versionhq 1.2.4.13__py3-none-any.whl → 1.2.4.15__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
versionhq/__init__.py CHANGED
@@ -10,7 +10,7 @@ load_dotenv(override=True)
10
10
  from versionhq.agent.model import Agent
11
11
  from versionhq.agent_network.model import AgentNetwork, Formation, Member, TaskHandlingProcess
12
12
  from versionhq.llm.model import LLM
13
- from versionhq.llm.llm_vars import LLM_CONTEXT_WINDOW_SIZES, MODEL_PARAMS, PROVIDERS, TEXT_MODELS
13
+ from versionhq.llm.llm_vars import LLM_CONTEXT_WINDOW_SIZES, MODEL_PARAMS, PROVIDERS, MODELS
14
14
  from versionhq.clients.customer.model import Customer
15
15
  from versionhq.clients.product.model import Product, ProductProvider
16
16
  from versionhq.clients.workflow.model import MessagingWorkflow, MessagingComponent
@@ -35,7 +35,7 @@ from versionhq.agent_network.formation import form_agent_network
35
35
  from versionhq.task_graph.draft import workflow
36
36
 
37
37
 
38
- __version__ = "1.2.4.13"
38
+ __version__ = "1.2.4.15"
39
39
  __all__ = [
40
40
  "Agent",
41
41
 
@@ -48,7 +48,7 @@ __all__ = [
48
48
  "LLM_CONTEXT_WINDOW_SIZES",
49
49
  "MODEL_PARAMS",
50
50
  "PROVIDERS",
51
- "TEXT_MODELS",
51
+ "MODELS",
52
52
 
53
53
  "Customer",
54
54
  "Product",
@@ -14,7 +14,6 @@ class Prompt:
14
14
  agent: Any = None
15
15
  context: Any = None
16
16
 
17
-
18
17
  def __init__(self, task, agent, context):
19
18
  from versionhq.agent.model import Agent
20
19
  from versionhq.task.model import Task
@@ -32,22 +31,24 @@ class Prompt:
32
31
  output_prompt = ""
33
32
  output_formats_to_follow = dict()
34
33
 
35
- if self.task.response_schema:
36
- if isinstance(self.task.response_schema, list):
37
- for item in self.task.response_schema:
38
- if isinstance(item, ResponseField):
39
- output_formats_to_follow[item.title] = f"<Return your answer in {item.data_type.__name__}>"
34
+ if self.task.is_multimodal == False:
35
+ if self.task.response_schema:
36
+ if isinstance(self.task.response_schema, list):
37
+ for item in self.task.response_schema:
38
+ if isinstance(item, ResponseField):
39
+ output_formats_to_follow[item.title] = f"<Return your answer in {item.data_type.__name__}>"
40
40
 
41
- elif issubclass(self.task.response_schema, BaseModel):
42
- for k, v in self.task.response_schema.model_fields.items():
43
- output_formats_to_follow[k] = f"<Return your answer in {v.annotation}>"
41
+ elif issubclass(self.task.response_schema, BaseModel):
42
+ for k, v in self.task.response_schema.model_fields.items():
43
+ output_formats_to_follow[k] = f"<Return your answer in {v.annotation}>"
44
44
 
45
- output_prompt = f"""Your response MUST be a valid JSON string that strictly follows the response format. Use double quotes for all keys and string values. Do not use single quotes, trailing commas, or any other non-standard JSON syntax.
46
- Ref. Output image: {output_formats_to_follow}
47
- """
48
- else:
49
- output_prompt = "You MUST return your response as a valid JSON serializable string, enclosed in double quotes. Use double quotes for all keys and string values. Do NOT use single quotes, trailing commas, or other non-standard JSON syntax."
45
+ output_prompt = f"""Your response MUST be a valid JSON string that strictly follows the response format. Use double quotes for all keys and string values. Do not use single quotes, trailing commas, or any other non-standard JSON syntax.
46
+ Ref. Output image: {output_formats_to_follow}"""
47
+ else:
48
+ output_prompt = "You MUST return your response as a valid JSON serializable string, enclosed in double quotes. Use double quotes for all keys and string values. Do NOT use single quotes, trailing commas, or other non-standard JSON syntax."
50
49
 
50
+ else:
51
+ output_prompt = "Return your response in concise manner."
51
52
  return dedent(output_prompt)
52
53
 
53
54
 
@@ -98,19 +99,20 @@ Ref. Output image: {output_formats_to_follow}
98
99
 
99
100
  content_messages = {}
100
101
 
101
- if self.task.image:
102
- img_url = convert_img_url(self.task.image)
103
- if img_url:
104
- content_messages.update({ "type": "image_url", "image_url": { "url": img_url }})
102
+ if self.task.is_multimodal == False:
103
+ if self.task.image:
104
+ img_url = convert_img_url(self.task.image)
105
+ if img_url:
106
+ content_messages.update({ "type": "image_url", "image_url": { "url": img_url }})
105
107
 
106
- if self.task.file:
107
- if is_valid_url(self.task.file):
108
- content_messages.update({ "type": "image_url", "image_url": self.file })
108
+ if self.task.file:
109
+ if is_valid_url(self.task.file):
110
+ content_messages.update({ "type": "image_url", "image_url": self.file })
109
111
 
110
- if self.task.audio and self.agent.llm.provider == "gemini":
111
- audio_bytes = Path(self.task.audio).read_bytes()
112
- encoded_data = base64.b64encode(audio_bytes).decode("utf-8")
113
- content_messages.update({ "type": "image_url", "image_url": "data:audio/mp3;base64,{}".format(encoded_data)})
112
+ if self.task.audio and self.agent.llm.provider == "gemini":
113
+ audio_bytes = Path(self.task.audio).read_bytes()
114
+ encoded_data = base64.b64encode(audio_bytes).decode("utf-8")
115
+ content_messages.update({ "type": "image_url", "image_url": "data:audio/mp3;base64,{}".format(encoded_data)})
114
116
 
115
117
  return content_messages
116
118
 
@@ -188,7 +190,6 @@ Ref. Output image: {output_formats_to_follow}
188
190
  # else:
189
191
  # user_prompt = self.agent._use_trained_data(user_prompt=user_prompt)
190
192
 
191
-
192
193
  content_prompt = self._format_content_prompt()
193
194
 
194
195
  messages = []
@@ -5,3 +5,4 @@ from versionhq._utils.is_valid_url import is_valid_url
5
5
  from versionhq._utils.usage_metrics import UsageMetrics, ErrorType
6
6
  from versionhq._utils.convert_img_url import convert_img_url
7
7
  from versionhq._utils.is_valid_enum import is_valid_enum
8
+ from versionhq._utils.handle_directory import handle_directory
@@ -0,0 +1,15 @@
1
+ import os
2
+ import datetime
3
+ from pathlib import Path
4
+
5
+
6
+ def handle_directory(directory_name: str = None, filename: str = None, ext: str = 'png') -> Path:
7
+ """Creates and returns the absolute file path"""
8
+
9
+ os.makedirs(directory_name, exist_ok=True)
10
+
11
+ date = str(datetime.datetime.now().strftime('%j'))
12
+ cwd = Path.cwd()
13
+ DIRECTORY = cwd / f'{directory_name}/{filename}_{date}.{ext}'
14
+
15
+ return DIRECTORY
versionhq/agent/model.py CHANGED
@@ -356,12 +356,9 @@ class Agent(BaseModel):
356
356
  response_format: Optional[Dict[str, Any]] = None,
357
357
  tools: Optional[List[InstanceOf[Tool]| InstanceOf[ToolSet] | Type[Tool]]] = None,
358
358
  tool_res_as_final: bool = False,
359
+ file: str = None, # absolute path to the content file (for multimodal use)
359
360
  ) -> Tuple[str, UsageMetrics]:
360
- """
361
- Create formatted prompts using the developer prompt and the agent's backstory, then call the base model.
362
- - Execute the task up to `self.max_retry_limit` times in case of receiving an error or empty response.
363
- - Pass the task_tools to the model to let them execute.
364
- """
361
+ """Calls LLM."""
365
362
 
366
363
  task_execution_counter = 0
367
364
  iterations = 0
@@ -375,10 +372,10 @@ class Agent(BaseModel):
375
372
  Logger(**self._logger_config, filename=self.key).log(level="info", message=f"Messages sent to the model: {messages}", color="blue")
376
373
 
377
374
  if tool_res_as_final:
378
- raw_response = self.func_calling_llm.call(messages=messages, tools=tools, tool_res_as_final=True)
375
+ raw_response = self.func_calling_llm.call(messages=messages, tools=tools, tool_res_as_final=True, file=file)
379
376
  usage.record_token_usage(*self.func_calling_llm._usages)
380
377
  else:
381
- raw_response = self.llm.call(messages=messages, response_format=response_format, tools=tools)
378
+ raw_response = self.llm.call(messages=messages, response_format=response_format, tools=tools, file=file)
382
379
  usage.record_token_usage(*self.llm._usages)
383
380
 
384
381
  task_execution_counter += 1
@@ -454,14 +451,14 @@ class Agent(BaseModel):
454
451
  return rag_tools, gpt_tools, tools
455
452
 
456
453
 
457
- def _handle_gpt_tools(self, gpt_tools: list[Any] = None) -> Any: # TaskOutput
454
+ def _handle_gpt_tools(self, gpt_tools: list[Any] = None) -> Any: # TaskOutput or None
458
455
  """Generates k, v pairs from multiple GPT tool results and stores them in TaskOutput class."""
459
456
 
460
457
  from versionhq.task.model import TaskOutput
461
458
  from versionhq._utils import UsageMetrics
462
459
 
463
460
  if not gpt_tools:
464
- return
461
+ return None
465
462
 
466
463
  tool_res = dict()
467
464
  annotation_set = dict()
@@ -470,7 +467,9 @@ class Agent(BaseModel):
470
467
  for i, item in enumerate(gpt_tools):
471
468
  raw, annotations, usage = item.run()
472
469
  tool_res.update({ str(i): raw })
473
- annotation_set.update({ str(i): annotations })
470
+
471
+ if annotations:
472
+ annotation_set.update({ str(i): annotations })
474
473
  total_usage.aggregate(metrics=usage)
475
474
 
476
475
  res = TaskOutput(raw=str(tool_res), tool_output=tool_res, usage=total_usage, annotations=annotation_set)
@@ -580,6 +579,7 @@ class Agent(BaseModel):
580
579
  raw_response = ""
581
580
  user_prompt, dev_prompt = "", ""
582
581
  usage = UsageMetrics(id=task.id)
582
+ file = task.audio if task.is_multimodal and task.audio else task.image if task.is_multimodal and task.image else task.file if task.is_multimodal and task.file else None
583
583
 
584
584
  if self.max_rpm and self._rpm_controller:
585
585
  self._rpm_controller._reset_request_count()
@@ -598,6 +598,7 @@ class Agent(BaseModel):
598
598
  response_format=task._structure_response_format(model_provider=self.llm.provider),
599
599
  tools=tools,
600
600
  tool_res_as_final=task.tool_res_as_final,
601
+ file=file,
601
602
  )
602
603
 
603
604
  except Exception as e:
versionhq/llm/llm_vars.py CHANGED
@@ -28,14 +28,13 @@ PROVIDERS = {
28
28
  "HF_ENDPOINT": "HF_ENDPOINT",
29
29
  },
30
30
  "azure": {
31
- "api_base": "AZURE_OPENAI_ENDPOINT",
31
+ "api_base": "AZURE_OPENAI_ENDPOINT_MODEL_NAME",
32
32
  "api_key": "AZURE_OPENAI_API_KEY",
33
33
  "api_version": "AZURE_OPENAI_API_VERSION",
34
34
  },
35
35
  "azure_ai": {
36
36
  "api_key": "AZURE_AI_API_KEY",
37
37
  "base_url": "AZURE_AI_API_BASE",
38
-
39
38
  }
40
39
  }
41
40
 
@@ -47,7 +46,7 @@ ENDPOINTS = [
47
46
 
48
47
 
49
48
  # Resaoning and text generation models
50
- TEXT_MODELS = {
49
+ MODELS = {
51
50
  "openai": [
52
51
  "gpt-4.5-preview-2025-02-27",
53
52
  "gpt-4",
@@ -96,6 +95,10 @@ TEXT_MODELS = {
96
95
  "bedrock/cohere.command-light-text-v14",
97
96
  ],
98
97
  "azure": [
98
+ "azure/whisper",
99
+ "azure/whisper-2",
100
+ "azure/gpt-4o-mini-audio-preview",
101
+
99
102
  "azure/DeepSeek-V3",
100
103
  "azure/DeepSeek-R1",
101
104
  "azure/Llama-3.3-70B-Instruct",
@@ -163,6 +166,13 @@ TEXT_MODELS = {
163
166
  }
164
167
 
165
168
 
169
+ AUDIO_TO_TEXT_MODELS = [
170
+ "azure/whisper",
171
+ "azure/whisper-2",
172
+ "azure/gpt-4o-mini-audio-preview",
173
+ ]
174
+
175
+
166
176
  """
167
177
  Max input token size by the model.
168
178
  """
versionhq/llm/model.py CHANGED
@@ -12,9 +12,9 @@ import litellm
12
12
  from litellm import JSONSchemaValidationError, get_supported_openai_params, supports_response_schema
13
13
  from pydantic import BaseModel, Field, PrivateAttr, model_validator, ConfigDict
14
14
 
15
- from versionhq.llm.llm_vars import LLM_CONTEXT_WINDOW_SIZES, TEXT_MODELS, MODEL_PARAMS, PROVIDERS, ENDPOINTS
15
+ from versionhq.llm.llm_vars import LLM_CONTEXT_WINDOW_SIZES, MODELS, AUDIO_TO_TEXT_MODELS, MODEL_PARAMS, PROVIDERS, ENDPOINTS
16
16
  from versionhq.tool.model import Tool, ToolSet
17
- from versionhq._utils import Logger
17
+ from versionhq._utils import Logger, UsageMetrics, ErrorType
18
18
 
19
19
 
20
20
  load_dotenv(override=True)
@@ -115,7 +115,7 @@ class LLM(BaseModel):
115
115
  self.provider = DEFAULT_MODEL_PROVIDER_NAME
116
116
 
117
117
  else:
118
- provider_model_list = TEXT_MODELS.get(self.provider)
118
+ provider_model_list = MODELS.get(self.provider)
119
119
  if provider_model_list:
120
120
  self.model = provider_model_list[0]
121
121
  self.provider = self.provider
@@ -127,29 +127,29 @@ class LLM(BaseModel):
127
127
  elif self.model and self.provider is None:
128
128
  model_match = [
129
129
  item for item in [
130
- [val for val in v if val == self.model][0] for k, v in TEXT_MODELS.items() if [val for val in v if val == self.model]
130
+ [val for val in v if val == self.model][0] for k, v in MODELS.items() if [val for val in v if val == self.model]
131
131
  ] if item
132
132
  ]
133
133
  model_partial_match = [
134
134
  item for item in [
135
- [val for val in v if val.find(self.model) != -1][0] for k, v in TEXT_MODELS.items() if [val for val in v if val.find(self.model) != -1]
135
+ [val for val in v if val.find(self.model) != -1][0] for k, v in MODELS.items() if [val for val in v if val.find(self.model) != -1]
136
136
  ] if item
137
137
  ]
138
- provider_match = [k for k, v in TEXT_MODELS.items() if k == self.model]
138
+ provider_match = [k for k, v in MODELS.items() if k == self.model]
139
139
 
140
140
  if model_match:
141
141
  self.model = model_match[0]
142
- self.provider = [k for k, v in TEXT_MODELS.items() if self.model in v][0]
142
+ self.provider = [k for k, v in MODELS.items() if self.model in v][0]
143
143
 
144
144
  elif model_partial_match:
145
145
  self.model = model_partial_match[0]
146
- self.provider = [k for k, v in TEXT_MODELS.items() if [item for item in v if item.find(self.model) != -1]][0]
146
+ self.provider = [k for k, v in MODELS.items() if [item for item in v if item.find(self.model) != -1]][0]
147
147
 
148
148
  elif provider_match:
149
149
  provider = provider_match[0]
150
- if self.TEXT_MODELS.get(provider):
150
+ if self.MODELS.get(provider):
151
151
  self.provider = provider
152
- self.model = self.TEXT_MODELS.get(provider)[0]
152
+ self.model = self.MODELS.get(provider)[0]
153
153
  else:
154
154
  self.provider = DEFAULT_MODEL_PROVIDER_NAME
155
155
  self.model = DEFAULT_MODEL_NAME
@@ -159,7 +159,7 @@ class LLM(BaseModel):
159
159
  self.provider = DEFAULT_MODEL_PROVIDER_NAME
160
160
 
161
161
  else:
162
- provider_model_list = TEXT_MODELS.get(self.provider)
162
+ provider_model_list = MODELS.get(self.provider)
163
163
  if self.model not in provider_model_list:
164
164
  self._logger.log(level="warning", message=f"The provided model: {self._init_model_name} is not in the list. We will assign a default model.", color="yellow")
165
165
  self.model = DEFAULT_MODEL_NAME
@@ -232,7 +232,16 @@ class LLM(BaseModel):
232
232
 
233
233
  valid_cred = {}
234
234
  for k, v in cred.items():
235
- val = os.environ.get(v, None)
235
+ val = None
236
+ if '_MODEL_NAME' in v:
237
+ model_name = self.model.split('/')[-1] if self.model.split('/') else self.model
238
+ key = v.replace('_MODEL_NAME', f'_{model_name.replace("-", '_').replace(' ', '_').upper()}')
239
+ val = os.environ.get(key, None)
240
+ if not val:
241
+ val = os.environ.get(v.replace('_MODEL_NAME', ''), None)
242
+ else:
243
+ val = os.environ.get(v, None)
244
+
236
245
  if val:
237
246
  valid_cred[str(k)] = val
238
247
 
@@ -288,12 +297,12 @@ class LLM(BaseModel):
288
297
  messages: List[Dict[str, str]],
289
298
  response_format: Optional[Dict[str, Any]] = None,
290
299
  tools: Optional[List[Tool | ToolSet | Any ]] = None,
291
- config: Optional[Dict[str, Any]] = {}, # any other conditions to pass on to the model.
292
- tool_res_as_final: bool = False
300
+ config: Optional[Dict[str, Any]] = dict(),
301
+ tool_res_as_final: bool = False,
302
+ file: str = None
293
303
  ) -> str:
294
- """
295
- Execute LLM based on the agent's params and model params.
296
- """
304
+ """Configures and calls the LLM (chat, text generation, reasoning models)."""
305
+
297
306
  litellm.drop_params = True
298
307
  litellm.set_verbose = True
299
308
 
@@ -302,9 +311,32 @@ class LLM(BaseModel):
302
311
  self._set_callbacks(self.callbacks)
303
312
 
304
313
  try:
305
- res, tool_res = None, ""
314
+ res = None
315
+ tool_res = ""
306
316
  cred = self._set_credentials()
307
317
 
318
+ if file and self.model in AUDIO_TO_TEXT_MODELS:
319
+ params = self._create_valid_params(config=config)
320
+ audio_file = open(file, 'rb')
321
+ res = litellm.transcription(
322
+ model=self.model,
323
+ file=audio_file,
324
+ rompt=messages,
325
+ ustom_llm_provider=self.endpoint_provider,
326
+ response_format="json",
327
+ **cred
328
+ )
329
+ usage = UsageMetrics()
330
+ if res:
331
+ usage.latency = res._response_ms if hasattr(res, '_response_ms') else 0
332
+ self._usages.append(usage)
333
+ return res.text
334
+ else:
335
+ usage.record_errors(type=ErrorType.API)
336
+ self._usages.append(usage)
337
+ return None
338
+
339
+
308
340
  if self.provider == "gemini":
309
341
  self.response_format = { "type": "json_object" } if not tools and self.model != "gemini/gemini-2.0-flash-thinking-exp" else None
310
342
  elif response_format and "json_schema" in response_format:
versionhq/task/model.py CHANGED
@@ -314,6 +314,7 @@ class Task(BaseModel):
314
314
  name: Optional[str] = Field(default=None)
315
315
  description: str = Field(description="Description of the actual task")
316
316
  response_schema: Optional[Type[BaseModel] | List[ResponseField]] = Field(default=None, description="stores response format")
317
+ is_multimodal: bool = False
317
318
 
318
319
  # tool usage
319
320
  tools: Optional[List[Any]] = Field(default_factory=list, description="tools that the agent can use aside from their tools")
@@ -7,7 +7,7 @@ class GPTSizeEnum(str, Enum):
7
7
  HIGH = "high"
8
8
 
9
9
 
10
- class GPTCUAEnvironmentEnum(str, Enum):
10
+ class GPTCUABrowserEnum(str, Enum):
11
11
  BROWSER = "browser"
12
12
  MAC = "mac"
13
13
  WINDOWS = "windows"
versionhq/tool/gpt/cua.py CHANGED
@@ -1,40 +1,33 @@
1
+ import base64
1
2
  import datetime
2
3
  import time
3
- from typing import List, Dict, Any, Tuple
4
+ import platform
5
+ from typing import List, Dict, Any, Tuple, Literal, get_args
4
6
 
5
7
  from versionhq._utils import convert_img_url
6
8
  from versionhq.tool.gpt import openai_client
7
- from versionhq.tool.gpt._enum import GPTCUAEnvironmentEnum, GPTCUATypeEnum, GPTSizeEnum
8
- from versionhq._utils import is_valid_enum, UsageMetrics, ErrorType, Logger, is_valid_url
9
-
10
-
11
- allowed_browsers = ['webkit', 'chromium', 'firefox']
9
+ from versionhq.tool.gpt._enum import GPTSizeEnum
10
+ from versionhq._utils import is_valid_enum, UsageMetrics, ErrorType, Logger, is_valid_url, handle_directory
12
11
 
12
+ BROWSER = Literal['chromium', 'firefox']
13
+ TYPE = Literal["computer_call_output", "computer_use_preview"]
14
+ ENV = Literal["browser", "mac", "windows", "ubuntu"]
13
15
 
14
16
  class CUAToolSchema:
15
- type: str = GPTCUATypeEnum.COMPUTER_USE_PREVIEW.value
17
+ type: TYPE = "computer_use_preview"
18
+ environment: ENV = "browser"
16
19
  display_width: int = 1024
17
20
  display_height: int = 768
18
- environment: str = GPTCUAEnvironmentEnum.BROWSER.value
19
21
 
20
- def __init__(
21
- self,
22
- type: str | GPTCUATypeEnum = None,
23
- display_width: int = None,
24
- display_height: int = None,
25
- environment: str | GPTCUAEnvironmentEnum = None
26
- ):
22
+ def __init__(self, type: str = None, display_width: int = None, display_height: int = None, environment: str = None):
27
23
  self.display_height = display_height if display_height else self.display_height
28
24
  self.display_width = display_width if display_width else self.display_width
29
25
 
30
- if type and is_valid_enum(enum=GPTCUATypeEnum, val=type):
31
- self.type = type.value if isinstance(type, GPTCUATypeEnum) else type
32
-
33
- if environment and is_valid_enum(enum=GPTCUAEnvironmentEnum, val=environment):
34
- self.environment = environment.value if isinstance(environment, GPTCUAEnvironmentEnum) else environment
35
-
36
- self.environment = environment if environment else self.environment
26
+ if type and type in get_args(TYPE):
27
+ self.type = type
37
28
 
29
+ if environment and environment in get_args(ENV):
30
+ self.environment = environment
38
31
 
39
32
  @property
40
33
  def schema(self) -> Dict[str, Any]:
@@ -52,12 +45,14 @@ class GPTToolCUA:
52
45
  user_prompt: str = None
53
46
  img_url: str = None
54
47
  web_url: str = "https://www.google.com"
55
- browser: str = "firefox"
48
+ browser: BROWSER = "firefox"
56
49
  reasoning_effort: str = GPTSizeEnum.MEDIUM.value
57
50
  truncation: str = "auto"
58
51
 
52
+ _schema: Dict[str, Any] = dict()
59
53
  _response_ids: List[str] = list()
60
54
  _call_ids: List[str] = list()
55
+ _calls: Dict[str, Dict[str, Any]] = dict() # stores response_id and raw output object.
61
56
  _usage: UsageMetrics = UsageMetrics()
62
57
  _logger: Logger = Logger(info_file_save=True, filename="cua-task-{}".format(str(datetime.datetime.now().timestamp())) + ".png")
63
58
 
@@ -74,8 +69,8 @@ class GPTToolCUA:
74
69
  _usage: UsageMetrics = UsageMetrics()
75
70
  ):
76
71
  self.user_prompt = user_prompt
77
- self.web_url = web_url if is_valid_url(web_url) else "https://www.google.com"
78
- self.browser = browser if browser in allowed_browsers else 'chromium'
72
+ self.web_url = web_url if is_valid_url(web_url) else None
73
+ self.browser = browser if browser in get_args(BROWSER) else 'chromium'
79
74
  self.truncation = truncation if truncation else self.truncation
80
75
  self._usage = _usage
81
76
  self._response_ids = list()
@@ -104,104 +99,93 @@ class GPTToolCUA:
104
99
  pass
105
100
 
106
101
 
107
- def _take_screenshot(self, page: Any = None, path: str = None) -> Tuple[str | None, str | None]:
108
- import base64
109
- if not page:
110
- return None, None
111
-
112
- path = path if path else "screenshot.png"
113
- screenshot_bytes = page.screenshot()
114
- screenshot_base64 = base64.b64encode(screenshot_bytes).decode("utf-8")
115
- self._logger.log(message=f"Action: screenshot", level="info", color="blue")
116
- return screenshot_bytes, screenshot_base64
117
-
118
-
119
- def _handle_model_action(self, page: Any, action: Any, action_type: str = None) -> bool:
120
- """Creates a page object and performs actions."""
102
+ def _structure_schema(self, screenshot: str = None) -> None:
103
+ """Formats args schema for CUA calling."""
121
104
 
122
- action_type = action_type if action_type else action.type
123
- start_dt = datetime.datetime.now()
105
+ tool_schema = [item.schema for item in self.tools]
106
+ schema = dict()
107
+ inputs = list()
108
+ previous_response_id = self._response_ids[-1] if self._response_ids else None
109
+ # (self._response_ids[-1].startswith("rs") or self._response_ids[-1].startswith("resp")) else None
124
110
 
125
- try:
126
- match action_type:
127
- case "click":
128
- x, y = action.x, action.y
129
- button = action.button
130
- self._logger.log(message=f"Action: click at ({x}, {y}) with button '{button}'", level="info", color="blue")
131
- if button != "left" and button != "right":
132
- button = "left"
133
- page.mouse.click(x, y, button=button)
134
-
135
- case "scroll":
136
- x, y = action.x, action.y
137
- scroll_x, scroll_y = action.scroll_x, action.scroll_y
138
- self._logger.log(message=f"Action: scroll at ({x}, {y}) with offsets (scroll_x={scroll_x}, scroll_y={scroll_y})", level="info", color="blue")
139
- page.mouse.move(x, y)
140
- page.evaluate(f"window.scrollBy({scroll_x}, {scroll_y})")
141
-
142
- case "keypress":
143
- keys = action.keys
144
- for k in keys:
145
- self._logger.log(message=f"Action: keypress '{k}'", level="info", color="blue")
146
- if k.lower() == "enter":
147
- page.keyboard.press("Enter")
148
- elif k.lower() == "space":
149
- page.keyboard.press(" ")
150
- else:
151
- page.keyboard.press(k)
152
-
153
- case "type":
154
- text = action.text
155
- self._logger.log(message=f"Action: type text: {text}", level="info", color="blue")
156
- page.keyboard.type(text)
157
-
158
- case "wait":
159
- self._logger.log(message=f"Action: wait", level="info", color="blue")
160
- time.sleep(2)
161
-
162
- case "screenshot":
163
- pass
111
+ if self._call_ids:
112
+ inputs = [
113
+ {
114
+ "call_id": self._call_ids[-1],
115
+ "type": "computer_call_output",
116
+ }
117
+ ]
118
+ if screenshot:
119
+ inputs[0].update({ "output": { "type": "computer_screenshot", "image_url": f"data:image/png;base64,{str(screenshot)}"}})
120
+
121
+ # if self._calls:
122
+ # call = self._calls[self._call_ids[-1]]
123
+ # if call and call.call_id not in inputs[0]:
124
+ # inputs.append(call)
125
+
126
+ if previous_response_id:
127
+ schema = dict(
128
+ model=self.model,
129
+ previous_response_id=previous_response_id,
130
+ tools=tool_schema,
131
+ input=inputs,
132
+ truncation=self.truncation
133
+ )
134
+ else:
135
+ schema = dict(
136
+ model=self.model,
137
+ tools=tool_schema,
138
+ input=inputs,
139
+ truncation=self.truncation
140
+ )
164
141
 
165
- case _:
166
- self._logger.log(message=f"Unrecognized action: {action}", level="warning", color="yellow")
142
+ else:
143
+ input = [{ "role": "user", "content": self.user_prompt } ]
144
+ img_url = convert_img_url(self.img_url) if self.img_url else None
145
+ if img_url:
146
+ input.append({"type": "input_image", "image_url": f"data:image/png;base64,{img_url}"})
167
147
 
168
- except Exception as e:
169
- self._usage.record_errors(type=ErrorType.API)
170
- self._logger.log(message=f"Error handling action {action}: {e}", level="error", color="red")
148
+ schema = dict(
149
+ model=self.model,
150
+ tools=tool_schema,
151
+ input=input,
152
+ reasoning={ "effort": self.reasoning_effort},
153
+ truncation=self.truncation
154
+ )
171
155
 
172
- end_dt = datetime.datetime.now()
173
- self._usage.record_latency(start_dt=start_dt, end_dt=end_dt)
174
- return bool(self._usage.total_errors)
156
+ self._schema = schema
157
+ # return self._schema
175
158
 
176
159
 
177
- def run(self, screenshot: str = None) -> Tuple[Dict[str, Any], None, UsageMetrics]:
160
+ def _run(self, screenshot: str = None) -> Tuple[Dict[str, Any], None, UsageMetrics]:
178
161
  raw_res = dict()
179
162
  usage = self._usage if self._usage else UsageMetrics()
180
163
  start_dt = datetime.datetime.now()
181
164
 
182
165
  try:
183
- schema = self.schema
184
- if screenshot and "output" in schema["input"][0]:
185
- output_image_url = schema["input"][0]["output"]["image_url"].replace("SCREENSHOT", str(screenshot))
186
- schema["input"][0]["output"]["image_url"] = output_image_url
187
-
188
- res = openai_client.responses.create(**schema)
166
+ self._structure_schema(screenshot=screenshot)
167
+ res = openai_client.responses.create(**self._schema)
189
168
  if not res:
190
169
  usage.record_errors(ErrorType.TOOL)
191
170
  else:
171
+ self._response_ids.append(res.id)
192
172
  for item in res.output:
173
+
193
174
  match item.type:
194
175
  case "reasoning":
195
- raw_res.update(dict(reasoning=item.summary[0].text))
196
- if item.id and item.id.startwith('rs'):
197
- self._response_ids.append(item.id)
176
+ reasoning = item.summary[0].text if item.summary and isinstance(item.summary, list) else str(item.summary) if item.summary else ""
177
+ raw_res.update(dict(reasoning=reasoning))
178
+ # self._response_ids.append(item.id)
179
+
198
180
  case "computer_call":
199
181
  raw_res.update(dict(action=item.action))
200
182
  # self._response_ids.append(item.id)
201
- self._call_ids.append(item.call_id)
183
+ call_id = item.call_id
184
+ self._call_ids.append(call_id)
185
+ self._calls.update({ call_id: item })
202
186
  case _:
203
187
  pass
204
- usage.record_token_usage(**res.usage.__dict__)
188
+ usage.record_token_usage(**res.usage.__dict__)
205
189
 
206
190
  except Exception as e:
207
191
  self._logger.log(message=f"Failed to run: {str(e)}", color="red", level="error")
@@ -212,84 +196,254 @@ class GPTToolCUA:
212
196
  return raw_res, None, usage
213
197
 
214
198
 
215
- def invoke_playwright(self) -> Tuple[Dict[str, Any], None, UsageMetrics]:
199
+ def invoke_playwright(self) -> Dict[str, Any]:
216
200
  """Handles computer use loop. Ref. OpenAI official website."""
201
+ try:
202
+ from playwright.sync_api import sync_playwright
203
+ except Exception as e:
204
+ self._logger.log(level="error", message=f"Install Playwright by adding `versionhq[tools]` to requirements.txt or run `uv add playwright`. {str(e)}", color="red")
205
+ raise e
217
206
 
218
- from playwright.sync_api import sync_playwright
219
-
220
- self._logger.log(message="Start the operation.", level="info", color="blue")
207
+ import os
208
+ os.environ["DEBUG"] = "pw:browser"
209
+ self._logger.log(message="Start computer use.", level="info", color="blue")
210
+ start_dt = datetime.datetime.now()
211
+ res = None
212
+
213
+ # try:
214
+ p = sync_playwright().start()
215
+ b = p.firefox if self.browser == "firefox" else p.chromium
216
+ browser = b.launch(headless=True)
217
+ page = browser.new_page()
218
+ if not browser or not page:
219
+ return None, None, None
220
+
221
+ if self.web_url:
222
+ page.goto(self.web_url, timeout=3000000, wait_until="load", referer=None)
223
+ time.sleep(3)
224
+
225
+ res, _, usage = self._run()
226
+ self._usage.aggregate(metrics=usage)
227
+ actions = [v for k, v in res.items() if k =="action"] if res else []
228
+ action = actions[0] if actions else None
229
+
230
+ if action:
231
+ while True:
232
+ x = action.x if hasattr(action, 'x') else 0
233
+ y = action.y if hasattr(action, 'y') else 0
234
+ scroll_x = action.scroll_x if hasattr(action, 'scroll_x') else 0
235
+ scroll_y = action.scroll_y if hasattr(action, 'scroll_y') else 0
236
+ text = action.text if hasattr(action, 'text') else ''
237
+ screenshot_base64 = None
238
+ path = handle_directory(directory_name='_screenshots', filename=f'cua_playwright', ext='png')
239
+
240
+ match action.type:
241
+ case "click":
242
+ self._logger.log(message="Action: click", color="blue", level="info")
243
+ button = action.button if hasattr(action, 'button') and (action.button == 'left' or action.button == 'right') else 'left'
244
+ page.mouse.move(x, y)
245
+ page.mouse.click(x, y, button=button)
246
+ time.sleep(1)
247
+
248
+ case "scroll":
249
+ self._logger.log(message="Action: scroll", color="blue", level="info")
250
+ page.mouse.move(x, y)
251
+ page.evaluate(f"window.scrollBy({scroll_x}, {scroll_y})")
252
+ time.sleep(1)
253
+
254
+ case "move":
255
+ self._logger.log(message="Action: move", color="blue", level="info")
256
+ page.mouse.move(x, y)
257
+ page.evaluate(f"window.scrollBy({scroll_x}, {scroll_y})")
258
+ time.sleep(1)
259
+
260
+ case "keypress":
261
+ self._logger.log(message="Action: keypress", color="blue", level="info")
262
+ keys = action.keys
263
+ for k in keys:
264
+ match k.lower():
265
+ case "enter": page.keyboard.press("Enter")
266
+ case "space": page.keyboard.press(" ")
267
+ case _: page.keyboard.press(k)
268
+ time.sleep(1)
269
+
270
+ case "type":
271
+ self._logger.log(message="Action: type", color="blue", level="info")
272
+ page.keyboard.type(text)
273
+ time.sleep(1)
274
+
275
+ case "wait":
276
+ self._logger.log(message="Action: wait", color="blue", level="info")
277
+ time.sleep(3)
278
+
279
+ case "screenshot":
280
+ self._logger.log(message="Action: screenshot", color="blue", level="info")
281
+ screenshot_bytes = page.screenshot(path=path)
282
+ screenshot_base64 = base64.b64encode(screenshot_bytes).decode("utf-8")
283
+ time.sleep(1)
284
+
285
+ case _:
286
+ self._logger.log(message=f"Unrecognized action: {action}", level="warning", color="yellow")
287
+ return False
288
+
289
+ if not screenshot_base64:
290
+ screenshot_bytes = page.screenshot(path=path)
291
+ screenshot_base64 = base64.b64encode(screenshot_bytes).decode("utf-8")
292
+ time.sleep(1)
293
+
294
+ res, _, usage = self._run(screenshot=screenshot_base64)
295
+ self._usage.aggregate(metrics=usage)
296
+ if not res:
297
+ usage.record_errors(type=ErrorType.API)
298
+ break
221
299
 
222
- try:
223
- with sync_playwright() as p:
224
- b = p.firefox if self.browser == "firefox" else p.webkit if self.browser == "webkit" else p.chromium
225
- browser = b.launch(headless=True)
226
- page = browser.new_page()
227
- if not browser or not page:
228
- return None, None, None
229
-
230
- page.goto(self.web_url)
231
- res, _, usage = self.run()
232
- self._usage = usage
233
300
  actions = [v for k, v in res.items() if k =="action"] if res else []
234
301
  action = actions[0] if actions else None
235
- start_dt = datetime.datetime.now()
236
-
237
- if action:
238
- while True:
239
- self._handle_model_action(page=page, action=action)
240
- _, screenshot_base64 = self._take_screenshot(page=page)
241
- res, _, usage = self.run(screenshot=screenshot_base64)
242
- self._usage.agggregate(metrics=usage)
243
- if not res:
244
- usage.record_errors(type=ErrorType.API)
245
- break
246
-
247
- actions = [v for k, v in res.items() if k =="action"] if res else []
248
- action = actions[0] if actions else None
249
- if not action:
250
- break
251
- else:
252
- self._usage.record_errors(type=ErrorType.TOOL)
302
+ if not action:
303
+ break
304
+ else:
305
+ self._usage.record_errors(type=ErrorType.TOOL)
253
306
 
254
- except Exception as e:
255
- self._logger.log(message=f"Failed to execute. {str(e)}", color="red", level="error")
307
+ # except Exception as e:
308
+ # self._logger.log(message=f"Failed to execute. {str(e)}", color="red", level="error")
309
+ # browser.close()
256
310
 
257
311
  end_dt = datetime.datetime.now()
258
312
  self._usage.record_latency(start_dt=start_dt, end_dt=end_dt)
259
- # browser.close()
260
- return res, _, self._usage
313
+ return res
261
314
 
262
315
 
263
- @property
264
- def schema(self) -> Dict[str, Any]:
265
- """Formats args schema for CUA calling."""
316
+ def invoke_selenium(self, **kwargs) -> Dict[str, Any]:
317
+ try:
318
+ from selenium import webdriver
319
+ from selenium.webdriver.common.keys import Keys
320
+ from selenium.webdriver.common.action_chains import ActionChains
321
+ from selenium.webdriver.common.actions.action_builder import ActionBuilder
322
+ except Exception as e:
323
+ self._logger.log(level="error", message=f"Install Selenium by `uv pip install versionhq[tools]` or `uv add selenium`. {str(e)}", color="red")
324
+ raise e
266
325
 
267
- tool_schema = [item.schema for item in self.tools]
268
- schema = dict()
269
- inputs = list()
270
- previous_response_id = self._response_ids[-1] if self._response_ids and self._response_ids[-1].startswith("rs") else None
326
+ self._logger.log(message="Start computer use", level="info", color="blue")
271
327
 
272
- if self._call_ids:
273
- inputs = [
274
- {
275
- "call_id": self._call_ids[-1],
276
- "type": "computer_call_output",
277
- "output": { "type": "input_image", "image_url": f""}
278
- }
279
- ]
280
- schema = dict(
281
- model=self.model,
282
- previous_response_id=previous_response_id,
283
- tools=tool_schema,
284
- input=inputs,
285
- truncation=self.truncation
286
- )
328
+ start_dt = datetime.datetime.now()
287
329
 
330
+ driver = webdriver.Chrome(options=kwargs) if kwargs else webdriver.Chrome()
331
+ if self.tools:
332
+ driver.set_window_size(height=self.tools[0].display_height, width=self.tools[0].display_width)
333
+
334
+ if self.web_url:
335
+ driver.get(self.web_url)
336
+ time.sleep(3)
337
+
338
+ res, _, usage = self._run()
339
+ self._logger.log(message=f"Initial response: {res}", color="blue", level="info")
340
+ self._usage.aggregate(metrics=usage)
341
+ actions = [v for k, v in res.items() if k =="action"] if res else []
342
+ action = actions[0] if actions else None
343
+ action_chains = ActionChains(driver=driver)
344
+ action_builder = ActionBuilder(driver=driver)
345
+
346
+ if action:
347
+ while True:
348
+ x = action.x if hasattr(action, 'x') else 0
349
+ y = action.y if hasattr(action, 'y') else 0
350
+ scroll_x = action.scroll_x if hasattr(action, 'scroll_x') else 0
351
+ scroll_y = action.scroll_y if hasattr(action, 'scroll_y') else 0
352
+ text = action.text if hasattr(action, 'text') else ''
353
+ path = handle_directory(directory_name='_screenshots', filename=f'cua_selenium', ext='png')
354
+
355
+ match action.type:
356
+ case 'click':
357
+ self._logger.log(message="Action: click", color="blue", level="info")
358
+ driver.execute_script(f'window.scrollBy({x}, {y})')
359
+ action_chains.move_by_offset(xoffset=x, yoffset=y)
360
+ action_chains.perform()
361
+
362
+ if hasattr(action, 'button'):
363
+ match action.button:
364
+ case 'left':
365
+ action_chains.click()
366
+ case 'right':
367
+ action_chains.context_click()
368
+ action_chains.perform()
369
+ time.sleep(1)
370
+
371
+ case "scroll" | "move":
372
+ self._logger.log(message="Action: scroll", color="blue", level="info")
373
+ driver.execute_script(f'window.scrollBy({scroll_x}, {scroll_y})')
374
+ time.sleep(1)
375
+
376
+ case "keypress":
377
+ self._logger.log(message="Action: keypress", color="blue", level="info")
378
+ keys = action.keys
379
+ if keys:
380
+ for k in keys:
381
+ match k.lower():
382
+ case "enter": action_chains.key_down(Keys.ENTER).perform()
383
+ case "space": action_chains.key_down(Keys.SPACE).perform()
384
+ case "select_all":
385
+ if platform.system() == 'Darwin':
386
+ action_chains.send_keys(Keys.COMMAND + "a").perform()
387
+ else:
388
+ action_chains.send_keys(Keys.CONTROL + "a").perform()
389
+ case _:
390
+ action_chains.key_down(Keys.SHIFT).send_keys(k).key_up(Keys.SHIFT).perform()
391
+ time.sleep(1)
392
+
393
+ case "type":
394
+ self._logger.log(message="Action: type", color="blue", level="info")
395
+ action_chains.send_keys(text).perform()
396
+ time.sleep(1)
397
+
398
+ case "wait":
399
+ self._logger.log(message="Action: wait", color="blue", level="info")
400
+ action_chains.pause(3)
401
+
402
+ case "screenshot":
403
+ self._logger.log(message="Action: screenshot", color="blue", level="info")
404
+ driver.save_screenshot(path)
405
+ time.sleep(1)
406
+
407
+ case _:
408
+ self._logger.log(message=f"Unrecognized action: {action}", level="warning", color="yellow")
409
+ return False
410
+
411
+ with open(path, "rb") as image_file:
412
+ res, usage = None, None
413
+ if image_file:
414
+ screenshot_base64 = base64.b64encode(image_file.read()).decode("utf-8")
415
+ res, _, usage = self._run(screenshot=screenshot_base64)
416
+ else:
417
+ res, _, usage = self._run()
418
+
419
+ self._usage.aggregate(metrics=usage)
420
+ if not res:
421
+ usage.record_errors(type=ErrorType.API)
422
+ break
423
+
424
+ actions = [v for k, v in res.items() if k =="action"] if res else []
425
+ action = actions[0] if actions else None
426
+ if not action:
427
+ self._logger.log(message="No action found.", color="yellow", level="warning")
428
+ break
288
429
  else:
289
- img_url = convert_img_url(self.img_url) if self.img_url else None
290
- input = [{ "role": "user", "content": self.user_prompt } ]
291
- if img_url:
292
- input.append({"type": "input_image", "image_url": f"data:image/png;base64,{img_url}"})
293
- schema = dict(model=self.model, tools=tool_schema, input=input, reasoning={ "effort": self.reasoning_effort}, truncation=self.truncation)
430
+ self._usage.record_errors(type=ErrorType.TOOL)
431
+
432
+ end_dt = datetime.datetime.now()
433
+ self._usage.record_latency(start_dt=start_dt, end_dt=end_dt)
434
+ return res
435
+
294
436
 
295
- return schema
437
+ def run(self) -> Tuple[Dict[str, Any], None, UsageMetrics]:
438
+ """Core function to execute the tool."""
439
+
440
+ res = None
441
+ try:
442
+ res = self.invoke_playwright()
443
+ except:
444
+ self._call_ids = []
445
+ self._calls = dict()
446
+ self._response_ids = []
447
+ res = self.invoke_selenium()
448
+
449
+ return res, None, self._usage
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: versionhq
3
- Version: 1.2.4.13
3
+ Version: 1.2.4.15
4
4
  Summary: Autonomous agent networks for task automation with multi-step reasoning.
5
5
  Author-email: Kuriko Iwai <kuriko@versi0n.io>
6
6
  License: MIT License
@@ -77,6 +77,7 @@ Provides-Extra: tools
77
77
  Requires-Dist: html2text>=2024.2.26; extra == "tools"
78
78
  Requires-Dist: sec-api>=1.0.28; extra == "tools"
79
79
  Requires-Dist: pytest-playwright>=0.7.0; extra == "tools"
80
+ Requires-Dist: selenium>=4.30.0; extra == "tools"
80
81
  Provides-Extra: torch
81
82
  Requires-Dist: torch>=2.6.0; extra == "torch"
82
83
  Requires-Dist: torchvision>=0.21.0; extra == "torch"
@@ -1,9 +1,10 @@
1
- versionhq/__init__.py,sha256=YQ3V-FOICFD8-rGvToBJu4vTGaOywnolUk4SPec-66k,3356
1
+ versionhq/__init__.py,sha256=oV5jD7iS1ttOqwTAukwrhJlWGH_j93WfbzvQP-jesA4,3346
2
2
  versionhq/_prompt/auto_feedback.py,sha256=bbj37yTa11lRHpx-sV_Wmpb4dVnDBB7_v8ageUobHXY,3780
3
3
  versionhq/_prompt/constants.py,sha256=DOwUFnVVObEFqgnaMCDnW8fnw1oPMgS8JAqOiTuqleI,932
4
- versionhq/_prompt/model.py,sha256=wJlDM9yzrqlXWxyw4HkYQzPii2MPfqkgTF3qhXoJN2M,8038
5
- versionhq/_utils/__init__.py,sha256=TOd3U_VCjvLzt0w-KV9cM1_ozEjzffhjyKX3F_JaqZg,418
4
+ versionhq/_prompt/model.py,sha256=wi9ZhdNA-BzsWHEwrl0yP3ZNoqGJSLzZGyuJH04DJjQ,8293
5
+ versionhq/_utils/__init__.py,sha256=S3GvJKOTHM43JzPdaDqT6Zkan9eQJpc4biqQBXiVq6o,481
6
6
  versionhq/_utils/convert_img_url.py,sha256=BlINw4RQ632m9P4FJbqzqYlzTLESBTRkhkstAopnNNY,408
7
+ versionhq/_utils/handle_directory.py,sha256=n5y2ClC4A3f6rkv8XDfzoCqJcw-8sCJ0Q5q_ZiQ5uxw,417
7
8
  versionhq/_utils/i18n.py,sha256=TwA_PnYfDLA6VqlUDPuybdV9lgi3Frh_ASsb_X8jJo8,1483
8
9
  versionhq/_utils/is_valid_enum.py,sha256=vGGIuvhDnFU2fUyyFxJyjw-NfByK0vfFAu1ShaHBeZE,720
9
10
  versionhq/_utils/is_valid_url.py,sha256=m8Mswvb-90FJtx1Heq6hPFDbwGgrv_R3wSbZQmEPM9Q,379
@@ -14,7 +15,7 @@ versionhq/_utils/usage_metrics.py,sha256=gDK6fZgT1njX4iPIPFapWxfxIiz-zZYv72p0u6M
14
15
  versionhq/_utils/vars.py,sha256=bZ5Dx_bFKlt3hi4-NNGXqdk7B23If_WaTIju2fiTyPQ,57
15
16
  versionhq/agent/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
16
17
  versionhq/agent/inhouse_agents.py,sha256=D2WAiXCYsnQK3_Fe7CbbtvXsHWOaN6vde6m_QoW7fH4,2629
17
- versionhq/agent/model.py,sha256=Cw9BdkDq45Ubzayq62A-nFqREBEIxMY0wfm_Xy8yP_w,26942
18
+ versionhq/agent/model.py,sha256=9L7277HnY3rZL_-_aCStSskgivFNtqvQUq04ZBMbTac,27010
18
19
  versionhq/agent/parser.py,sha256=riG0dkdQCxH7uJ0AbdVdg7WvL0BXhUgJht0VtQvxJBc,4082
19
20
  versionhq/agent/rpm_controller.py,sha256=grezIxyBci_lDlwAlgWFRyR5KOocXeOhYkgN02dNFNE,2360
20
21
  versionhq/agent/TEMPLATES/Backstory.py,sha256=dkfuATUQ2g2WoUKkmgAIch-RB--bektGoQaUlsDOn0g,529
@@ -38,8 +39,8 @@ versionhq/knowledge/source.py,sha256=-hEUPtJUHHMx4rUKtiHl19J8xAMw-WVBw34zwa2jZ08
38
39
  versionhq/knowledge/source_docling.py,sha256=XpavmLvh4dLcuTikj8MCE9KG52oQMafy7_wBneliMK0,4994
39
40
  versionhq/knowledge/storage.py,sha256=Kd-4r6aWM5EDaoXrzKXbgi1hY6tysSQARPGXM95qMmU,8266
40
41
  versionhq/llm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
41
- versionhq/llm/llm_vars.py,sha256=aNvc5SNFfzQ2zOJffUJnKQI1JpmnvBf_jSYas8KNX-o,9030
42
- versionhq/llm/model.py,sha256=BEjWyFk0IWSUibHNc9apdFp3QdbGeBMQv4ZfvdgRjgE,17305
42
+ versionhq/llm/llm_vars.py,sha256=msX_Sgv5Tycu_GGY9C8Mn1xNW-iDF-Jsq9SIjhgQKiA,9243
43
+ versionhq/llm/model.py,sha256=1dDObVKJ3M-zK0oCxivG_aTXgcx_M05h1AbVtlGf57I,18697
43
44
  versionhq/memory/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
44
45
  versionhq/memory/contextual_memory.py,sha256=QEMVvHuEXxY7M6-12S8HhyFKf108KfX8Zzt7paPW048,3882
45
46
  versionhq/memory/model.py,sha256=VQR1229t7GQPMItlGAHLtJrb6LrZfSoRA1DRW4z0SOU,8234
@@ -53,7 +54,7 @@ versionhq/storage/utils.py,sha256=r5ghA_ktdR2IuzlzKqZYCjsNxztEMzyhWLneA4cFuWY,74
53
54
  versionhq/task/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
54
55
  versionhq/task/evaluation.py,sha256=9jFOmjP-yy1vxRn781KmpdQ_d4J_ZA1UX_21Q3m-iuE,4122
55
56
  versionhq/task/formatter.py,sha256=N8Kmk9vtrMtBdgJ8J7RmlKNMdZWSmV8O1bDexmCWgU0,643
56
- versionhq/task/model.py,sha256=-dqCQVRYF918RDM9mK_J7r4lMRwFqZ2G9NSePAU7DJY,29613
57
+ versionhq/task/model.py,sha256=ApjV2JUe-gxRS8N0B6fBXzRFu-fQcna2gLlSKBhB_vM,29645
57
58
  versionhq/task/structured_response.py,sha256=tqOHpch8CVmMj0aZXjdDWtPNcVmBW8DVZnBvPBwS4PM,5053
58
59
  versionhq/task/TEMPLATES/Description.py,sha256=hKhpbz0ztbkUMXz9KiL-P40fis9OB5ICOdL9jCtgAhU,864
59
60
  versionhq/task_graph/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -70,12 +71,12 @@ versionhq/tool/composio/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG
70
71
  versionhq/tool/composio/model.py,sha256=GIFKso_e_4a3BdaulqU_i6Y9JFAExNBjzHUHR_zZeSI,8577
71
72
  versionhq/tool/composio/params.py,sha256=FvBuEXsOQUYnN7RTFxT20kAkiEYkxWKkiVtgpqOzKZQ,1843
72
73
  versionhq/tool/gpt/__init__.py,sha256=A6xCuf_GUBs7wfx904J_Vd2t1GJCcf0lMKOL7MbZce4,160
73
- versionhq/tool/gpt/_enum.py,sha256=VaONDFZJNVe30Wf3Pl9s0XvxP_Xxqv3RNFcnqyigGFk,500
74
- versionhq/tool/gpt/cua.py,sha256=5yrgz_fc3IH_uB70J51wmRBWkfH53Qx-a29nmwWyOcs,12078
74
+ versionhq/tool/gpt/_enum.py,sha256=iBtH964dyv6d326VXSJsthB7EKxFXLcZVQPfvaCtbdk,496
75
+ versionhq/tool/gpt/cua.py,sha256=vdrPest2wWntMEKyvXcsR4WeivP5edE8B4rKqQbgHHY,19108
75
76
  versionhq/tool/gpt/file_search.py,sha256=r5JVlf-epKB8DDXyrzlkezguHUMir0JW-77LUHoy-w8,5813
76
77
  versionhq/tool/gpt/web_search.py,sha256=bpqEQopbq9KtqQ_0W7QAAJ5TyoKGiVM94-SMp5oqNFE,3483
77
- versionhq-1.2.4.13.dist-info/licenses/LICENSE,sha256=cRoGGdM73IiDs6nDWKqPlgSv7aR4n-qBXYnJlCMHCeE,1082
78
- versionhq-1.2.4.13.dist-info/METADATA,sha256=rvtqxOduTKrgS2alvluKuYC9NxUchTOGFcspTDs2VlM,21349
79
- versionhq-1.2.4.13.dist-info/WHEEL,sha256=1tXe9gY0PYatrMPMDd6jXqjfpz_B-Wqm32CPfRC58XU,91
80
- versionhq-1.2.4.13.dist-info/top_level.txt,sha256=DClQwxDWqIUGeRJkA8vBlgeNsYZs4_nJWMonzFt5Wj0,10
81
- versionhq-1.2.4.13.dist-info/RECORD,,
78
+ versionhq-1.2.4.15.dist-info/licenses/LICENSE,sha256=cRoGGdM73IiDs6nDWKqPlgSv7aR4n-qBXYnJlCMHCeE,1082
79
+ versionhq-1.2.4.15.dist-info/METADATA,sha256=0wsn8Zh2QnUwCo8LxL6Lmm9HuB9s67v_KYsVVkajqBQ,21399
80
+ versionhq-1.2.4.15.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
81
+ versionhq-1.2.4.15.dist-info/top_level.txt,sha256=DClQwxDWqIUGeRJkA8vBlgeNsYZs4_nJWMonzFt5Wj0,10
82
+ versionhq-1.2.4.15.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (77.0.3)
2
+ Generator: setuptools (78.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5