versionhq 1.2.2.4__py3-none-any.whl → 1.2.2.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- versionhq/__init__.py +1 -1
- versionhq/agent/inhouse_agents.py +1 -1
- versionhq/agent/model.py +20 -46
- versionhq/llm/llm_vars.py +33 -68
- versionhq/llm/model.py +62 -45
- versionhq/task/model.py +3 -3
- {versionhq-1.2.2.4.dist-info → versionhq-1.2.2.6.dist-info}/METADATA +6 -8
- {versionhq-1.2.2.4.dist-info → versionhq-1.2.2.6.dist-info}/RECORD +11 -11
- {versionhq-1.2.2.4.dist-info → versionhq-1.2.2.6.dist-info}/WHEEL +1 -1
- {versionhq-1.2.2.4.dist-info → versionhq-1.2.2.6.dist-info}/LICENSE +0 -0
- {versionhq-1.2.2.4.dist-info → versionhq-1.2.2.6.dist-info}/top_level.txt +0 -0
versionhq/__init__.py
CHANGED
@@ -38,7 +38,7 @@ vhq_formation_planner = Agent(
|
|
38
38
|
"Solo is a formation where a single agent with tools, knowledge, and memory handles tasks indivudually. When self-learning mode is on - it will turn into Random formation. Typical usecase is an email agent drafts promo message for the given audience using their own knowledge.",
|
39
39
|
"Supervising is a formation where the leader agent gives directions, while sharing its knowledge and memory with subbordinates.Subordinates can be solo agents or networks. Typical usecase is that the leader agent strategizes an outbound campaign plan and assigns components such as media mix or message creation to subordinate agents.",
|
40
40
|
"Network is a formation where multple agents can share tasks, knowledge, and memory among network members without hierarchy. Typical usecase is that an email agent and social media agent share the product knowledge and deploy multi-channel outbound campaign. ",
|
41
|
-
"Random is a formation where a single agent handles tasks, asking help from other agents without sharing its memory or knowledge. Typical usecase is that an email agent drafts promo message for the given audience, asking insights on tones from other email agents which oversee other customer clusters, or an agent calls the external, third party agent to deploy the campaign.
|
41
|
+
"Random is a formation where a single agent handles tasks, asking help from other agents without sharing its memory or knowledge. Typical usecase is that an email agent drafts promo message for the given audience, asking insights on tones from other email agents which oversee other customer clusters, or an agent calls the external, third party agent to deploy the campaign.",
|
42
42
|
]
|
43
43
|
)
|
44
44
|
|
versionhq/agent/model.py
CHANGED
@@ -35,8 +35,8 @@ class Agent(BaseModel):
|
|
35
35
|
config: Optional[Dict[str, Any]] = Field(default=None, exclude=True, description="values to add to the Agent class")
|
36
36
|
|
37
37
|
id: UUID4 = Field(default_factory=uuid.uuid4, frozen=True)
|
38
|
-
role: str = Field(description="
|
39
|
-
goal: str = Field(
|
38
|
+
role: str = Field(description="required. agent's role")
|
39
|
+
goal: Optional[str] = Field(default=None)
|
40
40
|
backstory: Optional[str] = Field(default=None, description="developer prompt to the llm")
|
41
41
|
skillsets: Optional[List[str]] = Field(default_factory=list)
|
42
42
|
tools: Optional[List[Any]] = Field(default_factory=list)
|
@@ -68,10 +68,10 @@ class Agent(BaseModel):
|
|
68
68
|
# llm settings cascaded to the LLM model
|
69
69
|
llm: str | InstanceOf[LLM] | Dict[str, Any] = Field(default=None)
|
70
70
|
func_calling_llm: str | InstanceOf[LLM] | Dict[str, Any] = Field(default=None)
|
71
|
-
respect_context_window: bool = Field(default=True,description="keep messages under the context window size")
|
71
|
+
respect_context_window: bool = Field(default=True, description="keep messages under the context window size")
|
72
72
|
max_execution_time: Optional[int] = Field(default=None, description="max. task execution time in seconds")
|
73
73
|
max_rpm: Optional[int] = Field(default=None, description="max. number of requests per minute")
|
74
|
-
llm_config: Optional[Dict[str, Any]] = Field(default=None, description="other llm config cascaded to the LLM
|
74
|
+
llm_config: Optional[Dict[str, Any]] = Field(default=None, description="other llm config cascaded to the LLM class")
|
75
75
|
|
76
76
|
# # cache, error, ops handling
|
77
77
|
# formatting_errors: int = Field(default=0, description="number of formatting errors.")
|
@@ -92,7 +92,7 @@ class Agent(BaseModel):
|
|
92
92
|
|
93
93
|
@model_validator(mode="after")
|
94
94
|
def validate_required_fields(self) -> Self:
|
95
|
-
required_fields = ["role",
|
95
|
+
required_fields = ["role",]
|
96
96
|
for field in required_fields:
|
97
97
|
if getattr(self, field) is None:
|
98
98
|
raise ValueError(f"{field} must be provided either directly or through config")
|
@@ -172,7 +172,7 @@ class Agent(BaseModel):
|
|
172
172
|
skills = ", ".join([item for item in self.skillsets]) if self.skillsets else ""
|
173
173
|
tools = ", ".join([item.name for item in self.tools if hasattr(item, "name") and item.name is not None]) if self.tools else ""
|
174
174
|
role = self.role.lower()
|
175
|
-
goal = self.goal.lower()
|
175
|
+
goal = self.goal.lower() if self.goal else ""
|
176
176
|
|
177
177
|
if self.tools or self.skillsets:
|
178
178
|
backstory = BACKSTORY_FULL.format(role=role, goal=goal, skills=skills, tools=tools)
|
@@ -276,8 +276,8 @@ class Agent(BaseModel):
|
|
276
276
|
return self._set_llm_params(llm=llm, config=self.llm_config)
|
277
277
|
|
278
278
|
case str():
|
279
|
-
|
280
|
-
return self._set_llm_params(llm=
|
279
|
+
llm = LLM(model=llm)
|
280
|
+
return self._set_llm_params(llm=llm, config=self.llm_config)
|
281
281
|
|
282
282
|
case dict():
|
283
283
|
model_name = llm.pop("model_name", llm.pop("deployment_name", str(llm)))
|
@@ -287,53 +287,21 @@ class Agent(BaseModel):
|
|
287
287
|
|
288
288
|
case _:
|
289
289
|
model_name = (getattr(self.llm, "model_name") or getattr(self.llm, "deployment_name") or str(self.llm))
|
290
|
-
|
290
|
+
llm = LLM(model=model_name if model_name else DEFAULT_MODEL_NAME)
|
291
291
|
llm_params = {
|
292
|
-
"max_tokens": (getattr(llm, "max_tokens") or 3000),
|
293
292
|
"timeout": getattr(llm, "timeout", self.max_execution_time),
|
294
293
|
"callbacks": getattr(llm, "callbacks", None),
|
295
|
-
"
|
296
|
-
"logprobs": getattr(llm, "logprobs", None),
|
297
|
-
"api_key": getattr(llm, "api_key", os.environ.get("LITELLM_API_KEY", None)),
|
294
|
+
"llm_config": getattr(llm, "llm_config", None),
|
298
295
|
"base_url": getattr(llm, "base_url", None),
|
299
296
|
}
|
300
297
|
config = llm_params.update(self.llm_config) if self.llm_config else llm_params
|
301
|
-
return self._set_llm_params(llm=
|
298
|
+
return self._set_llm_params(llm=llm, config=config)
|
302
299
|
|
303
300
|
|
304
301
|
def _set_llm_params(self, llm: LLM, config: Dict[str, Any] = None) -> LLM:
|
305
302
|
"""
|
306
303
|
Add valid params to the LLM object.
|
307
304
|
"""
|
308
|
-
|
309
|
-
import litellm
|
310
|
-
from versionhq.llm.llm_vars import PARAMS
|
311
|
-
|
312
|
-
valid_config = {k: v for k, v in config.items() if v} if config else {}
|
313
|
-
|
314
|
-
if valid_config:
|
315
|
-
valid_keys = list()
|
316
|
-
try:
|
317
|
-
valid_keys = litellm.get_supported_openai_params(model=llm.model, custom_llm_provider=self.endpoint_provider, request_type="chat_completion")
|
318
|
-
if not valid_keys:
|
319
|
-
valid_keys = PARAMS.get("common")
|
320
|
-
except:
|
321
|
-
valid_keys = PARAMS.get("common")
|
322
|
-
|
323
|
-
valid_keys += PARAMS.get("litellm")
|
324
|
-
|
325
|
-
for key in valid_keys:
|
326
|
-
if key in valid_config and valid_config[key]:
|
327
|
-
val = valid_config[key]
|
328
|
-
if [key == k for k, v in LLM.model_fields.items()]:
|
329
|
-
setattr(llm, key, val)
|
330
|
-
else:
|
331
|
-
llm.other_valid_config.update({ key: val})
|
332
|
-
|
333
|
-
|
334
|
-
llm.timeout = self.max_execution_time if llm.timeout is None else llm.timeout
|
335
|
-
# llm.max_tokens = self.max_tokens if self.max_tokens else llm.max_tokens
|
336
|
-
|
337
305
|
if llm.provider is None:
|
338
306
|
provider_name = llm.model.split("/")[0]
|
339
307
|
valid_provider = provider_name if provider_name in PROVIDERS else None
|
@@ -346,6 +314,12 @@ class Agent(BaseModel):
|
|
346
314
|
if self.respect_context_window == False:
|
347
315
|
llm.context_window_size = DEFAULT_CONTEXT_WINDOW_SIZE
|
348
316
|
|
317
|
+
llm.timeout = self.max_execution_time if llm.timeout is None else llm.timeout
|
318
|
+
|
319
|
+
if config:
|
320
|
+
llm.llm_config = {k: v for k, v in config.items() if v or v == False}
|
321
|
+
llm.setup_config()
|
322
|
+
|
349
323
|
return llm
|
350
324
|
|
351
325
|
|
@@ -494,7 +468,7 @@ class Agent(BaseModel):
|
|
494
468
|
Defines and executes a task when it is not given and returns TaskOutput object.
|
495
469
|
"""
|
496
470
|
|
497
|
-
if not self.
|
471
|
+
if not self.role:
|
498
472
|
return None
|
499
473
|
|
500
474
|
from versionhq.task.model import Task
|
@@ -504,7 +478,7 @@ class Agent(BaseModel):
|
|
504
478
|
steps: list[str]
|
505
479
|
|
506
480
|
task = Task(
|
507
|
-
description=f"Generate a simple result in a sentence to achieve the goal: {self.goal}. If needed, list up necessary steps in concise manner.",
|
481
|
+
description=f"Generate a simple result in a sentence to achieve the goal: {self.goal if self.goal else self.role}. If needed, list up necessary steps in concise manner.",
|
508
482
|
pydantic_output=Output,
|
509
483
|
tool_res_as_final=tool_res_as_final,
|
510
484
|
)
|
@@ -595,7 +569,7 @@ class Agent(BaseModel):
|
|
595
569
|
|
596
570
|
|
597
571
|
def __repr__(self):
|
598
|
-
return f"Agent(role={self.role},
|
572
|
+
return f"Agent(role={self.role}, id={str(self.id)}"
|
599
573
|
|
600
574
|
def __str__(self):
|
601
575
|
return super().__str__()
|
versionhq/llm/llm_vars.py
CHANGED
@@ -6,30 +6,16 @@ PROVIDERS = [
|
|
6
6
|
"openai",
|
7
7
|
"gemini",
|
8
8
|
"openrouter",
|
9
|
-
"huggingface",
|
10
9
|
"anthropic",
|
11
|
-
"sagemaker",
|
12
10
|
"bedrock",
|
13
|
-
"
|
14
|
-
"
|
15
|
-
"azure",
|
16
|
-
"cerebras",
|
17
|
-
"llama",
|
11
|
+
"bedrock/converse",
|
12
|
+
"huggingface",
|
18
13
|
]
|
19
14
|
|
20
15
|
ENDPOINT_PROVIDERS = [
|
21
16
|
"huggingface",
|
22
17
|
]
|
23
18
|
|
24
|
-
"""
|
25
|
-
List of models available on the framework.
|
26
|
-
Model names align with the LiteLLM's key names defined in the JSON URL.
|
27
|
-
Provider names align with the custom provider or model provider names.
|
28
|
-
-> model_key = custom_provider_name/model_name
|
29
|
-
|
30
|
-
Option
|
31
|
-
litellm.pick_cheapest_chat_models_from_llm_provider(custom_llm_provider: str, n=1)
|
32
|
-
"""
|
33
19
|
|
34
20
|
MODELS = {
|
35
21
|
"openai": [
|
@@ -45,6 +31,7 @@ MODELS = {
|
|
45
31
|
"gemini/gemini-2.0-flash-exp",
|
46
32
|
],
|
47
33
|
"anthropic": [
|
34
|
+
"claude-3-7-sonnet-latest",
|
48
35
|
"claude-3-5-sonnet-20241022",
|
49
36
|
"claude-3-5-sonnet-20240620",
|
50
37
|
"claude-3-haiku-2024030",
|
@@ -53,77 +40,52 @@ MODELS = {
|
|
53
40
|
],
|
54
41
|
"openrouter": [
|
55
42
|
"openrouter/deepseek/deepseek-r1",
|
43
|
+
|
56
44
|
"openrouter/qwen/qwen-2.5-72b-instruct",
|
45
|
+
|
57
46
|
"openrouter/google/gemini-2.0-flash-thinking-exp:free",
|
58
47
|
"openrouter/google/gemini-2.0-flash-thinking-exp-1219:free",
|
59
48
|
"openrouter/google/gemini-2.0-flash-001",
|
49
|
+
|
60
50
|
"openrouter/meta-llama/llama-3.3-70b-instruct",
|
61
51
|
"openrouter/mistralai/mistral-large-2411",
|
52
|
+
"openrouter/cohere/command-r-plus",
|
62
53
|
],
|
63
|
-
"huggingface": [
|
64
|
-
"huggingface/qwen/qwen2.5-VL-72B-Instruct",
|
65
|
-
],
|
66
|
-
# "sagemaker": [
|
67
|
-
# "sagemaker/huggingface-text2text-flan-t5-base",
|
68
|
-
# "sagemaker/huggingface-llm-gemma-7b",
|
69
|
-
# "sagemaker/jumpstart-dft-meta-textgeneration-llama-2-13b",
|
70
|
-
# "sagemaker/jumpstart-dft-meta-textgeneration-llama-2-70b",
|
71
|
-
# "sagemaker/jumpstart-dft-meta-textgeneration-llama-3-8b",
|
72
|
-
# "sagemaker/jumpstart-dft-meta-textgeneration-llama-3-70b",
|
73
|
-
# "sagemaker/huggingface-llm-mistral-7b"
|
74
|
-
# ], #https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-foundation-models-latest.html
|
75
|
-
"ollama": [
|
76
|
-
"ollama/llama3.1",
|
77
|
-
"ollama/mixtral",
|
78
|
-
"ollama/mixtral-8x22B-Instruct-v0.1",
|
79
|
-
],
|
80
|
-
# "watson": [
|
81
|
-
# "watsonx/meta-llama/llama-3-1-70b-instruct",
|
82
|
-
# "watsonx/meta-llama/llama-3-1-8b-instruct",
|
83
|
-
# "watsonx/meta-llama/llama-3-2-11b-vision-instruct",
|
84
|
-
# "watsonx/meta-llama/llama-3-2-1b-instruct",
|
85
|
-
# "watsonx/meta-llama/llama-3-2-90b-vision-instruct",
|
86
|
-
# "watsonx/meta-llama/llama-3-405b-instruct",
|
87
|
-
# "watsonx/mistral/mistral-large",
|
88
|
-
# "watsonx/ibm/granite-3-8b-instruct",
|
89
|
-
# ],
|
90
54
|
"bedrock": [
|
91
|
-
"bedrock/
|
92
|
-
"bedrock/
|
93
|
-
"bedrock/
|
94
|
-
"bedrock/
|
95
|
-
|
96
|
-
"bedrock/
|
97
|
-
"bedrock/
|
98
|
-
"bedrock/
|
99
|
-
|
100
|
-
"bedrock/meta.llama3-70b-instruct-v1:0",
|
101
|
-
"bedrock/meta.llama3-8b-instruct-v1:0",
|
55
|
+
"bedrock/converse/us.meta.llama3-3-70b-instruct-v1:0",
|
56
|
+
"bedrock/us.meta.llama3-2-1b-instruct-v1:0",
|
57
|
+
"bedrock/us.meta.llama3-2-3b-instruct-v1:0",
|
58
|
+
"bedrock/us.meta.llama3-2-11b-instruct-v1:0",
|
59
|
+
|
60
|
+
"bedrock/mistral.mistral-7b-instruct-v0:2",
|
61
|
+
"bedrock/mistral.mixtral-8x7b-instruct-v0:1",
|
62
|
+
"bedrock/mistral.mistral-large-2407-v1:0",
|
63
|
+
|
102
64
|
"bedrock/amazon.titan-text-lite-v1",
|
103
65
|
"bedrock/amazon.titan-text-express-v1",
|
66
|
+
"bedrock/amazon.titan-text-premier-v1:0",
|
67
|
+
|
68
|
+
"bedrock/cohere.command-r-plus-v1:0",
|
69
|
+
"bedrock/cohere.command-r-v1:0",
|
104
70
|
"bedrock/cohere.command-text-v14",
|
105
|
-
"bedrock/
|
106
|
-
|
107
|
-
|
108
|
-
"
|
109
|
-
"bedrock/meta.llama2-70b-chat-v1",
|
110
|
-
"bedrock/mistral.mistral-7b-instruct-v0:2",
|
111
|
-
"bedrock/mistral.mixtral-8x7b-instruct-v0:1",
|
71
|
+
"bedrock/cohere.command-light-text-v14",
|
72
|
+
],
|
73
|
+
"huggingface": [
|
74
|
+
"huggingface/qwen/qwen2.5-VL-72B-Instruct",
|
112
75
|
],
|
113
76
|
}
|
114
77
|
|
115
78
|
|
116
|
-
|
117
|
-
KEYS = {
|
79
|
+
ENV_VARS = {
|
118
80
|
"openai": ["OPENAI_API_KEY"],
|
119
81
|
"gemini": ["GEMINI_API_KEY"],
|
120
82
|
"anthropic": ["ANTHROPIC_API_KEY"],
|
121
83
|
"huggingface": ["HUGGINGFACE_API_KEY", ],
|
122
|
-
"
|
84
|
+
"bedrock": ["AWS_ACCESS_KEY_ID", "AWS_SECRET_ACCESS_KEY", "AWS_REGION_NAME"],
|
85
|
+
"sagemaker": ["AWS_ACCESS_KEY_ID", "AWS_SECRET_ACCESS_KEY", "AWS_REGION_NAME"],
|
123
86
|
}
|
124
87
|
|
125
88
|
|
126
|
-
|
127
89
|
"""
|
128
90
|
Max input token size by the model.
|
129
91
|
"""
|
@@ -193,8 +155,8 @@ PARAMS = {
|
|
193
155
|
"response_format",
|
194
156
|
"n",
|
195
157
|
"stop",
|
196
|
-
"base_url",
|
197
|
-
"api_key",
|
158
|
+
# "base_url",
|
159
|
+
# "api_key",
|
198
160
|
],
|
199
161
|
"openai": [
|
200
162
|
"timeout",
|
@@ -216,7 +178,10 @@ PARAMS = {
|
|
216
178
|
],
|
217
179
|
"gemini": [
|
218
180
|
"topK",
|
219
|
-
]
|
181
|
+
],
|
182
|
+
"bedrock": {
|
183
|
+
"top-k",
|
184
|
+
}
|
220
185
|
}
|
221
186
|
|
222
187
|
|
versionhq/llm/model.py
CHANGED
@@ -4,14 +4,15 @@ import sys
|
|
4
4
|
import threading
|
5
5
|
import warnings
|
6
6
|
from dotenv import load_dotenv
|
7
|
-
import litellm
|
8
|
-
from litellm import JSONSchemaValidationError
|
9
7
|
from contextlib import contextmanager
|
10
8
|
from typing import Any, Dict, List, Optional
|
11
9
|
from typing_extensions import Self
|
10
|
+
|
11
|
+
import litellm
|
12
|
+
from litellm import JSONSchemaValidationError
|
12
13
|
from pydantic import BaseModel, Field, PrivateAttr, model_validator, ConfigDict
|
13
14
|
|
14
|
-
from versionhq.llm.llm_vars import LLM_CONTEXT_WINDOW_SIZES, MODELS, PARAMS, PROVIDERS, ENDPOINT_PROVIDERS
|
15
|
+
from versionhq.llm.llm_vars import LLM_CONTEXT_WINDOW_SIZES, MODELS, PARAMS, PROVIDERS, ENDPOINT_PROVIDERS, ENV_VARS
|
15
16
|
from versionhq.tool.model import Tool, ToolSet
|
16
17
|
from versionhq._utils.logger import Logger
|
17
18
|
|
@@ -68,36 +69,23 @@ class LLM(BaseModel):
|
|
68
69
|
|
69
70
|
_logger: Logger = PrivateAttr(default_factory=lambda: Logger(verbose=True))
|
70
71
|
_init_model_name: str = PrivateAttr(default=None)
|
71
|
-
|
72
|
-
|
72
|
+
# _init_config: Optional[Dict[str, Any]] = PrivateAttr(default_factory=dict) # stores llm config passed by client or agent
|
73
|
+
_tokens: int = PrivateAttr(default=0) # aggregate number of tokens consumed
|
73
74
|
|
74
75
|
model: str = Field(default=None)
|
75
76
|
provider: Optional[str] = Field(default=None, description="model provider")
|
76
|
-
endpoint_provider: Optional[str] = Field(default=None, description="custom endpoint provider for pass through llm call.
|
77
|
+
endpoint_provider: Optional[str] = Field(default=None, description="custom endpoint provider for pass through llm call. require base_url")
|
77
78
|
base_url: Optional[str] = Field(default=None, description="api base url for endpoint provider")
|
78
|
-
api_key: Optional[str] = Field(default=None, description="api key to access the model")
|
79
79
|
|
80
80
|
# optional params
|
81
81
|
response_format: Optional[Any] = Field(default=None)
|
82
|
+
llm_config: Optional[Dict[str, Any]] = Field(default_factory=dict, description="stores valid llm config params")
|
83
|
+
callbacks: Optional[List[Any]] = Field(default_factory=list)
|
84
|
+
tools: Optional[List[Dict[str, Any]]] = Field(default_factory=list, description="stores a list of tool properties")
|
82
85
|
timeout: Optional[float | int] = Field(default=None)
|
83
|
-
max_tokens: Optional[int] = Field(default=None)
|
84
|
-
max_completion_tokens: Optional[int] = Field(default=None)
|
85
86
|
context_window_size: Optional[int] = Field(default=DEFAULT_CONTEXT_WINDOW_SIZE)
|
86
|
-
|
87
|
-
|
88
|
-
n: Optional[int] = Field(default=None)
|
89
|
-
stop: Optional[str | List[str]] = Field(default=None)
|
90
|
-
presence_penalty: Optional[float] = Field(default=None)
|
91
|
-
frequency_penalty: Optional[float] = Field(default=None)
|
92
|
-
logit_bias: Optional[Dict[int, float]] = Field(default=None)
|
93
|
-
seed: Optional[int] = Field(default=None)
|
94
|
-
logprobs: Optional[bool] = Field(default=None)
|
95
|
-
top_logprobs: Optional[int] = Field(default=None)
|
96
|
-
tools: Optional[List[Dict[str, Any]]] = Field(default_factory=list, description="store a list of tool properties")
|
97
|
-
callbacks: List[Any] = Field(default_factory=list)
|
98
|
-
other_valid_config: Optional[Dict[str, Any]] = Field(default_factory=dict, description="store other valid values in dict to cascade to the model")
|
99
|
-
|
100
|
-
# LiteLLM specific fields
|
87
|
+
|
88
|
+
# LiteLLM specific config
|
101
89
|
api_base: Optional[str] = Field(default=None, description="litellm specific field - api base of the model provider")
|
102
90
|
api_version: Optional[str] = Field(default=None)
|
103
91
|
num_retries: Optional[int] = Field(default=1)
|
@@ -105,6 +93,8 @@ class LLM(BaseModel):
|
|
105
93
|
fallbacks: Optional[List[Any]]= Field(default=None, description="A list of model names + params to be used, in case the initial call fails")
|
106
94
|
metadata: Optional[Dict[str, Any]] = Field(default=None)
|
107
95
|
|
96
|
+
model_config = ConfigDict(extra="allow")
|
97
|
+
|
108
98
|
litellm.drop_params = True
|
109
99
|
litellm.set_verbose = True
|
110
100
|
os.environ['LITELLM_LOG'] = 'DEBUG'
|
@@ -187,9 +177,9 @@ class LLM(BaseModel):
|
|
187
177
|
|
188
178
|
|
189
179
|
@model_validator(mode="after")
|
190
|
-
def
|
180
|
+
def setup_config(self) -> Self:
|
191
181
|
"""
|
192
|
-
Set up valid params
|
182
|
+
Set up valid config params after setting up a valid model, provider, interface provider names.
|
193
183
|
"""
|
194
184
|
self._tokens = 0
|
195
185
|
|
@@ -198,28 +188,28 @@ class LLM(BaseModel):
|
|
198
188
|
|
199
189
|
self.context_window_size = self._get_context_window_size()
|
200
190
|
|
201
|
-
api_key_name = self.provider.upper() + "_API_KEY" if self.provider else None
|
202
|
-
if api_key_name:
|
203
|
-
self.api_key = os.environ.get(api_key_name, None)
|
204
|
-
|
205
191
|
base_url_key_name = self.endpoint_provider.upper() + "_API_BASE" if self.endpoint_provider else None
|
206
|
-
|
207
192
|
if base_url_key_name:
|
208
193
|
self.base_url = os.environ.get(base_url_key_name)
|
209
194
|
self.api_base = self.base_url
|
210
195
|
|
196
|
+
if self.llm_config:
|
197
|
+
self._create_valid_params(config=self.llm_config)
|
198
|
+
|
211
199
|
return self
|
212
200
|
|
213
201
|
|
214
202
|
def _create_valid_params(self, config: Dict[str, Any]) -> Dict[str, Any]:
|
215
203
|
"""
|
216
|
-
|
204
|
+
Returns valid params incl. model + litellm original params) from the given config dict.
|
217
205
|
"""
|
218
206
|
|
219
|
-
|
207
|
+
valid_config, valid_keys = dict(), list()
|
220
208
|
|
221
209
|
if self.model:
|
222
|
-
valid_keys = litellm.get_supported_openai_params(
|
210
|
+
valid_keys = litellm.get_supported_openai_params(
|
211
|
+
model=self.model, custom_llm_provider=self.endpoint_provider, request_type="chat_completion"
|
212
|
+
)
|
223
213
|
|
224
214
|
if not valid_keys:
|
225
215
|
valid_keys = PARAMS.get("common")
|
@@ -227,14 +217,38 @@ class LLM(BaseModel):
|
|
227
217
|
valid_keys += PARAMS.get("litellm")
|
228
218
|
|
229
219
|
for item in valid_keys:
|
230
|
-
if hasattr(self, item) and getattr(self, item):
|
231
|
-
|
232
|
-
elif item in self.other_valid_config and self.other_valid_config[item]:
|
233
|
-
valid_params[item] = self.other_valid_config[item]
|
234
|
-
elif item in config and config[item]:
|
235
|
-
valid_params[item] = config[item]
|
220
|
+
if hasattr(self, item) and (getattr(self, item) or getattr(self, item) == False):
|
221
|
+
valid_config[item] = getattr(self, item)
|
236
222
|
|
237
|
-
|
223
|
+
elif item in self.llm_config and (self.llm_config[item] or self.llm_config[item]==False):
|
224
|
+
valid_config[item] = self.llm_config[item]
|
225
|
+
|
226
|
+
elif item in config and (config[item] or config[item] == False):
|
227
|
+
valid_config[item] = config[item]
|
228
|
+
|
229
|
+
else:
|
230
|
+
pass
|
231
|
+
|
232
|
+
self.llm_config = valid_config
|
233
|
+
return valid_config
|
234
|
+
|
235
|
+
|
236
|
+
def _set_env_vars(self) -> Dict[str, Any]:
|
237
|
+
if self.provider == "openai":
|
238
|
+
return {}
|
239
|
+
|
240
|
+
cred = dict()
|
241
|
+
env_vars = ENV_VARS.get(self.provider, None) if self.provider else None
|
242
|
+
|
243
|
+
if not env_vars:
|
244
|
+
return {}
|
245
|
+
|
246
|
+
for item in env_vars:
|
247
|
+
val = os.environ.get(item, None)
|
248
|
+
if val:
|
249
|
+
cred[str(item).lower()] = val
|
250
|
+
|
251
|
+
return cred
|
238
252
|
|
239
253
|
|
240
254
|
def _supports_function_calling(self) -> bool:
|
@@ -242,6 +256,8 @@ class LLM(BaseModel):
|
|
242
256
|
if self.model:
|
243
257
|
params = litellm.get_supported_openai_params(model=self.model)
|
244
258
|
return "response_format" in params if params else False
|
259
|
+
else:
|
260
|
+
return False
|
245
261
|
except Exception as e:
|
246
262
|
self._logger.log(level="warning", message=f"Failed to get supported params: {str(e)}", color="yellow")
|
247
263
|
return False
|
@@ -288,15 +304,16 @@ class LLM(BaseModel):
|
|
288
304
|
|
289
305
|
with suppress_warnings():
|
290
306
|
if len(self.callbacks) > 0:
|
291
|
-
self._set_callbacks(self.callbacks)
|
307
|
+
self._set_callbacks(self.callbacks)
|
292
308
|
|
293
309
|
try:
|
294
310
|
res, tool_res = None, ""
|
311
|
+
cred = self._set_env_vars()
|
295
312
|
|
296
313
|
if not tools:
|
297
314
|
self.response_format = response_format
|
298
315
|
params = self._create_valid_params(config=config)
|
299
|
-
res = litellm.completion(model=self.model, messages=messages, stream=False, **params)
|
316
|
+
res = litellm.completion(model=self.model, messages=messages, stream=False, **params, **cred)
|
300
317
|
self._tokens += int(res["usage"]["total_tokens"])
|
301
318
|
return res["choices"][0]["message"]["content"]
|
302
319
|
|
@@ -305,7 +322,7 @@ class LLM(BaseModel):
|
|
305
322
|
self.response_format = { "type": "json_object" } if tool_res_as_final and self.provider != "gemini" else response_format
|
306
323
|
self.tools = [item.tool.properties if isinstance(item, ToolSet) else item.properties for item in tools]
|
307
324
|
params = self._create_valid_params(config=config)
|
308
|
-
res = litellm.completion(model=self.model, messages=messages, **params)
|
325
|
+
res = litellm.completion(model=self.model, messages=messages, **params, **cred)
|
309
326
|
tool_calls = res.choices[0].message.tool_calls
|
310
327
|
|
311
328
|
if tool_calls:
|
@@ -367,7 +384,7 @@ class LLM(BaseModel):
|
|
367
384
|
if tool_res_as_final:
|
368
385
|
return tool_res
|
369
386
|
else:
|
370
|
-
res = litellm.completion(model=self.model, messages=messages, **params)
|
387
|
+
res = litellm.completion(model=self.model, messages=messages, **params, **cred)
|
371
388
|
self._tokens += int(res["usage"]["total_tokens"])
|
372
389
|
return res.choices[0].message.content
|
373
390
|
|
versionhq/task/model.py
CHANGED
@@ -709,11 +709,11 @@ Ref. Output image: {output_formats_to_follow}
|
|
709
709
|
# )
|
710
710
|
# self._save_file(content)
|
711
711
|
|
712
|
-
|
713
|
-
# successful output will be evaluated and stored in the logs
|
714
712
|
if raw_output:
|
715
713
|
if self.should_evaluate:
|
716
714
|
task_output.evaluate(task=self)
|
715
|
+
self.output = task_output
|
716
|
+
|
717
717
|
self._create_short_and_long_term_memories(agent=agent, task_output=task_output)
|
718
718
|
|
719
719
|
if self.callback and isinstance(self.callback, Callable):
|
@@ -723,7 +723,7 @@ Ref. Output image: {output_formats_to_follow}
|
|
723
723
|
valid_kwargs = { k: kwargs[k] if k in kwargs else None for k in valid_keys }
|
724
724
|
callback_res = self.callback(**valid_kwargs)
|
725
725
|
task_output.callback_output = callback_res
|
726
|
-
|
726
|
+
self.output = task_output
|
727
727
|
self._store_logs()
|
728
728
|
|
729
729
|
return task_output
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: versionhq
|
3
|
-
Version: 1.2.2.
|
3
|
+
Version: 1.2.2.6
|
4
4
|
Summary: An agentic orchestration framework for building agent networks that handle task automation.
|
5
5
|
Author-email: Kuriko Iwai <kuriko@versi0n.io>
|
6
6
|
License: MIT License
|
@@ -66,6 +66,7 @@ Requires-Dist: envoy>=0.0.3
|
|
66
66
|
Requires-Dist: composio-core==0.7.0
|
67
67
|
Requires-Dist: networkx>=3.4.2
|
68
68
|
Requires-Dist: matplotlib>=3.10.0
|
69
|
+
Requires-Dist: boto3>=1.37.1
|
69
70
|
Provides-Extra: docling
|
70
71
|
Requires-Dist: docling>=2.17.0; extra == "docling"
|
71
72
|
Provides-Extra: mem0ai
|
@@ -141,7 +142,7 @@ Agentic orchestration framework for multi-agent networks and task graphs for com
|
|
141
142
|
|
142
143
|
`versionhq` is a Python framework for agent networks that handle complex task automation without human interaction.
|
143
144
|
|
144
|
-
Agents are model-agnostic, and will improve task output, while
|
145
|
+
Agents are model-agnostic, and will improve task output, while optimizing token cost and job latency, by sharing their memory, knowledge base, and RAG tools with other agents in the network.
|
145
146
|
|
146
147
|
|
147
148
|
### Agent Network
|
@@ -227,10 +228,7 @@ The following code snippet demonstrates agent customization:
|
|
227
228
|
```python
|
228
229
|
import versionhq as vhq
|
229
230
|
|
230
|
-
agent = vhq.Agent(
|
231
|
-
role="Marketing Analyst",
|
232
|
-
goal="my amazing goal"
|
233
|
-
) # assuming this agent was created during the network formation
|
231
|
+
agent = vhq.Agent(role="Marketing Analyst")
|
234
232
|
|
235
233
|
# update the agent
|
236
234
|
agent.update(
|
@@ -321,8 +319,8 @@ To create an agent network with one or more manager agents, designate members us
|
|
321
319
|
```python
|
322
320
|
import versionhq as vhq
|
323
321
|
|
324
|
-
agent_a = vhq.Agent(role="agent a",
|
325
|
-
agent_b = vhq.Agent(role="agent b",
|
322
|
+
agent_a = vhq.Agent(role="agent a", llm="llm-of-your-choice")
|
323
|
+
agent_b = vhq.Agent(role="agent b", llm="llm-of-your-choice")
|
326
324
|
|
327
325
|
task_1 = vhq.Task(
|
328
326
|
description="Analyze the client's business model.",
|
@@ -1,4 +1,4 @@
|
|
1
|
-
versionhq/__init__.py,sha256=
|
1
|
+
versionhq/__init__.py,sha256=LPGLlfGPZ6saKcuLrozmgUNP89Po4H5uML4Iw62OjkE,2980
|
2
2
|
versionhq/_utils/__init__.py,sha256=d-vYVcORZKG-kkLe_fzE8VbViDpAk9DDOKe2fVK25ew,178
|
3
3
|
versionhq/_utils/i18n.py,sha256=TwA_PnYfDLA6VqlUDPuybdV9lgi3Frh_ASsb_X8jJo8,1483
|
4
4
|
versionhq/_utils/llm_as_a_judge.py,sha256=RM0oYfoeanuUyUL3Ewl6_8Xn1F5Axd285UMH46kxG1I,2378
|
@@ -7,8 +7,8 @@ versionhq/_utils/process_config.py,sha256=YTGY_erW335RfceQfzS18YAqq-AAb-iSvKSjN7
|
|
7
7
|
versionhq/_utils/usage_metrics.py,sha256=xgYGRW3OTuK9EJyi3QYJeYcJl7dL27olcWaLo_7B3JE,2246
|
8
8
|
versionhq/_utils/vars.py,sha256=bZ5Dx_bFKlt3hi4-NNGXqdk7B23If_WaTIju2fiTyPQ,57
|
9
9
|
versionhq/agent/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
10
|
-
versionhq/agent/inhouse_agents.py,sha256=
|
11
|
-
versionhq/agent/model.py,sha256=
|
10
|
+
versionhq/agent/inhouse_agents.py,sha256=BPkvEyMH8VnZWsMeCwsGplDT_kLwlIejeRcr-6ItGqQ,2637
|
11
|
+
versionhq/agent/model.py,sha256=JU5Yu2ODUAfODS5brm4yXsVWNGjjkJqfPcGJ1NZ8VnI,25392
|
12
12
|
versionhq/agent/parser.py,sha256=riG0dkdQCxH7uJ0AbdVdg7WvL0BXhUgJht0VtQvxJBc,4082
|
13
13
|
versionhq/agent/rpm_controller.py,sha256=grezIxyBci_lDlwAlgWFRyR5KOocXeOhYkgN02dNFNE,2360
|
14
14
|
versionhq/agent/TEMPLATES/Backstory.py,sha256=IAhGnnt6VUMe3wO6IzeyZPDNu7XE7Uiu3VEXUreOcKs,532
|
@@ -32,8 +32,8 @@ versionhq/knowledge/source.py,sha256=-hEUPtJUHHMx4rUKtiHl19J8xAMw-WVBw34zwa2jZ08
|
|
32
32
|
versionhq/knowledge/source_docling.py,sha256=dcu1ITqPXwWZ_lK-6tykEKhhC82eNRTMoWRpxK9Kzls,5441
|
33
33
|
versionhq/knowledge/storage.py,sha256=Kd-4r6aWM5EDaoXrzKXbgi1hY6tysSQARPGXM95qMmU,8266
|
34
34
|
versionhq/llm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
35
|
-
versionhq/llm/llm_vars.py,sha256=
|
36
|
-
versionhq/llm/model.py,sha256=
|
35
|
+
versionhq/llm/llm_vars.py,sha256=nqnSyuPgIwXnL4JVgC0DFkAe-mV2n3eUd7mtFkfGfds,5426
|
36
|
+
versionhq/llm/model.py,sha256=PZm4gvQNJTW_ZwJE4MEF9JC05zbxS8RfSFQ8pFcNW-A,17146
|
37
37
|
versionhq/memory/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
38
38
|
versionhq/memory/contextual_memory.py,sha256=QEMVvHuEXxY7M6-12S8HhyFKf108KfX8Zzt7paPW048,3882
|
39
39
|
versionhq/memory/model.py,sha256=VQR1229t7GQPMItlGAHLtJrb6LrZfSoRA1DRW4z0SOU,8234
|
@@ -47,7 +47,7 @@ versionhq/storage/utils.py,sha256=r5ghA_ktdR2IuzlzKqZYCjsNxztEMzyhWLneA4cFuWY,74
|
|
47
47
|
versionhq/task/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
48
48
|
versionhq/task/evaluation.py,sha256=iRLzppqwKaiGpbsr9gMbf6T7NQe6rxTA6OBcWhmiCKs,4473
|
49
49
|
versionhq/task/formatter.py,sha256=N8Kmk9vtrMtBdgJ8J7RmlKNMdZWSmV8O1bDexmCWgU0,643
|
50
|
-
versionhq/task/model.py,sha256=
|
50
|
+
versionhq/task/model.py,sha256=rJmyEUM1DnX1mkN_0etYXqBJP_YADXVXZhFR5R-h8ZA,28915
|
51
51
|
versionhq/task/structured_response.py,sha256=4q-hQPu7oMMHHXEzh9YW4SJ7N5eCZ7OfZ65juyl_jCI,5000
|
52
52
|
versionhq/task/TEMPLATES/Description.py,sha256=EkwJHc65G32MjWyn3rcp0ATmMaVPHuYKaykyByU5r4g,751
|
53
53
|
versionhq/task_graph/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -62,8 +62,8 @@ versionhq/tool/decorator.py,sha256=C4ZM7Xi2gwtEMaSeRo-geo_g_MAkY77WkSLkAuY0AyI,1
|
|
62
62
|
versionhq/tool/model.py,sha256=Nc2f9frTK5tH4kh6EeEAk1Fi1w19kEXLOcsBwHCS1a4,12189
|
63
63
|
versionhq/tool/rag_tool.py,sha256=qm_nDWs-WyDvrxZeZAL2AkswfUWGPZS4zybz0o6wOFI,3653
|
64
64
|
versionhq/tool/tool_handler.py,sha256=2m41K8qo5bGCCbwMFferEjT-XZ-mE9F0mDUOBkgivOI,1416
|
65
|
-
versionhq-1.2.2.
|
66
|
-
versionhq-1.2.2.
|
67
|
-
versionhq-1.2.2.
|
68
|
-
versionhq-1.2.2.
|
69
|
-
versionhq-1.2.2.
|
65
|
+
versionhq-1.2.2.6.dist-info/LICENSE,sha256=cRoGGdM73IiDs6nDWKqPlgSv7aR4n-qBXYnJlCMHCeE,1082
|
66
|
+
versionhq-1.2.2.6.dist-info/METADATA,sha256=OwLIKXnR7HIZiJc1ZeuK9zu_65eXSMgObNOzuAg0o4c,22097
|
67
|
+
versionhq-1.2.2.6.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
|
68
|
+
versionhq-1.2.2.6.dist-info/top_level.txt,sha256=DClQwxDWqIUGeRJkA8vBlgeNsYZs4_nJWMonzFt5Wj0,10
|
69
|
+
versionhq-1.2.2.6.dist-info/RECORD,,
|
File without changes
|
File without changes
|