virgo-modules 0.0.72__py3-none-any.whl → 0.0.74__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of virgo-modules might be problematic. Click here for more details.

@@ -611,6 +611,23 @@ class produce_plotly_plots:
611
611
  ma1 = self.settings['settings'][spread_column]['ma1']
612
612
  ma2 = self.settings['settings'][spread_column]['ma2']
613
613
  hmm_n_clust = self.settings['settings']['hmm']['n_clusters']
614
+
615
+ def return_FeatureSingal_lists(feature, feature_2):
616
+ signal_up_list = [f'signal_up_{feature}', f'signal_up_{feature_2}']
617
+ signal_low_list = [f'signal_low_{feature}', f'signal_low_{feature_2}']
618
+ norm_list = [f'norm_{feature}', f'z_{feature}', feature]
619
+ return norm_list, signal_up_list, signal_low_list
620
+
621
+ # feature_list corrector
622
+ new_feature_list = list()
623
+ for feature in feature_list:
624
+ norm_list, _ , _ = return_FeatureSingal_lists(feature, '')
625
+ for norm_feat in norm_list:
626
+ if norm_feat in df.columns:
627
+ new_feature_list.append(feature)
628
+ break
629
+
630
+ feature_list = new_feature_list
614
631
  feature_rows = len(feature_list)
615
632
 
616
633
  rows_subplot = feature_rows + 1
@@ -627,9 +644,8 @@ class produce_plotly_plots:
627
644
  ### signal plots
628
645
  for row_i, feature in enumerate(feature_list,start=1):
629
646
  feature_2 = 'nan'
630
- signal_up_list = [f'signal_up_{feature}', f'signal_up_{feature_2}']
631
- signal_low_list = [f'signal_low_{feature}', f'signal_low_{feature_2}']
632
- norm_list = [f'norm_{feature}', f'z_{feature}', feature]
647
+ norm_list, signal_up_list, signal_low_list = return_FeatureSingal_lists(feature, feature_2)
648
+
633
649
  # signal
634
650
  for norm_feat in norm_list:
635
651
  if norm_feat in df.columns:
@@ -874,7 +874,7 @@ class stock_eda_panel(object):
874
874
  def rsi_feature_improved(self, window, threshold, plot = False, save_features = False):
875
875
  feature_name = 'RSI'
876
876
  rsi = RSIIndicator(close = self.df['Close'], window = window).rsi()
877
- self.df[feature_name] = rsi
877
+ self.df[feature_name] = rsi.replace([np.inf, -np.inf], 0).fillna(method = 'ffill')
878
878
  self.compute_clip_bands(feature_name,threshold)
879
879
 
880
880
  if save_features:
@@ -1050,7 +1050,7 @@ class stock_eda_panel(object):
1050
1050
  def roc_feature(self, window, threshold, plot = False, save_features = False):
1051
1051
  feature_name = 'ROC'
1052
1052
  roc = ROCIndicator(close = self.df['Close'], window = window).roc()
1053
- self.df[feature_name] = roc
1053
+ self.df[feature_name] = roc.replace([np.inf, -np.inf], 0).fillna(method = 'ffill')
1054
1054
  self.compute_clip_bands(feature_name,threshold)
1055
1055
 
1056
1056
  if save_features:
@@ -1062,7 +1062,7 @@ class stock_eda_panel(object):
1062
1062
  def stoch_feature(self, window, smooth1, smooth2, threshold, plot = False, save_features = False):
1063
1063
  feature_name = 'STOCH'
1064
1064
  stoch = StochRSIIndicator(close = self.df['Close'], window = window, smooth1=smooth1, smooth2=smooth2).stochrsi()
1065
- self.df[feature_name] = stoch
1065
+ self.df[feature_name] = stoch.replace([np.inf, -np.inf], 0).fillna(method = 'ffill')
1066
1066
  self.compute_clip_bands(feature_name,threshold)
1067
1067
 
1068
1068
  if save_features:
@@ -1074,7 +1074,7 @@ class stock_eda_panel(object):
1074
1074
  def stochastic_feature(self, window, smooth, threshold, plot = False, save_features = False):
1075
1075
  feature_name = 'STOCHOSC'
1076
1076
  stochast = StochasticOscillator(close = self.df['Close'], high = self.df['High'], low = self.df['Low'], window = window,smooth_window=smooth).stoch()
1077
- self.df[feature_name] = stochast
1077
+ self.df[feature_name] = stochast.replace([np.inf, -np.inf], 0).fillna(method = 'ffill')
1078
1078
  self.compute_clip_bands(feature_name,threshold)
1079
1079
 
1080
1080
  if save_features:
@@ -1086,7 +1086,7 @@ class stock_eda_panel(object):
1086
1086
  def william_feature(self, lbp, threshold, plot = False, save_features = False):
1087
1087
  feature_name = 'WILL'
1088
1088
  will = WilliamsRIndicator(close = self.df['Close'], high = self.df['High'], low = self.df['Low'], lbp = lbp).williams_r()
1089
- self.df[feature_name] = will
1089
+ self.df[feature_name] = will.replace([np.inf, -np.inf], 0).fillna(method = 'ffill')
1090
1090
  self.compute_clip_bands(feature_name,threshold)
1091
1091
 
1092
1092
  if save_features:
@@ -1098,7 +1098,7 @@ class stock_eda_panel(object):
1098
1098
  def vortex_feature(self, window, threshold, plot = False, save_features = False):
1099
1099
  feature_name = 'VORTEX'
1100
1100
  vortex = VortexIndicator(close = self.df['Close'], high = self.df['High'], low = self.df['Low'], window = window).vortex_indicator_diff()
1101
- self.df[feature_name] = vortex
1101
+ self.df[feature_name] = vortex.replace([np.inf, -np.inf], 0).fillna(method = 'ffill')
1102
1102
  self.compute_clip_bands(feature_name,threshold)
1103
1103
 
1104
1104
  if save_features:
@@ -1,36 +1,37 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: virgo-modules
3
- Version: 0.0.72
3
+ Version: 0.0.74
4
4
  Summary: data processing and statistical modeling using stock market data
5
5
  Home-page: https://github.com/miguelmayhem92/virgo_module
6
6
  Author: Miguel Mayhuire
7
7
  Author-email: miguelmayhem92@gmail.com
8
8
  License: MIT
9
+ Platform: UNKNOWN
9
10
  Classifier: License :: OSI Approved :: MIT License
10
11
  Classifier: Programming Language :: Python :: 3.9
11
12
  Classifier: Operating System :: OS Independent
12
13
  Requires-Python: >=3.9, <3.10
13
14
  Description-Content-Type: text/markdown
14
15
  License-File: LICENSE
15
- Requires-Dist: feature-engine ==1.6.1
16
- Requires-Dist: matplotlib ==3.6.3
17
- Requires-Dist: mlflow ==2.1.1
18
- Requires-Dist: numpy ==1.23.5
19
- Requires-Dist: optuna ==3.1.0
20
- Requires-Dist: pandas ==1.5.3
21
- Requires-Dist: plotly ==5.15.0
22
- Requires-Dist: rsa ==4.9
23
- Requires-Dist: scikit-learn ==1.2.1
24
- Requires-Dist: scipy ==1.10.0
25
- Requires-Dist: seaborn ==0.12.2
26
- Requires-Dist: starlette ==0.22.0
27
- Requires-Dist: statsmodels ==0.13.5
28
- Requires-Dist: ta ==0.10.2
29
- Requires-Dist: yfinance ==0.2.9
30
- Requires-Dist: hmmlearn ==0.3.0
16
+ Requires-Dist: feature-engine (==1.6.1)
17
+ Requires-Dist: matplotlib (==3.6.3)
18
+ Requires-Dist: mlflow (==2.1.1)
19
+ Requires-Dist: numpy (==1.23.5)
20
+ Requires-Dist: optuna (==3.1.0)
21
+ Requires-Dist: pandas (==1.5.3)
22
+ Requires-Dist: plotly (==5.15.0)
23
+ Requires-Dist: rsa (==4.9)
24
+ Requires-Dist: scikit-learn (==1.2.1)
25
+ Requires-Dist: scipy (==1.10.0)
26
+ Requires-Dist: seaborn (==0.12.2)
27
+ Requires-Dist: starlette (==0.22.0)
28
+ Requires-Dist: statsmodels (==0.13.5)
29
+ Requires-Dist: ta (==0.10.2)
30
+ Requires-Dist: yfinance (==0.2.9)
31
+ Requires-Dist: hmmlearn (==0.3.0)
31
32
  Requires-Dist: boto3
32
33
  Provides-Extra: dev
33
- Requires-Dist: pytest >=7.0 ; extra == 'dev'
34
+ Requires-Dist: pytest (>=7.0) ; extra == 'dev'
34
35
 
35
36
  # Virgo Package
36
37
 
@@ -51,3 +52,4 @@ obj = stock_eda_panel(stock_code = 'PEP', n_days = 20)
51
52
  obj.get_data()
52
53
  print(obj.df.shape)
53
54
  ```
55
+
@@ -0,0 +1,12 @@
1
+ virgo_modules/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ virgo_modules/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
+ virgo_modules/src/aws_utils.py,sha256=GWmVdXM0mIJJPn-X-bEtM4KtNPCHM1D457hnuKxaM7E,1383
4
+ virgo_modules/src/edge_utils.py,sha256=Ihdmq7dyb8gOvG6CrDal7wsa15tqsdsFk6KINwM6578,7691
5
+ virgo_modules/src/pull_artifacts.py,sha256=5OPrgR7pcMSdpbevDRhf0ebk7g7ZRjff4NpTIIWAKjE,1989
6
+ virgo_modules/src/re_utils.py,sha256=IF0l8eduTgHLASyXcZu1TIazJVPt4vzw-CeDyw2YfdQ,53096
7
+ virgo_modules/src/ticketer_source.py,sha256=cduj-IhKavpSHEoZ2OSWNAalazTGXlcVDDLdpeT7r_E,105165
8
+ virgo_modules-0.0.74.dist-info/LICENSE,sha256=pNgFyCYgmimaw0o6V20JupZLROycAnOA_HDDh1tX2V4,1097
9
+ virgo_modules-0.0.74.dist-info/METADATA,sha256=QaYA8SGUqfHknR4_NTBNPJlEakgu7vGrqJZl46CEF2c,1484
10
+ virgo_modules-0.0.74.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
11
+ virgo_modules-0.0.74.dist-info/top_level.txt,sha256=ZjI-qEkDtT-8mFwGAWnXfqPOKEGlIhWRW1es1VyXc60,14
12
+ virgo_modules-0.0.74.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.41.2)
2
+ Generator: bdist_wheel (0.38.4)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,12 +0,0 @@
1
- virgo_modules/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- virgo_modules/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
- virgo_modules/src/aws_utils.py,sha256=GWmVdXM0mIJJPn-X-bEtM4KtNPCHM1D457hnuKxaM7E,1383
4
- virgo_modules/src/edge_utils.py,sha256=Ihdmq7dyb8gOvG6CrDal7wsa15tqsdsFk6KINwM6578,7691
5
- virgo_modules/src/pull_artifacts.py,sha256=5OPrgR7pcMSdpbevDRhf0ebk7g7ZRjff4NpTIIWAKjE,1989
6
- virgo_modules/src/re_utils.py,sha256=LDI3sYAaNm3LO5gRul7PyCVbJrkT3PBihObkdVilVec,52428
7
- virgo_modules/src/ticketer_source.py,sha256=ciMPObqntAFtnlY1IPt8-Y4mz6yuD1jy6gRQN109D4M,104837
8
- virgo_modules-0.0.72.dist-info/LICENSE,sha256=pNgFyCYgmimaw0o6V20JupZLROycAnOA_HDDh1tX2V4,1097
9
- virgo_modules-0.0.72.dist-info/METADATA,sha256=Txin9qouILtGSvPTQYcJPPkWXNry0JjI3sSfAMB0Cjg,1429
10
- virgo_modules-0.0.72.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
11
- virgo_modules-0.0.72.dist-info/top_level.txt,sha256=ZjI-qEkDtT-8mFwGAWnXfqPOKEGlIhWRW1es1VyXc60,14
12
- virgo_modules-0.0.72.dist-info/RECORD,,