versionhq 1.1.11.8__py3-none-any.whl → 1.1.12.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,11 +1,11 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: versionhq
3
- Version: 1.1.11.8
4
- Summary: LLM orchestration frameworks for model-agnostic AI agents that handle complex outbound workflows
3
+ Version: 1.1.12.2
4
+ Summary: Agentic orchestration framework for task automation
5
5
  Author-email: Kuriko Iwai <kuriko@versi0n.io>
6
6
  License: MIT License
7
7
 
8
- Copyright (c) 2024 Version IO Sdn. Bhd.
8
+ Copyright (c) 2024-2025 Version IO Sdn. Bhd.
9
9
 
10
10
  Permission is hereby granted, free of charge, to any person obtaining a copy
11
11
  of this software and associated documentation files (the "Software"), to deal
@@ -29,7 +29,7 @@ Project-URL: Homepage, https://versi0n.io
29
29
  Project-URL: Documentation, https://chief-oxygen-8a2.notion.site/Documentation-17e923685cf98001a5fad5c4b2acd79b?pvs=73
30
30
  Project-URL: Repository, https://github.com/versionHQ/multi-agent-system
31
31
  Project-URL: Issues, https://github.com/versionHQ/multi-agent-system/issues
32
- Keywords: orchestration framework,orchestration,ai agent,multi-agent system,RAG,agent
32
+ Keywords: orchestration framework,orchestration,ai agent,multi-agent system,RAG,agent,agentic orchestration,llm
33
33
  Classifier: Programming Language :: Python
34
34
  Classifier: Programming Language :: Python :: 3
35
35
  Classifier: Programming Language :: Python :: 3.11
@@ -63,6 +63,7 @@ Requires-Dist: composio-langchain>=0.6.12
63
63
  Requires-Dist: chromadb>=0.6.3
64
64
  Requires-Dist: wheel>=0.45.1
65
65
  Requires-Dist: envoy>=0.0.3
66
+ Requires-Dist: composio-core==0.7.0
66
67
  Provides-Extra: docling
67
68
  Requires-Dist: docling>=2.17.0; extra == "docling"
68
69
  Provides-Extra: mem0ai
@@ -78,12 +79,12 @@ Requires-Dist: numpy>=1.26.4; extra == "numpy"
78
79
 
79
80
  ![MIT license](https://img.shields.io/badge/License-MIT-green)
80
81
  [![Publisher](https://github.com/versionHQ/multi-agent-system/actions/workflows/publish.yml/badge.svg)](https://github.com/versionHQ/multi-agent-system/actions/workflows/publish.yml)
81
- ![PyPI](https://img.shields.io/badge/PyPI->=v1.1.11.4-blue)
82
- ![python ver](https://img.shields.io/badge/Python->=3.12-purple)
82
+ ![PyPI](https://img.shields.io/badge/PyPI-v1.1.12+-blue)
83
+ ![python ver](https://img.shields.io/badge/Python-3.11+-purple)
83
84
  ![pyenv ver](https://img.shields.io/badge/pyenv-2.5.0-orange)
84
85
 
85
86
 
86
- LLM orchestration frameworks to deploy multi-agent systems with task-based formation.
87
+ Agentic orchestration framework to deploy agent network and handle complex task automation.
87
88
 
88
89
  **Visit:**
89
90
 
@@ -122,15 +123,16 @@ LLM orchestration frameworks to deploy multi-agent systems with task-based forma
122
123
 
123
124
  ## Key Features
124
125
 
125
- Generate mulit-agent systems depending on the complexity of the task, and execute the task with agents of choice.
126
+ Generate multi-agent systems based on the task complexity, execute tasks, and evaluate output based on the given criteria.
126
127
 
127
- Model-agnostic agents can handle RAG tools, tools, callbacks, and knowledge sharing among other agents.
128
+ Agents are model-agnostic, and can handle and share RAG tools, knowledge, memory, and callbacks among other agents. (self-learn)
128
129
 
129
130
 
130
131
  ### Agent formation
131
- Depending on the task complexity, agents can make a different formation.
132
132
 
133
- You can specify which formation you want them to generate, or let the agent decide if you don’t have a clear plan.
133
+ Agents adapt their formation based on task complexity.
134
+
135
+ You can specify a desired formation or allow the agents to determine it autonomously (default).
134
136
 
135
137
 
136
138
  | | **Solo Agent** | **Supervising** | **Network** | **Random** |
@@ -158,8 +160,7 @@ You can specify which formation you want them to generate, or let the agent deci
158
160
 
159
161
  ```
160
162
  from pydantic import BaseModel
161
- from versionhq.agent.model import Agent
162
- from versionhq.task.model import Task
163
+ from versionhq import Agent, Task
163
164
 
164
165
  class CustomOutput(BaseModel):
165
166
  test1: str
@@ -199,9 +200,7 @@ This will return `TaskOutput` instance that stores a response in plane text, JSO
199
200
  ### Case 2. Supervising:
200
201
 
201
202
  ```
202
- from versionhq.agent.model import Agent
203
- from versionhq.task.model import Task, ResponseField
204
- from versionhq.team.model import Team, TeamMember
203
+ from versionhq import Agent, Task, ResponseField, Team, TeamMember
205
204
 
206
205
  agent_a = Agent(role="agent a", goal="My amazing goals", llm="llm-of-your-choice")
207
206
  agent_b = Agent(role="agent b", goal="My amazing goals", llm="llm-of-your-choice")
@@ -1,15 +1,15 @@
1
- versionhq/__init__.py,sha256=9QPw8-DjsW5Z2vOHQUBb-AMSyIR2RFcFkR42aXVbUFc,863
2
- versionhq/_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1
+ versionhq/__init__.py,sha256=1hMfk5eYF9pdzZypJBvtvbqHdhM_2Oi-UWuz7yg5Ikc,2266
2
+ versionhq/_utils/__init__.py,sha256=dzoZr4cBlh-2QZuPzTdehPUCe9lP1dmRtauD7qTjUaA,158
3
3
  versionhq/_utils/i18n.py,sha256=TwA_PnYfDLA6VqlUDPuybdV9lgi3Frh_ASsb_X8jJo8,1483
4
- versionhq/_utils/logger.py,sha256=U-MpeGueA6YS8Ptfy0VnU_ePsZP-8Pvkvi0tZ4s_UMg,1438
4
+ versionhq/_utils/logger.py,sha256=j9SlQPIefdVUlwpGfJY83E2BUt1ejWgZ2M2I8aMyQ3c,1579
5
5
  versionhq/_utils/process_config.py,sha256=jbPGXK2Kb4iyCugJ3FwRJuU0wL5Trq2x4xFQz2uOyFY,746
6
6
  versionhq/_utils/usage_metrics.py,sha256=hhq1OCW8Z4V93vwW2O2j528EyjOlF8wlTsX5IL-7asA,1106
7
7
  versionhq/_utils/vars.py,sha256=bZ5Dx_bFKlt3hi4-NNGXqdk7B23If_WaTIju2fiTyPQ,57
8
8
  versionhq/agent/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
9
- versionhq/agent/default_agents.py,sha256=Sea3xDswxxMccer1vVDhp1E5etXW3ddf2n20JTMHgqs,503
10
- versionhq/agent/model.py,sha256=U6kz8EE4tJYk9HBg4qeB2_-297ROEORxP_gE6C89aH0,22232
9
+ versionhq/agent/inhouse_agents.py,sha256=v8frZjmiqYR8zuuh4CjYJheaHfHT2n_utT8pWCLJFes,2375
10
+ versionhq/agent/model.py,sha256=w58WIwIOI_gBlRHVlkU07ILVRlBSSJnpqWhzx0TU8d0,22416
11
11
  versionhq/agent/parser.py,sha256=riG0dkdQCxH7uJ0AbdVdg7WvL0BXhUgJht0VtQvxJBc,4082
12
- versionhq/agent/rpm_controller.py,sha256=7AKIEPbWBq_ESOZCaiKVOGjfSPHd2qwg6-wbBlhqC0g,2367
12
+ versionhq/agent/rpm_controller.py,sha256=grezIxyBci_lDlwAlgWFRyR5KOocXeOhYkgN02dNFNE,2360
13
13
  versionhq/agent/TEMPLATES/Backstory.py,sha256=IAhGnnt6VUMe3wO6IzeyZPDNu7XE7Uiu3VEXUreOcKs,532
14
14
  versionhq/agent/TEMPLATES/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
15
15
  versionhq/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -17,48 +17,49 @@ versionhq/clients/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU
17
17
  versionhq/clients/customer/__init__.py,sha256=-YXh1FQfvpfLacK8SUC7bD7Wx_eIEi4yrkCC_cUasFg,217
18
18
  versionhq/clients/customer/model.py,sha256=_AtaVVMm9MgCwrQ-HTRQ2oXUMKrSCEfZwE2JdRz3xTw,2508
19
19
  versionhq/clients/product/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
20
- versionhq/clients/product/model.py,sha256=hLTvvQsatNuq0DtyTqpP_gRKgnv6N4uRjavnGfk7b6Y,3695
20
+ versionhq/clients/product/model.py,sha256=3w__pug9XRe4LIm9wX8C8WKqi40r081Eb1q2vWk9UaU,3694
21
21
  versionhq/clients/workflow/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
22
22
  versionhq/clients/workflow/model.py,sha256=FNftenLLoha0bkivrjId32awLHAkBwIT8iNljdic_bw,6003
23
- versionhq/knowledge/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
23
+ versionhq/knowledge/__init__.py,sha256=qW7IgssTA4_bFFV9ziOcYRfGjlq1c8bkb-HnfWknpuQ,567
24
24
  versionhq/knowledge/_utils.py,sha256=YWRF8U533cfZes_gZqUvdj-K24MD2ri1R0gjc_aPYyc,402
25
25
  versionhq/knowledge/embedding.py,sha256=KfHc__1THxb5jrg1EMrF-v944RDuIr2hE0l-MtM3Bp0,6826
26
- versionhq/knowledge/model.py,sha256=n7kU4jQ24BUIxwosSVRK8tYhAFYhgc4yf7e4Q-bq4bk,1832
27
- versionhq/knowledge/source.py,sha256=WOARChmm_cNtBD-xGo4RoYmcuodzdalctXI-gDBCW6k,13610
26
+ versionhq/knowledge/model.py,sha256=w29mrJv1kiznCh4P4yJMUQxIuyRw1Sk0XYtBXzCxaG4,1786
27
+ versionhq/knowledge/source.py,sha256=30VXsl3uHdM0wK0Dik3XfFxpNpEiy539PBNBvg0Y4-g,13609
28
28
  versionhq/knowledge/source_docling.py,sha256=hhHn3rS4KVsFKEPWcfllM8VxSL86PckZdAHDZNQNOq8,5411
29
29
  versionhq/knowledge/storage.py,sha256=7oxCg3W9mFjYH1YmuH9kFtTbNxquzYFjuUjd_TlsB9E,8170
30
30
  versionhq/llm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
31
- versionhq/llm/llm_vars.py,sha256=48IvN6w6h6QJUWqO0A44begGLoUbBaaS-HPO_wp7c84,9588
32
- versionhq/llm/model.py,sha256=0qe3oC5u42erVBHc76WRpDKH9PDTzXyaraIuDJ6bDAY,15426
31
+ versionhq/llm/llm_vars.py,sha256=asJtkKCcD0WWIbyVn7CYOWg-WZ6MSKS9lIRaYIkdib4,6778
32
+ versionhq/llm/model.py,sha256=wSjRGyk9AZtvDqNfcyyeOMoV_hpTaUHCM849hBF0MhU,15145
33
33
  versionhq/memory/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
34
34
  versionhq/memory/contextual_memory.py,sha256=tCsOOAUnfrOL7YiakqGoi3uShzzS870TmGnlGd3z_A4,3556
35
- versionhq/memory/model.py,sha256=6Sy-cnrhHNIx3ZN38uNO7d8YywIl_uo_OvDVzVM-w14,5755
35
+ versionhq/memory/model.py,sha256=4wow2O3UuMZ0AbC2NyxddGZac3-_GjNZbK9wsA015NA,8145
36
36
  versionhq/storage/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
37
37
  versionhq/storage/base.py,sha256=p-Jas0fXQan_qotnRD6seQxrT2lj-uw9-SmHQhdppcs,355
38
- versionhq/storage/ltm_sqlite_storage.py,sha256=LMitExpDATg__Oc7Hvl6h6uwQ7vUKQ34Eyp1BSt0DfY,4260
39
- versionhq/storage/mem0_storage.py,sha256=iWYXJdFUnahwWAddDl2L4cNTaUkCx3lIzexm6cABBa4,3802
40
- versionhq/storage/rag_storage.py,sha256=fBk-RJuFRPOH4gI9E67tkhJnTBoChWocSP2PdWUYIFg,7313
41
- versionhq/storage/task_output_storage.py,sha256=gCsZywZ2SaNA1pYIsJk6BTrcpGp79TZTviZkWQF5USs,4579
38
+ versionhq/storage/ltm_sqlite_storage.py,sha256=wdUiuwHfJocdk0UGqyrdU4S5Nae1rgsoRNu3LWmGFcI,3951
39
+ versionhq/storage/mem0_storage.py,sha256=Nl0GlCNftZGTVxX-9DP5n_pN4QRxeHAhAPakCc0arBg,3819
40
+ versionhq/storage/rag_storage.py,sha256=ScWC0vH327vnGw8UGscAOoIfqrq3mhvXT3vEKzHZJts,7441
41
+ versionhq/storage/task_output_storage.py,sha256=E1t_Fkt78dPYIOl3MP7LfQ8oGtjlzxBuSNq_8ZXKho8,4573
42
42
  versionhq/storage/utils.py,sha256=ByYXPoEIGJYLUqz-DWjbCAnneNrH1otiYbp12SCILpM,747
43
- versionhq/task/__init__.py,sha256=l2r_g01i91JAGlOoHZP_Gh2WCk6mo9D19lcqt7sKMpQ,186
44
- versionhq/task/evaluate.py,sha256=RCaFa9N4IibAYLWKUlTn6lWiQoI7t4f_XZVUvecjTxs,3486
43
+ versionhq/task/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
44
+ versionhq/task/evaluate.py,sha256=f8S-nuEl2xJ2LnLv7iQixH53-gp0pKx1hFp_sUlN464,3977
45
+ versionhq/task/formation.py,sha256=BBB-Fgc9nmoOIuMIPndt-XO2I6uWCBDgFkSMi_72brk,4986
45
46
  versionhq/task/formatter.py,sha256=N8Kmk9vtrMtBdgJ8J7RmlKNMdZWSmV8O1bDexmCWgU0,643
46
47
  versionhq/task/log_handler.py,sha256=KJRrcNZgFSKhlNzvtYFnvtp6xukaF1s7ifX9u4zWrN8,1683
47
- versionhq/task/model.py,sha256=DCm2jS0RFm4iPkepzKbNgODUdxOtGCV0RCINMaI0c_Q,30162
48
- versionhq/task/structured_response.py,sha256=YxuWcDMHcZLzdxI1ihW99Y-i6nl8yXBQ5Q_dFQac8jw,4837
49
- versionhq/task/TEMPLATES/Description.py,sha256=bChflSWGGQo9JpnO6QX6Ng9pnONiTf-zwQ3ke4xQgSQ,357
48
+ versionhq/task/model.py,sha256=2p3Fc4iphfAjARaClFL3AXDg_203Kx6VAlMgt2-L29U,29444
49
+ versionhq/task/structured_response.py,sha256=uVqgeUxNOACPe2hdc0RELSbtKd1vrwonfjXMOGTT0TI,4818
50
+ versionhq/task/TEMPLATES/Description.py,sha256=V-4kh8xpQTKOcDMi2xnuP-fcNk6kuoz1_5tYBlDLQWQ,420
50
51
  versionhq/team/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
51
- versionhq/team/model.py,sha256=NzcRXWwP0adWL9vsnsmI-A5dOcE3199FGmGgemUB2VA,20043
52
- versionhq/team/team_planner.py,sha256=UyIpw7GoRQXlgLNaojoi-G8F1sYaf5hTpLcTvWjRvlA,3596
52
+ versionhq/team/model.py,sha256=NYKYxyebZrbhbDReqP01M4viHJ-48AXlpPMpxUw4SX4,18836
53
+ versionhq/team/team_planner.py,sha256=l1PwyBXK1F3uOcbF1IvJBWKApJhghZnBF_ErkNcE04s,3745
53
54
  versionhq/tool/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
54
55
  versionhq/tool/cache_handler.py,sha256=iL8FH7X0G-cdT0uhJwzuhLDaadTXOdfybZcDy151-es,1085
55
56
  versionhq/tool/composio_tool.py,sha256=38mEiVvTkuw1BLD233Bl1Gwxbpss1yfQiZLTWwX6BdA,8648
56
57
  versionhq/tool/composio_tool_vars.py,sha256=FvBuEXsOQUYnN7RTFxT20kAkiEYkxWKkiVtgpqOzKZQ,1843
57
58
  versionhq/tool/decorator.py,sha256=C4ZM7Xi2gwtEMaSeRo-geo_g_MAkY77WkSLkAuY0AyI,1205
58
- versionhq/tool/model.py,sha256=7ccEnje_8LuxLVeog6pL38nToArXQXk4KY7A9hfprDo,12239
59
+ versionhq/tool/model.py,sha256=ILfvRviQR1W1w-u3MtOIz0PrWa-brpgfAiyKWol63mk,12227
59
60
  versionhq/tool/tool_handler.py,sha256=2m41K8qo5bGCCbwMFferEjT-XZ-mE9F0mDUOBkgivOI,1416
60
- versionhq-1.1.11.8.dist-info/LICENSE,sha256=7CCXuMrAjPVsUvZrsBq9DsxI2rLDUSYXR_qj4yO_ZII,1077
61
- versionhq-1.1.11.8.dist-info/METADATA,sha256=VKscq6wLejKxh7fF2p6V9fbgRveRHbzAjVw5KcBwpTg,18672
62
- versionhq-1.1.11.8.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
63
- versionhq-1.1.11.8.dist-info/top_level.txt,sha256=DClQwxDWqIUGeRJkA8vBlgeNsYZs4_nJWMonzFt5Wj0,10
64
- versionhq-1.1.11.8.dist-info/RECORD,,
61
+ versionhq-1.1.12.2.dist-info/LICENSE,sha256=cRoGGdM73IiDs6nDWKqPlgSv7aR4n-qBXYnJlCMHCeE,1082
62
+ versionhq-1.1.12.2.dist-info/METADATA,sha256=8DC3AWye0ks-8k7iv5aZtLlJSxCpVLKojjCCy5FGFAQ,18563
63
+ versionhq-1.1.12.2.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
64
+ versionhq-1.1.12.2.dist-info/top_level.txt,sha256=DClQwxDWqIUGeRJkA8vBlgeNsYZs4_nJWMonzFt5Wj0,10
65
+ versionhq-1.1.12.2.dist-info/RECORD,,
@@ -1,15 +0,0 @@
1
- from versionhq.agent.model import Agent
2
- from versionhq.llm.model import DEFAULT_MODEL_NAME
3
-
4
- """
5
- List up agents to be called across the project.
6
- """
7
-
8
- client_manager = Agent(role="Client Manager", goal="communicate with clients on the task progress", llm=DEFAULT_MODEL_NAME)
9
-
10
- task_evaluator = Agent(
11
- role="Task Evaluator",
12
- goal="score the output according to the given evaluation criteria.",
13
- llm=DEFAULT_MODEL_NAME,
14
- llm_config=dict(top_p=0.8, top_k=30, max_tokens=5000, temperature=0.9)
15
- )