virgo-modules 0.2.5__py3-none-any.whl → 0.2.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of virgo-modules might be problematic. Click here for more details.

@@ -1092,7 +1092,7 @@ class produce_plotly_plots:
1092
1092
  states = list(df.hmm_feature.unique())
1093
1093
  states.sort()
1094
1094
  ### expand hmm analysis
1095
- hmm_titles = ['Transition matrix heatmap' , 'state return (base first observation)','length chains dist']
1095
+ hmm_titles = ['state return (base first observation)','Transition matrix heatmap','length chains dist']
1096
1096
 
1097
1097
  fig = make_subplots(
1098
1098
  rows= rows_subplot, cols=2,
@@ -1121,7 +1121,8 @@ class produce_plotly_plots:
1121
1121
  for state in states:
1122
1122
  dfi = df_[df_.hmm_feature == state]
1123
1123
  fig.add_trace(go.Box(y = dfi.chain_return, name=str(state),showlegend=False, marker_color = color_map[state] ),row=1, col=1)
1124
-
1124
+ fig.add_hline(y=0, line_width=2, line_dash="dash", line_color="grey",row=1, col=1)
1125
+
1125
1126
  ## lengths chains by state dist
1126
1127
  if 'hmm_chain_order' in df.columns:
1127
1128
  df_agg = df.groupby(['hmm_feature','chain_id'],as_index = False).agg(length_by_chain = ('hmm_chain_order','max'))
@@ -1268,6 +1269,7 @@ class produce_plotly_plots:
1268
1269
  df = prediction[prediction.ExecutionDate == last_date]
1269
1270
  fig.add_trace(go.Scatter(x=df.Date, y=df.log_return, mode='lines',marker_color ='#ff7f0e',showlegend=False),row=1, col=1)
1270
1271
  fig.add_trace(go.Scatter(x=df.Date, y=df.log_return, mode='markers',marker_color ='#ff7f0e',showlegend=False),row=1, col=1)
1272
+ fig.add_hline(y=0, line_width=2, line_dash="dash", line_color="grey",col = 1, row = 1)
1271
1273
 
1272
1274
  ## closing prices
1273
1275
 
@@ -1292,7 +1294,7 @@ class produce_plotly_plots:
1292
1294
  upload_file_to_aws(bucket = 'VIRGO_BUCKET', key = self.save_aws + result_json_name, input_path = self.save_path + result_json_name, aws_credentials = self.aws_credentials)
1293
1295
  if self.return_figs:
1294
1296
  return fig
1295
-
1297
+
1296
1298
  def plot_hmm_analysis_logger(data_frame,test_data_size, save_path = False, show_plot = True):
1297
1299
  '''
1298
1300
  display box plots train and test of hmm state returns
@@ -55,6 +55,7 @@ import logging
55
55
 
56
56
  from virgo_modules.src.hmm_utils import trainer_hmm
57
57
  from virgo_modules.src.transformer_utils import signal_combiner, FeatureSelector
58
+ from virgo_modules.src.transformer_utils import FeaturesEntropy, VirgoWinsorizerFeature # imported bcs some models read this module otherwise it crashed mlflow.load()
58
59
 
59
60
  def data_processing_pipeline(features_base,features_to_drop = False, lag_dict = False, combine_signals = False, discretize_columns = False, correlation = 0.77):
60
61
 
@@ -1,37 +1,36 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: virgo-modules
3
- Version: 0.2.5
3
+ Version: 0.2.7
4
4
  Summary: data processing and statistical modeling using stock market data
5
5
  Home-page: https://github.com/miguelmayhem92/virgo_module
6
6
  Author: Miguel Mayhuire
7
7
  Author-email: miguelmayhem92@gmail.com
8
8
  License: MIT
9
- Platform: UNKNOWN
10
9
  Classifier: License :: OSI Approved :: MIT License
11
10
  Classifier: Programming Language :: Python :: 3.9
12
11
  Classifier: Operating System :: OS Independent
13
12
  Requires-Python: >=3.9, <3.10
14
13
  Description-Content-Type: text/markdown
15
14
  License-File: LICENSE
16
- Requires-Dist: feature-engine (==1.6.1)
17
- Requires-Dist: matplotlib (==3.6.3)
18
- Requires-Dist: mlflow (==2.1.1)
19
- Requires-Dist: numpy (==1.23.5)
20
- Requires-Dist: optuna (==3.1.0)
21
- Requires-Dist: pandas (==1.5.3)
22
- Requires-Dist: plotly (==5.15.0)
23
- Requires-Dist: rsa (==4.9)
24
- Requires-Dist: scikit-learn (==1.2.1)
25
- Requires-Dist: scipy (==1.10.0)
26
- Requires-Dist: seaborn (==0.12.2)
27
- Requires-Dist: starlette (==0.22.0)
28
- Requires-Dist: statsmodels (==0.13.5)
29
- Requires-Dist: ta (==0.10.2)
30
- Requires-Dist: yfinance (==0.2.9)
31
- Requires-Dist: hmmlearn (==0.3.0)
15
+ Requires-Dist: feature-engine ==1.6.1
16
+ Requires-Dist: matplotlib ==3.6.3
17
+ Requires-Dist: mlflow ==2.1.1
18
+ Requires-Dist: numpy ==1.23.5
19
+ Requires-Dist: optuna ==3.1.0
20
+ Requires-Dist: pandas ==1.5.3
21
+ Requires-Dist: plotly ==5.15.0
22
+ Requires-Dist: rsa ==4.9
23
+ Requires-Dist: scikit-learn ==1.2.1
24
+ Requires-Dist: scipy ==1.10.0
25
+ Requires-Dist: seaborn ==0.12.2
26
+ Requires-Dist: starlette ==0.22.0
27
+ Requires-Dist: statsmodels ==0.13.5
28
+ Requires-Dist: ta ==0.10.2
29
+ Requires-Dist: yfinance ==0.2.9
30
+ Requires-Dist: hmmlearn ==0.3.0
32
31
  Requires-Dist: boto3
33
32
  Provides-Extra: dev
34
- Requires-Dist: pytest (>=7.0) ; extra == 'dev'
33
+ Requires-Dist: pytest >=7.0 ; extra == 'dev'
35
34
 
36
35
  # Virgo Package
37
36
 
@@ -52,4 +51,3 @@ obj = stock_eda_panel(stock_code = 'PEP', n_days = 20)
52
51
  obj.get_data()
53
52
  print(obj.df.shape)
54
53
  ```
55
-
@@ -5,11 +5,11 @@ virgo_modules/src/backtester.py,sha256=OhiWyzDX0PthXGuhChyWUmDN3cLkzVYe95zS4nGti
5
5
  virgo_modules/src/edge_utils.py,sha256=XN2oEOwADXF9IGNUGx0Ai8B1yDAiU2WDateLnEJh5FE,14243
6
6
  virgo_modules/src/hmm_utils.py,sha256=fFWxmh9q3rjiKRHnxNk9k7O4fDrxVxkmp3pbpLvktjc,21116
7
7
  virgo_modules/src/pull_artifacts.py,sha256=5OPrgR7pcMSdpbevDRhf0ebk7g7ZRjff4NpTIIWAKjE,1989
8
- virgo_modules/src/re_utils.py,sha256=WoulQlwX7Z89P7sb4koySeqeN98hrLU8dXmjUr6ABwc,73198
9
- virgo_modules/src/ticketer_source.py,sha256=bm1I-a_mg80fgdH0Znx-qg0CTUxtVmkL6PWLTCeBTu8,98617
8
+ virgo_modules/src/re_utils.py,sha256=f0gPyCZFVMPR8BpJcnIPA3jpgIPeP--t1KiDE9yLDDE,73404
9
+ virgo_modules/src/ticketer_source.py,sha256=joJUoaga5M0OOAiOJ8TFR_sGd6eckbHlN1fxLIklXSM,98785
10
10
  virgo_modules/src/transformer_utils.py,sha256=LLwKYZRq5hrPVimnq3taD0Lh-q3Bq21fy1I4Icbnxi8,7677
11
- virgo_modules-0.2.5.dist-info/LICENSE,sha256=pNgFyCYgmimaw0o6V20JupZLROycAnOA_HDDh1tX2V4,1097
12
- virgo_modules-0.2.5.dist-info/METADATA,sha256=65P4BKj42AiG45mM7HOMYm3OvIbYEo91afivPDOZ4FA,1483
13
- virgo_modules-0.2.5.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
14
- virgo_modules-0.2.5.dist-info/top_level.txt,sha256=ZjI-qEkDtT-8mFwGAWnXfqPOKEGlIhWRW1es1VyXc60,14
15
- virgo_modules-0.2.5.dist-info/RECORD,,
11
+ virgo_modules-0.2.7.dist-info/LICENSE,sha256=pNgFyCYgmimaw0o6V20JupZLROycAnOA_HDDh1tX2V4,1097
12
+ virgo_modules-0.2.7.dist-info/METADATA,sha256=DqDYNp2TLuzgrtLKe8LVMw7xqjQ7l4aKgp4k8gbfv_E,1428
13
+ virgo_modules-0.2.7.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
14
+ virgo_modules-0.2.7.dist-info/top_level.txt,sha256=ZjI-qEkDtT-8mFwGAWnXfqPOKEGlIhWRW1es1VyXc60,14
15
+ virgo_modules-0.2.7.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.38.4)
2
+ Generator: bdist_wheel (0.41.2)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5