utils.py,sha256=WK54ctvdnFrCAv3_slFBC71Ojy9xgC1wODR7xmvXGgg,3743
12
12
  virgo_modules/src/edge_utils/edge_utils.py,sha256=unCrkimwzlJx-osUWz6f6Vfiuv-unIATYva5UkK-Xik,18661
13
13
  virgo_modules/src/edge_utils/shap_utils.py,sha256=OMKVO-4gtOng9GeSuhEgAEQe4FF3AtqXjm-GUBLqYFc,3349
14
- virgo_modules-0.4.5.dist-info/LICENSE,sha256=pNgFyCYgmimaw0o6V20JupZLROycAnOA_HDDh1tX2V4,1097
15
- virgo_modules-0.4.5.dist-info/METADATA,sha256=GR7pTBoguHajgjq17Z6gXRSdjRz-3w4X5QD3-0N7Ge4,876
16
- virgo_modules-0.4.5.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
17
- virgo_modules-0.4.5.dist-info/top_level.txt,sha256=ZjI-qEkDtT-8mFwGAWnXfqPOKEGlIhWRW1es1VyXc60,14
18
- virgo_modules-0.4.5.dist-info/RECORD,,
14
+ virgo_modules/src/edge_utils/stack_model.py,sha256=Dh8dS4UfUK7fdul7rWvUl4J3qGj9BQBpabmiLbA53QQ,4166
15
+ virgo_modules-0.5.0.dist-info/LICENSE,sha256=pNgFyCYgmimaw0o6V20JupZLROycAnOA_HDDh1tX2V4,1097
16
+ virgo_modules-0.5.0.dist-info/METADATA,sha256=-kCtzC6xMUAI0p03OsMWlJrilrcIYj7cfpOTVSvfdm4,899
17
+ virgo_modules-0.5.0.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
18
+ virgo_modules-0.5.0.dist-info/top_level.txt,sha256=ZjI-qEkDtT-8mFwGAWnXfqPOKEGlIhWRW1es1VyXc60,14
19
+ virgo_modules-0.5.0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.41.2)
2
+ Generator: bdist_wheel (0.38.4)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5