virgo-modules 0.3.0__py3-none-any.whl → 0.3.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of virgo-modules might be problematic. Click here for more details.

@@ -44,7 +44,7 @@ def get_explainerclusters(model, data, targets):
44
44
  clustermodels.append(cluster_model)
45
45
  return clustermodels
46
46
 
47
- def mean_shap(data, explainers, pipe_transform):
47
+ def mean_shap(data, explainers, pipe_transform, dict_shap_values):
48
48
  t_data = pipe_transform.transform(data)
49
49
  input_features = t_data.columns
50
50
  shap_results = get_shapvalues(explainers,t_data)
@@ -55,16 +55,18 @@ def mean_shap(data, explainers, pipe_transform):
55
55
  df_shap = pd.DataFrame(shap_results_mean, columns=input_features, index=data.index)
56
56
  df_shap['Close'] = data['Close']
57
57
  df_shap['Date'] = data['Date']
58
+ df_shap = df_shap[['Date','Close']+list(dict_shap_values.keys())]
59
+ df_shap = df_shap.rename(columns =dict_shap_values)
58
60
  return df_shap
59
61
 
60
- def edge_shap_lines(data, dict_shap_values, plot = False, look_back = 750):
62
+ def edge_shap_lines(data, plot = False, look_back = 750):
61
63
  ### corect labels ####
64
+ shap_cols = [col for col in data.columns if col not in ['Date','Close']]
62
65
  df = data.sort_values('Date').iloc[-look_back:]
63
66
  fig = make_subplots(specs=[[{"secondary_y": True}]])
64
67
  fig.add_trace(go.Scatter(x=df.Date, y=df.Close,mode='lines+markers',marker = dict(color = 'grey'),line = dict(color = 'grey'),name='Close price'))
65
- top_features_shap = dict_shap_values.keys()
66
- for col in top_features_shap:
67
- fig.add_trace(go.Scatter(x=df.Date, y=df[col],mode='lines+markers',name=dict_shap_values.get(col).get('tag')),secondary_y=True)
68
+ for col in shap_cols:
69
+ fig.add_trace(go.Scatter(x=df.Date, y=df[col],mode='lines+markers',name=col),secondary_y=True)
68
70
  fig.update_layout(title_text="sirius - feature power",width=1200,height = 500)
69
71
  if plot:
70
72
  fig.show()
@@ -1545,6 +1545,8 @@ def create_feature_edge(model, data,feature_name, threshold, target_variables):
1545
1545
  '''
1546
1546
  label_prediction = ['proba_'+x for x in target_variables]
1547
1547
  predictions = model.predict_proba(data)
1548
+ if isinstance(predictions, list):
1549
+ predictions = np.array([ x[:,1].T for x in predictions]).T
1548
1550
  predictions = pd.DataFrame(predictions, columns = label_prediction, index = data.index)
1549
1551
 
1550
1552
  result_df = pd.concat([data, predictions], axis=1)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: virgo-modules
3
- Version: 0.3.0
3
+ Version: 0.3.2
4
4
  Summary: data processing and statistical modeling using stock market data
5
5
  Home-page: https://github.com/miguelmayhem92/virgo_module
6
6
  Author: Miguel Mayhuire
@@ -4,15 +4,15 @@ virgo_modules/src/aws_utils.py,sha256=q0l7D7ofo09Lu1QQjv-esheQ06uiSy1Pdq3xMul8zv
4
4
  virgo_modules/src/backtester.py,sha256=OhiWyzDX0PthXGuhChyWUmDN3cLkzVYe95zS4nGtia8,22106
5
5
  virgo_modules/src/hmm_utils.py,sha256=fFWxmh9q3rjiKRHnxNk9k7O4fDrxVxkmp3pbpLvktjc,21116
6
6
  virgo_modules/src/pull_artifacts.py,sha256=5OPrgR7pcMSdpbevDRhf0ebk7g7ZRjff4NpTIIWAKjE,1989
7
- virgo_modules/src/re_utils.py,sha256=n5LD2IKURNsBsWeQ_xw98lh1YwLdl3efNLNT7qwFGzM,73863
7
+ virgo_modules/src/re_utils.py,sha256=Exqe5eVGOpyb2j3veAsnFzXh-hXMwHe1zGTa_hO0wjI,73970
8
8
  virgo_modules/src/ticketer_source.py,sha256=4vT8YweRtS28Zs66DBUG2rZ5EcFk9S0hiqNS_fz_I1c,100017
9
9
  virgo_modules/src/transformer_utils.py,sha256=LLwKYZRq5hrPVimnq3taD0Lh-q3Bq21fy1I4Icbnxi8,7677
10
10
  virgo_modules/src/edge_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
11
  virgo_modules/src/edge_utils/conformal_utils.py,sha256=4gAOh2vxeWGR7iMF3TKnfQcLHlaH9M5B2lcmzo7V8AY,3755
12
12
  virgo_modules/src/edge_utils/edge_utils.py,sha256=U3GVyLgz0gEaR7AGjWseFcWt-IOusZvXJjwpBFknxNs,15643
13
- virgo_modules/src/edge_utils/shap_utils.py,sha256=877gfucW-iLbf-aStgIcAng1XxQi_AgJsVjvdAzzWc8,3233
14
- virgo_modules-0.3.0.dist-info/LICENSE,sha256=pNgFyCYgmimaw0o6V20JupZLROycAnOA_HDDh1tX2V4,1097
15
- virgo_modules-0.3.0.dist-info/METADATA,sha256=FuPBQsfBwgD6NtAeCYtNjkdTyEsVSaEk31zlhhBMv2M,883
16
- virgo_modules-0.3.0.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
17
- virgo_modules-0.3.0.dist-info/top_level.txt,sha256=ZjI-qEkDtT-8mFwGAWnXfqPOKEGlIhWRW1es1VyXc60,14
18
- virgo_modules-0.3.0.dist-info/RECORD,,
13
+ virgo_modules/src/edge_utils/shap_utils.py,sha256=OMKVO-4gtOng9GeSuhEgAEQe4FF3AtqXjm-GUBLqYFc,3349
14
+ virgo_modules-0.3.2.dist-info/LICENSE,sha256=pNgFyCYgmimaw0o6V20JupZLROycAnOA_HDDh1tX2V4,1097
15
+ virgo_modules-0.3.2.dist-info/METADATA,sha256=SCyxt58FaVICvGsaF4O5nzmAlTdOsuXxZ-JkyW-Z_Q0,883
16
+ virgo_modules-0.3.2.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
17
+ virgo_modules-0.3.2.dist-info/top_level.txt,sha256=ZjI-qEkDtT-8mFwGAWnXfqPOKEGlIhWRW1es1VyXc60,14
18
+ virgo_modules-0.3.2.dist-info/RECORD,,