versionhq 1.1.11.8__py3-none-any.whl → 1.1.12.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- versionhq/__init__.py +5 -8
- versionhq/_utils/logger.py +6 -1
- versionhq/agent/inhouse_agents.py +31 -0
- versionhq/agent/model.py +9 -5
- versionhq/llm/llm_vars.py +14 -124
- versionhq/llm/model.py +35 -37
- versionhq/task/evaluate.py +4 -6
- versionhq/task/model.py +37 -32
- versionhq/team/model.py +18 -18
- {versionhq-1.1.11.8.dist-info → versionhq-1.1.12.1.dist-info}/LICENSE +1 -1
- {versionhq-1.1.11.8.dist-info → versionhq-1.1.12.1.dist-info}/METADATA +10 -9
- {versionhq-1.1.11.8.dist-info → versionhq-1.1.12.1.dist-info}/RECORD +14 -14
- versionhq/agent/default_agents.py +0 -15
- {versionhq-1.1.11.8.dist-info → versionhq-1.1.12.1.dist-info}/WHEEL +0 -0
- {versionhq-1.1.11.8.dist-info → versionhq-1.1.12.1.dist-info}/top_level.txt +0 -0
versionhq/__init__.py
CHANGED
@@ -1,11 +1,8 @@
|
|
1
|
+
# silence some warnings
|
1
2
|
import warnings
|
2
|
-
|
3
|
-
warnings.filterwarnings(
|
4
|
-
|
5
|
-
message="Pydantic serializer warnings:",
|
6
|
-
category=UserWarning,
|
7
|
-
module="pydantic.main",
|
8
|
-
)
|
3
|
+
warnings.filterwarnings(action="ignore", message="Pydantic serializer warnings:", category=UserWarning, module="pydantic.main")
|
4
|
+
warnings.filterwarnings(action="ignore", category=UserWarning, module="pydantic._internal")
|
5
|
+
warnings.filterwarnings(action="ignore", module="LiteLLM:utils")
|
9
6
|
|
10
7
|
from versionhq.agent.model import Agent
|
11
8
|
from versionhq.clients.customer.model import Customer
|
@@ -17,7 +14,7 @@ from versionhq.tool.model import Tool
|
|
17
14
|
from versionhq.tool.composio_tool import ComposioHandler
|
18
15
|
|
19
16
|
|
20
|
-
__version__ = "1.1.
|
17
|
+
__version__ = "1.1.12.1"
|
21
18
|
__all__ = [
|
22
19
|
"Agent",
|
23
20
|
"Customer",
|
versionhq/_utils/logger.py
CHANGED
@@ -36,10 +36,15 @@ class Printer:
|
|
36
36
|
|
37
37
|
|
38
38
|
class Logger(BaseModel):
|
39
|
+
"""
|
40
|
+
Control CLI messages.
|
41
|
+
Color: red = error, yellow = warning, blue = info (from vhq), green = info (from third party)
|
42
|
+
"""
|
43
|
+
|
39
44
|
verbose: bool = Field(default=True)
|
40
45
|
_printer: Printer = PrivateAttr(default_factory=Printer)
|
41
46
|
|
42
47
|
def log(self, level, message, color="yellow"):
|
43
48
|
if self.verbose:
|
44
49
|
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
45
|
-
self._printer.print(f"\n{timestamp} - versionHQ
|
50
|
+
self._printer.print(f"\n{timestamp} - versionHQ [{level.upper()}]: {message}", color=color)
|
@@ -0,0 +1,31 @@
|
|
1
|
+
from versionhq.agent.model import Agent
|
2
|
+
from versionhq.llm.model import DEFAULT_MODEL_NAME
|
3
|
+
|
4
|
+
"""
|
5
|
+
In-house agents to be called across the project.
|
6
|
+
[Rules] agents' names and roles start with `vhq_`.
|
7
|
+
"""
|
8
|
+
|
9
|
+
vhq_client_manager = Agent(
|
10
|
+
role="vhq-Client Manager",
|
11
|
+
goal="Efficiently communicate with the client on the task progress",
|
12
|
+
llm=DEFAULT_MODEL_NAME
|
13
|
+
)
|
14
|
+
|
15
|
+
vhq_task_evaluator = Agent(
|
16
|
+
role="vhq-Task Evaluator",
|
17
|
+
goal="score the output according to the given evaluation criteria.",
|
18
|
+
llm=DEFAULT_MODEL_NAME,
|
19
|
+
llm_config=dict(top_p=0.8, top_k=30, max_tokens=5000, temperature=0.9),
|
20
|
+
maxit=1,
|
21
|
+
max_retry_limit=1
|
22
|
+
)
|
23
|
+
|
24
|
+
vhq_formation_planner = Agent(
|
25
|
+
role="vhq-Formation Planner",
|
26
|
+
goal="Plan a formation of agents based on the given task descirption.",
|
27
|
+
llm="gemini/gemini-2.0-flash-exp",
|
28
|
+
llm_config=dict(top_p=0.8, top_k=30, temperature=0.9),
|
29
|
+
maxit=1,
|
30
|
+
max_retry_limit=1
|
31
|
+
)
|
versionhq/agent/model.py
CHANGED
@@ -165,13 +165,16 @@ class Agent(BaseModel):
|
|
165
165
|
Set up `llm` and `function_calling_llm` as valid LLM objects using the given values.
|
166
166
|
"""
|
167
167
|
self.agent_ops_agent_name = self.role
|
168
|
-
self.llm = self.
|
168
|
+
self.llm = self._convert_to_llm_class(llm=self.llm)
|
169
|
+
|
169
170
|
function_calling_llm = self.function_calling_llm if self.function_calling_llm else self.llm if self.llm else None
|
170
|
-
|
171
|
+
function_calling_llm = self._convert_to_llm_class(llm=function_calling_llm)
|
172
|
+
if function_calling_llm._supports_function_calling():
|
173
|
+
self.function_calling_llm = function_calling_llm
|
171
174
|
return self
|
172
175
|
|
173
176
|
|
174
|
-
def
|
177
|
+
def _convert_to_llm_class(self, llm: Any | None) -> LLM:
|
175
178
|
llm = llm if llm is not None else DEFAULT_MODEL_NAME
|
176
179
|
|
177
180
|
match llm:
|
@@ -413,7 +416,7 @@ class Agent(BaseModel):
|
|
413
416
|
task.tokens = self.llm._tokens
|
414
417
|
|
415
418
|
task_execution_counter += 1
|
416
|
-
self._logger.log(level="info", message=f"Agent response: {raw_response}", color="
|
419
|
+
self._logger.log(level="info", message=f"Agent response: {raw_response}", color="green")
|
417
420
|
return raw_response
|
418
421
|
|
419
422
|
except Exception as e:
|
@@ -429,7 +432,7 @@ class Agent(BaseModel):
|
|
429
432
|
iterations += 1
|
430
433
|
|
431
434
|
task_execution_counter += 1
|
432
|
-
self._logger.log(level="info", message=f"Agent #{task_execution_counter} response: {raw_response}", color="
|
435
|
+
self._logger.log(level="info", message=f"Agent #{task_execution_counter} response: {raw_response}", color="green")
|
433
436
|
return raw_response
|
434
437
|
|
435
438
|
if not raw_response:
|
@@ -474,6 +477,7 @@ class Agent(BaseModel):
|
|
474
477
|
task_prompt += memory.strip()
|
475
478
|
|
476
479
|
|
480
|
+
## comment out for now
|
477
481
|
# if self.team and self.team._train:
|
478
482
|
# task_prompt = self._training_handler(task_prompt=task_prompt)
|
479
483
|
# else:
|
versionhq/llm/llm_vars.py
CHANGED
@@ -6,29 +6,20 @@ JSON_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_
|
|
6
6
|
PROVIDERS = [
|
7
7
|
"openai",
|
8
8
|
"gemini",
|
9
|
-
"
|
10
|
-
"huggingface",
|
9
|
+
"openrouter",
|
10
|
+
"huggingface",
|
11
11
|
"anthropic",
|
12
|
+
"sagemaker",
|
13
|
+
"bedrock",
|
12
14
|
"ollama",
|
13
15
|
"watson",
|
14
|
-
"bedrock",
|
15
16
|
"azure",
|
16
17
|
"cerebras",
|
17
18
|
"llama",
|
18
19
|
]
|
19
20
|
|
20
21
|
ENDPOINT_PROVIDERS = [
|
21
|
-
# "openai",
|
22
|
-
# "gemini",
|
23
|
-
# "sagemaker",
|
24
22
|
"huggingface",
|
25
|
-
# "anthropic",
|
26
|
-
# "ollama",
|
27
|
-
# "watson",
|
28
|
-
# "bedrock",
|
29
|
-
# "azure",
|
30
|
-
# "cerebras",
|
31
|
-
# "llama",
|
32
23
|
]
|
33
24
|
|
34
25
|
"""
|
@@ -57,10 +48,14 @@ MODELS = {
|
|
57
48
|
"anthropic": [
|
58
49
|
"claude-3-5-sonnet-20241022",
|
59
50
|
"claude-3-5-sonnet-20240620",
|
60
|
-
"claude-3-
|
51
|
+
"claude-3-haiku-2024030",
|
61
52
|
"claude-3-opus-20240229",
|
62
53
|
"claude-3-haiku-20240307",
|
63
54
|
],
|
55
|
+
"openrouter": [
|
56
|
+
"openrouter/deepseek/deepseek-r1:free",
|
57
|
+
"openrouter/qwen/qwen-2.5-72b-instruct",
|
58
|
+
],
|
64
59
|
"huggingface": [
|
65
60
|
"huggingface/qwen/qwen2.5-VL-72B-Instruct",
|
66
61
|
],
|
@@ -78,11 +73,6 @@ MODELS = {
|
|
78
73
|
"ollama/mixtral",
|
79
74
|
"ollama/mixtral-8x22B-Instruct-v0.1",
|
80
75
|
],
|
81
|
-
"deepseek": [
|
82
|
-
"deepseek/deepseek-reasoner",
|
83
|
-
|
84
|
-
],
|
85
|
-
|
86
76
|
# "watson": [
|
87
77
|
# "watsonx/meta-llama/llama-3-1-70b-instruct",
|
88
78
|
# "watsonx/meta-llama/llama-3-1-8b-instruct",
|
@@ -98,7 +88,6 @@ MODELS = {
|
|
98
88
|
"bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
|
99
89
|
"bedrock/anthropic.claude-3-haiku-20240307-v1:0",
|
100
90
|
"bedrock/anthropic.claude-3-opus-20240229-v1:0",
|
101
|
-
# "bedrock/anthropic.claude-v2:1",
|
102
91
|
"bedrock/anthropic.claude-v2",
|
103
92
|
"bedrock/anthropic.claude-instant-v1",
|
104
93
|
"bedrock/meta.llama3-1-405b-instruct-v1:0",
|
@@ -124,24 +113,17 @@ MODELS = {
|
|
124
113
|
KEYS = {
|
125
114
|
"openai": ["OPENAI_API_KEY"],
|
126
115
|
"gemini": ["GEMINI_API_KEY"],
|
127
|
-
"sagemaker": ["AWS_ACCESS_KEY_ID", "ADW_SECURET_ACCESS_KEY", "AWS_REGION_NAME"],
|
128
116
|
"anthropic": ["ANTHROPIC_API_KEY"],
|
117
|
+
"huggingface": ["HUGGINGFACE_API_KEY", ],
|
118
|
+
"sagemaker": ["AWS_ACCESS_KEY_ID", "ADW_SECURET_ACCESS_KEY", "AWS_REGION_NAME"],
|
129
119
|
}
|
130
120
|
|
131
121
|
|
132
|
-
"""
|
133
|
-
Use base_url to specify
|
134
|
-
"""
|
135
|
-
BASE_URLS = {
|
136
|
-
"deepseek": "https://api.deepseek.com"
|
137
|
-
}
|
138
|
-
|
139
122
|
|
140
123
|
"""
|
141
124
|
Max input token size by the model.
|
142
125
|
"""
|
143
126
|
LLM_CONTEXT_WINDOW_SIZES = {
|
144
|
-
"gpt-3.5-turbo": 8192,
|
145
127
|
"gpt-4": 8192,
|
146
128
|
"gpt-4o": 128000,
|
147
129
|
"gpt-4o-mini": 128000,
|
@@ -160,6 +142,7 @@ LLM_CONTEXT_WINDOW_SIZES = {
|
|
160
142
|
"claude-3-sonnet-20240229": 200000,
|
161
143
|
"claude-3-opus-20240229": 200000,
|
162
144
|
"claude-3-haiku-20240307": 200000,
|
145
|
+
"claude-3-5-sonnet-2024102": 200000,
|
163
146
|
|
164
147
|
"deepseek-chat": 128000,
|
165
148
|
"deepseek/deepseek-reasoner": 8192,
|
@@ -177,111 +160,18 @@ LLM_CONTEXT_WINDOW_SIZES = {
|
|
177
160
|
"llama3-70b-8192": 8192,
|
178
161
|
"llama3-8b-8192": 8192,
|
179
162
|
"mixtral-8x7b-32768": 32768,
|
180
|
-
"claude-3-5-sonnet-2024102": 200000,
|
181
|
-
}
|
182
|
-
|
183
|
-
|
184
|
-
|
185
|
-
|
186
|
-
LLM_BASE_URL_KEY_NAMES = {
|
187
|
-
"openai": "OPENAI_API_BASE",
|
188
|
-
"gemini": "GEMINI_API_BASE",
|
189
|
-
"anthropic": "ANTHROPIC_API_BASE",
|
190
|
-
}
|
191
|
-
|
192
|
-
LLM_VARS = {
|
193
|
-
"openai": [
|
194
|
-
{
|
195
|
-
"prompt": "Enter your OPENAI API key (press Enter to skip)",
|
196
|
-
"key_name": "OPENAI_API_KEY",
|
197
|
-
}
|
198
|
-
],
|
199
|
-
"anthropic": [
|
200
|
-
{
|
201
|
-
"prompt": "Enter your ANTHROPIC API key (press Enter to skip)",
|
202
|
-
"key_name": "ANTHROPIC_API_KEY",
|
203
|
-
}
|
204
|
-
],
|
205
|
-
"gemini": [
|
206
|
-
{
|
207
|
-
"prompt": "Enter your GEMINI API key (press Enter to skip)",
|
208
|
-
"key_name": "GEMINI_API_KEY",
|
209
|
-
}
|
210
|
-
],
|
211
|
-
"watson": [
|
212
|
-
{
|
213
|
-
"prompt": "Enter your WATSONX URL (press Enter to skip)",
|
214
|
-
"key_name": "WATSONX_URL",
|
215
|
-
},
|
216
|
-
{
|
217
|
-
"prompt": "Enter your WATSONX API Key (press Enter to skip)",
|
218
|
-
"key_name": "WATSONX_APIKEY",
|
219
|
-
},
|
220
|
-
{
|
221
|
-
"prompt": "Enter your WATSONX Project Id (press Enter to skip)",
|
222
|
-
"key_name": "WATSONX_PROJECT_ID",
|
223
|
-
},
|
224
|
-
],
|
225
|
-
"ollama": [
|
226
|
-
{
|
227
|
-
"default": True,
|
228
|
-
"API_BASE": "http://localhost:11434",
|
229
|
-
}
|
230
|
-
],
|
231
|
-
"bedrock": [
|
232
|
-
{
|
233
|
-
"prompt": "Enter your AWS Access Key ID (press Enter to skip)",
|
234
|
-
"key_name": "AWS_ACCESS_KEY_ID",
|
235
|
-
},
|
236
|
-
{
|
237
|
-
"prompt": "Enter your AWS Secret Access Key (press Enter to skip)",
|
238
|
-
"key_name": "AWS_SECRET_ACCESS_KEY",
|
239
|
-
},
|
240
|
-
{
|
241
|
-
"prompt": "Enter your AWS Region Name (press Enter to skip)",
|
242
|
-
"key_name": "AWS_REGION_NAME",
|
243
|
-
},
|
244
|
-
],
|
245
|
-
"azure": [
|
246
|
-
{
|
247
|
-
"prompt": "Enter your Azure deployment name (must start with 'azure/')",
|
248
|
-
"key_name": "model",
|
249
|
-
},
|
250
|
-
{
|
251
|
-
"prompt": "Enter your AZURE API key (press Enter to skip)",
|
252
|
-
"key_name": "AZURE_API_KEY",
|
253
|
-
},
|
254
|
-
{
|
255
|
-
"prompt": "Enter your AZURE API base URL (press Enter to skip)",
|
256
|
-
"key_name": "AZURE_API_BASE",
|
257
|
-
},
|
258
|
-
{
|
259
|
-
"prompt": "Enter your AZURE API version (press Enter to skip)",
|
260
|
-
"key_name": "AZURE_API_VERSION",
|
261
|
-
},
|
262
|
-
],
|
263
|
-
"cerebras": [
|
264
|
-
{
|
265
|
-
"prompt": "Enter your Cerebras model name (must start with 'cerebras/')",
|
266
|
-
"key_name": "model",
|
267
|
-
},
|
268
|
-
{
|
269
|
-
"prompt": "Enter your Cerebras API version (press Enter to skip)",
|
270
|
-
"key_name": "CEREBRAS_API_KEY",
|
271
|
-
},
|
272
|
-
],
|
273
163
|
}
|
274
164
|
|
275
165
|
|
276
166
|
|
277
167
|
"""
|
278
|
-
Params for litellm.completion()
|
168
|
+
Params for litellm.completion().
|
279
169
|
"""
|
280
170
|
|
281
171
|
PARAMS = {
|
282
172
|
"litellm": [
|
283
173
|
"api_base",
|
284
|
-
"api_version,"
|
174
|
+
"api_version,",
|
285
175
|
"num_retries",
|
286
176
|
"context_window_fallback_dict",
|
287
177
|
"fallbacks",
|
versionhq/llm/model.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1
|
-
import logging
|
2
1
|
import json
|
3
2
|
import os
|
4
3
|
import sys
|
@@ -6,12 +5,11 @@ import threading
|
|
6
5
|
import warnings
|
7
6
|
from dotenv import load_dotenv
|
8
7
|
import litellm
|
9
|
-
from litellm import
|
8
|
+
from litellm import JSONSchemaValidationError
|
10
9
|
from contextlib import contextmanager
|
11
10
|
from typing import Any, Dict, List, Optional
|
12
11
|
from typing_extensions import Self
|
13
|
-
from pydantic import BaseModel, Field, PrivateAttr,
|
14
|
-
from pydantic_core import PydanticCustomError
|
12
|
+
from pydantic import BaseModel, Field, PrivateAttr, model_validator, ConfigDict
|
15
13
|
|
16
14
|
from versionhq.llm.llm_vars import LLM_CONTEXT_WINDOW_SIZES, MODELS, PARAMS, PROVIDERS, ENDPOINT_PROVIDERS
|
17
15
|
from versionhq.tool.model import Tool, ToolSet
|
@@ -25,10 +23,6 @@ DEFAULT_CONTEXT_WINDOW_SIZE = int(8192 * 0.75)
|
|
25
23
|
DEFAULT_MODEL_NAME = os.environ.get("DEFAULT_MODEL_NAME", "gpt-4o-mini")
|
26
24
|
DEFAULT_MODEL_PROVIDER_NAME = os.environ.get("DEFAULT_MODEL_PROVIDER_NAME", "openai")
|
27
25
|
|
28
|
-
# proxy_openai_client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"), organization="versionhq", base_url=LITELLM_API_BASE)
|
29
|
-
# openai_client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
|
30
|
-
|
31
|
-
|
32
26
|
class FilteredStream:
|
33
27
|
def __init__(self, original_stream):
|
34
28
|
self._original_stream = original_stream
|
@@ -53,7 +47,8 @@ class FilteredStream:
|
|
53
47
|
@contextmanager
|
54
48
|
def suppress_warnings():
|
55
49
|
with warnings.catch_warnings():
|
56
|
-
|
50
|
+
litellm.set_verbose = False
|
51
|
+
warnings.filterwarnings(action="ignore")
|
57
52
|
old_stdout = sys.stdout
|
58
53
|
old_stderr = sys.stderr
|
59
54
|
sys.stdout = FilteredStream(old_stdout)
|
@@ -83,11 +78,11 @@ class LLM(BaseModel):
|
|
83
78
|
api_key: Optional[str] = Field(default=None, description="api key to access the model")
|
84
79
|
|
85
80
|
# optional params
|
81
|
+
response_format: Optional[Any] = Field(default=None)
|
86
82
|
timeout: Optional[float | int] = Field(default=None)
|
87
83
|
max_tokens: Optional[int] = Field(default=None)
|
88
84
|
max_completion_tokens: Optional[int] = Field(default=None)
|
89
85
|
context_window_size: Optional[int] = Field(default=DEFAULT_CONTEXT_WINDOW_SIZE)
|
90
|
-
callbacks: List[Any] = Field(default_factory=list)
|
91
86
|
temperature: Optional[float] = Field(default=None)
|
92
87
|
top_p: Optional[float] = Field(default=None)
|
93
88
|
n: Optional[int] = Field(default=None)
|
@@ -98,8 +93,8 @@ class LLM(BaseModel):
|
|
98
93
|
seed: Optional[int] = Field(default=None)
|
99
94
|
logprobs: Optional[bool] = Field(default=None)
|
100
95
|
top_logprobs: Optional[int] = Field(default=None)
|
101
|
-
response_format: Optional[Any] = Field(default=None)
|
102
96
|
tools: Optional[List[Dict[str, Any]]] = Field(default_factory=list, description="store a list of tool properties")
|
97
|
+
callbacks: List[Any] = Field(default_factory=list)
|
103
98
|
|
104
99
|
# LiteLLM specific fields
|
105
100
|
api_base: Optional[str] = Field(default=None, description="litellm specific field - api base of the model provider")
|
@@ -193,7 +188,7 @@ class LLM(BaseModel):
|
|
193
188
|
@model_validator(mode="after")
|
194
189
|
def validate_model_params(self) -> Self:
|
195
190
|
"""
|
196
|
-
|
191
|
+
Set up valid params to the model after setting up a valid model, provider, interface provider names.
|
197
192
|
"""
|
198
193
|
self._tokens = 0
|
199
194
|
|
@@ -216,19 +211,28 @@ class LLM(BaseModel):
|
|
216
211
|
return self
|
217
212
|
|
218
213
|
|
219
|
-
def _create_valid_params(self, config: Dict[str, Any]
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
|
214
|
+
def _create_valid_params(self, config: Dict[str, Any]) -> Dict[str, Any]:
|
215
|
+
"""
|
216
|
+
Return valid params (model + litellm original params) from the given config dict.
|
217
|
+
"""
|
218
|
+
|
219
|
+
valid_params, valid_keys = dict(), list()
|
220
|
+
|
221
|
+
if self.model:
|
222
|
+
valid_keys = litellm.get_supported_openai_params(model=self.model, custom_llm_provider=self.endpoint_provider, request_type="chat_completion")
|
223
|
+
|
224
|
+
if not valid_keys:
|
225
|
+
valid_keys = PARAMS.get("common")
|
226
|
+
|
227
|
+
valid_keys += PARAMS.get("litellm")
|
224
228
|
|
225
229
|
for item in valid_keys:
|
226
230
|
if hasattr(self, item) and getattr(self, item):
|
227
|
-
|
228
|
-
elif item in config:
|
229
|
-
|
231
|
+
valid_params[item] = getattr(self, item)
|
232
|
+
elif item in config and config[item]:
|
233
|
+
valid_params[item] = config[item]
|
230
234
|
|
231
|
-
return
|
235
|
+
return valid_params
|
232
236
|
|
233
237
|
|
234
238
|
def call(
|
@@ -250,21 +254,18 @@ class LLM(BaseModel):
|
|
250
254
|
self._set_callbacks(self.callbacks) # passed by agent
|
251
255
|
|
252
256
|
try:
|
253
|
-
provider = self.provider if self.provider else DEFAULT_MODEL_PROVIDER_NAME
|
254
257
|
self.response_format = { "type": "json_object" } if tool_res_as_final == True else response_format
|
255
258
|
|
256
259
|
if not tools:
|
257
260
|
params = self._create_valid_params(config=config)
|
258
|
-
res = litellm.completion(messages=messages, stream=False, **params)
|
261
|
+
res = litellm.completion(model=self.model, messages=messages, stream=False, **params)
|
259
262
|
self._tokens += int(res["usage"]["total_tokens"])
|
260
263
|
return res["choices"][0]["message"]["content"]
|
261
264
|
|
262
265
|
else:
|
263
266
|
self.tools = [item.tool.properties if isinstance(item, ToolSet) else item.properties for item in tools]
|
264
|
-
|
265
|
-
|
266
|
-
params = self._create_valid_params(config=config, provider=provider)
|
267
|
-
res = litellm.completion(messages=messages, model=self.model, tools=self.tools)
|
267
|
+
params = self._create_valid_params(config=config)
|
268
|
+
res = litellm.completion(model=self.model, messages=messages, **params)
|
268
269
|
tool_calls = res.choices[0].message.tool_calls
|
269
270
|
tool_res = ""
|
270
271
|
|
@@ -304,7 +305,7 @@ class LLM(BaseModel):
|
|
304
305
|
if tool_res_as_final:
|
305
306
|
return tool_res
|
306
307
|
else:
|
307
|
-
res = litellm.
|
308
|
+
res = litellm.completion(model=self.model, messages=messages, **params)
|
308
309
|
self._tokens += int(res["usage"]["total_tokens"])
|
309
310
|
return res.choices[0].message.content
|
310
311
|
|
@@ -320,20 +321,17 @@ class LLM(BaseModel):
|
|
320
321
|
|
321
322
|
def _supports_function_calling(self) -> bool:
|
322
323
|
try:
|
323
|
-
|
324
|
-
|
324
|
+
if self.model:
|
325
|
+
params = litellm.get_supported_openai_params(model=self.model)
|
326
|
+
return "response_format" in params if params else False
|
325
327
|
except Exception as e:
|
326
|
-
self._logger.log(level="
|
328
|
+
self._logger.log(level="warning", message=f"Failed to get supported params: {str(e)}", color="yellow")
|
327
329
|
return False
|
328
330
|
|
329
331
|
|
330
332
|
def _supports_stop_words(self) -> bool:
|
331
|
-
|
332
|
-
|
333
|
-
return "stop" in params
|
334
|
-
except Exception as e:
|
335
|
-
self._logger.log(level="error", message=f"Failed to get supported params: {str(e)}", color="red")
|
336
|
-
return False
|
333
|
+
supported_params = litellm.get_supported_openai_params(model=self.model, custom_llm_provider=self.endpoint_provider)
|
334
|
+
return "stop" in supported_params if supported_params else False
|
337
335
|
|
338
336
|
|
339
337
|
def _get_context_window_size(self) -> int:
|
versionhq/task/evaluate.py
CHANGED
@@ -1,15 +1,13 @@
|
|
1
1
|
from typing import List, Optional, Dict, Any
|
2
2
|
from typing_extensions import Self
|
3
3
|
|
4
|
-
from pydantic import BaseModel, Field,
|
4
|
+
from pydantic import BaseModel, Field, model_validator
|
5
5
|
|
6
6
|
"""
|
7
7
|
Evaluate task output from accuracy, token consumption, latency perspectives, and mark the score from 0 to 1.
|
8
8
|
"""
|
9
9
|
|
10
10
|
|
11
|
-
|
12
|
-
|
13
11
|
class ScoreFormat:
|
14
12
|
def __init__(self, rate: float | int = 0, weight: int = 1):
|
15
13
|
self.rate = rate
|
@@ -72,16 +70,16 @@ class EvaluationItem(BaseModel):
|
|
72
70
|
|
73
71
|
|
74
72
|
class Evaluation(BaseModel):
|
75
|
-
# expected_outcome: Optional[str] = Field(default=None, description="human input on expected outcome")
|
76
73
|
items: List[EvaluationItem] = []
|
77
74
|
latency: int = Field(default=None, description="seconds")
|
78
75
|
tokens: int = Field(default=None, description="tokens consumed")
|
79
76
|
responsible_agent: Any = Field(default=None, description="store agent instance that evaluates the outcome")
|
80
77
|
|
78
|
+
|
81
79
|
@model_validator(mode="after")
|
82
80
|
def set_up_responsible_agent(self) -> Self:
|
83
|
-
from versionhq.agent.
|
84
|
-
self.responsible_agent =
|
81
|
+
from versionhq.agent.inhouse_agents import vhq_task_evaluator
|
82
|
+
self.responsible_agent = vhq_task_evaluator
|
85
83
|
return self
|
86
84
|
|
87
85
|
|
versionhq/task/model.py
CHANGED
@@ -8,7 +8,7 @@ from hashlib import md5
|
|
8
8
|
from typing import Any, Dict, List, Set, Optional, Tuple, Callable, Type, TypeVar
|
9
9
|
from typing_extensions import Annotated, Self
|
10
10
|
|
11
|
-
from pydantic import UUID4, BaseModel, Field, PrivateAttr, field_validator, model_validator,
|
11
|
+
from pydantic import UUID4, BaseModel, Field, PrivateAttr, field_validator, model_validator, InstanceOf, field_validator
|
12
12
|
from pydantic_core import PydanticCustomError
|
13
13
|
|
14
14
|
from versionhq._utils.process_config import process_config
|
@@ -286,7 +286,7 @@ class Task(BaseModel):
|
|
286
286
|
processed_by_agents: Set[str] = Field(default_factory=set, description="store responsible agents' roles")
|
287
287
|
tools_errors: int = 0
|
288
288
|
delegations: int = 0
|
289
|
-
latency: int | float = 0 #
|
289
|
+
latency: int | float = 0 # job latency in sec
|
290
290
|
tokens: int = 0 # tokens consumed
|
291
291
|
|
292
292
|
|
@@ -412,37 +412,38 @@ Ref. Output image: {output_formats_to_follow}
|
|
412
412
|
|
413
413
|
response_format: Dict[str, Any] = None
|
414
414
|
|
415
|
-
|
416
|
-
|
417
|
-
if self.response_fields:
|
418
|
-
properties, required_fields = {}, []
|
419
|
-
for i, item in enumerate(self.response_fields):
|
420
|
-
if item:
|
421
|
-
if item.data_type is dict:
|
422
|
-
properties.update(item._format_props())
|
423
|
-
else:
|
424
|
-
properties.update(item._format_props())
|
425
|
-
|
426
|
-
required_fields.append(item.title)
|
427
|
-
|
428
|
-
response_schema = {
|
429
|
-
"type": "object",
|
430
|
-
"properties": properties,
|
431
|
-
"required": required_fields,
|
432
|
-
"additionalProperties": False,
|
433
|
-
}
|
415
|
+
if model_provider == "openrouter":
|
416
|
+
return response_format
|
434
417
|
|
435
|
-
|
436
|
-
|
437
|
-
|
438
|
-
|
418
|
+
else:
|
419
|
+
if self.response_fields:
|
420
|
+
properties, required_fields = {}, []
|
421
|
+
for i, item in enumerate(self.response_fields):
|
422
|
+
if item:
|
423
|
+
if item.data_type is dict:
|
424
|
+
properties.update(item._format_props())
|
425
|
+
else:
|
426
|
+
properties.update(item._format_props())
|
427
|
+
|
428
|
+
required_fields.append(item.title)
|
429
|
+
|
430
|
+
response_schema = {
|
431
|
+
"type": "object",
|
432
|
+
"properties": properties,
|
433
|
+
"required": required_fields,
|
434
|
+
"additionalProperties": False,
|
435
|
+
}
|
436
|
+
|
437
|
+
response_format = {
|
438
|
+
"type": "json_schema",
|
439
|
+
"json_schema": { "name": "outcome", "schema": response_schema }
|
440
|
+
}
|
439
441
|
|
440
442
|
|
441
|
-
|
442
|
-
|
443
|
+
elif self.pydantic_output:
|
444
|
+
response_format = StructuredOutput(response_format=self.pydantic_output)._format()
|
443
445
|
|
444
|
-
|
445
|
-
return response_format
|
446
|
+
return response_format
|
446
447
|
|
447
448
|
|
448
449
|
def _create_json_output(self, raw: str) -> Dict[str, Any]:
|
@@ -612,7 +613,7 @@ Ref. Output image: {output_formats_to_follow}
|
|
612
613
|
task_output: InstanceOf[TaskOutput] = None
|
613
614
|
tool_output: str | list = None
|
614
615
|
task_tools: List[List[InstanceOf[Tool]| InstanceOf[ToolSet] | Type[Tool]]] = []
|
615
|
-
started_at = datetime.datetime.now()
|
616
|
+
started_at, ended_at = datetime.datetime.now(), datetime.datetime.now()
|
616
617
|
|
617
618
|
if self.tools:
|
618
619
|
for item in self.tools:
|
@@ -638,11 +639,16 @@ Ref. Output image: {output_formats_to_follow}
|
|
638
639
|
|
639
640
|
|
640
641
|
if self.tool_res_as_final == True:
|
642
|
+
started_at = datetime.datetime.now()
|
641
643
|
tool_output = agent.execute_task(task=self, context=context, task_tools=task_tools)
|
644
|
+
ended_at = datetime.datetime.now()
|
642
645
|
task_output = TaskOutput(task_id=self.id, tool_output=tool_output, raw=str(tool_output) if tool_output else "")
|
643
646
|
|
644
647
|
else:
|
648
|
+
started_at = datetime.datetime.now()
|
645
649
|
raw_output = agent.execute_task(task=self, context=context, task_tools=task_tools)
|
650
|
+
ended_at = datetime.datetime.now()
|
651
|
+
|
646
652
|
json_dict_output = self._create_json_output(raw=raw_output)
|
647
653
|
if "outcome" in json_dict_output:
|
648
654
|
json_dict_output = self._create_json_output(raw=str(json_dict_output["outcome"]))
|
@@ -656,9 +662,8 @@ Ref. Output image: {output_formats_to_follow}
|
|
656
662
|
json_dict=json_dict_output
|
657
663
|
)
|
658
664
|
|
659
|
-
ended_at = datetime.datetime.now()
|
660
|
-
self.latency = (ended_at - started_at).total_seconds()
|
661
665
|
|
666
|
+
self.latency = (ended_at - started_at).total_seconds()
|
662
667
|
self.output = task_output
|
663
668
|
self.processed_by_agents.add(agent.role)
|
664
669
|
|
versionhq/team/model.py
CHANGED
@@ -20,7 +20,6 @@ from versionhq._utils.usage_metrics import UsageMetrics
|
|
20
20
|
|
21
21
|
initial_match_type = GenerateSchema.match_type
|
22
22
|
|
23
|
-
|
24
23
|
def match_type(self, obj):
|
25
24
|
if getattr(obj, "__name__", None) == "datetime":
|
26
25
|
return core_schema.datetime_schema()
|
@@ -28,7 +27,6 @@ def match_type(self, obj):
|
|
28
27
|
|
29
28
|
|
30
29
|
GenerateSchema.match_type = match_type
|
31
|
-
|
32
30
|
warnings.filterwarnings("ignore", category=SyntaxWarning, module="pysbd")
|
33
31
|
load_dotenv(override=True)
|
34
32
|
|
@@ -108,9 +106,14 @@ class TeamOutput(BaseModel):
|
|
108
106
|
|
109
107
|
|
110
108
|
class TeamMember(BaseModel):
|
111
|
-
|
109
|
+
"""
|
110
|
+
A class to store a team member
|
111
|
+
"""
|
112
|
+
agent: Agent | None = Field(default=None)
|
112
113
|
is_manager: bool = Field(default=False)
|
113
|
-
|
114
|
+
can_share_knowledge: bool = Field(default=True, description="whether to share the agent's knowledge in the team")
|
115
|
+
can_share_memory: bool = Field(default=True, description="whether to share the agent's memory in the team")
|
116
|
+
task: Optional[Task] = Field(default=None, description="task assigned to the agent")
|
114
117
|
|
115
118
|
@property
|
116
119
|
def is_idling(self):
|
@@ -125,17 +128,18 @@ class Team(BaseModel):
|
|
125
128
|
|
126
129
|
__hash__ = object.__hash__
|
127
130
|
_execution_span: Any = PrivateAttr()
|
128
|
-
_logger: Logger = PrivateAttr()
|
131
|
+
_logger: Logger = PrivateAttr(default_factory=lambda: Logger(verbose=True))
|
129
132
|
_inputs: Optional[Dict[str, Any]] = PrivateAttr(default=None)
|
130
133
|
|
131
134
|
id: UUID4 = Field(default_factory=uuid.uuid4, frozen=True)
|
132
135
|
name: Optional[str] = Field(default=None)
|
133
|
-
members: List[TeamMember] = Field(default_factory=list
|
136
|
+
members: List[TeamMember] = Field(default_factory=list)
|
137
|
+
|
138
|
+
# formation planning
|
139
|
+
planning_llm: Optional[Any] = Field(default=None, description="llm to generate formation")
|
140
|
+
team_tasks: Optional[List[Task]] = Field(default_factory=list, description="optional tasks for the team. can be assigned to team members later")
|
134
141
|
|
135
|
-
#
|
136
|
-
team_tasks: Optional[List[Task]] = Field(default_factory=list, description="optional tasks for the team")
|
137
|
-
planning_llm: Optional[Any] = Field(default=None, description="llm to handle the planning of the team tasks (if any)")
|
138
|
-
function_calling_llm: Optional[Any] = Field(default=None, description="llm to execute func after all agent execution (if any)")
|
142
|
+
# task execution rules
|
139
143
|
prompt_file: str = Field(default="", description="path to the prompt json file to be used by the team.")
|
140
144
|
process: TaskHandlingProcess = Field(default=TaskHandlingProcess.sequential)
|
141
145
|
|
@@ -150,7 +154,6 @@ class Team(BaseModel):
|
|
150
154
|
)
|
151
155
|
step_callback: Optional[Any] = Field(default=None, description="callback to be executed after each step for all agents execution")
|
152
156
|
|
153
|
-
verbose: bool = Field(default=True)
|
154
157
|
cache: bool = Field(default=True)
|
155
158
|
memory: bool = Field(default=False, description="whether the team should use memory to store memories of its execution")
|
156
159
|
execution_logs: List[Dict[str, Any]] = Field(default=[], description="list of execution logs for tasks")
|
@@ -236,7 +239,7 @@ class Team(BaseModel):
|
|
236
239
|
return self
|
237
240
|
|
238
241
|
|
239
|
-
def _get_responsible_agent(self, task: Task) -> Agent:
|
242
|
+
def _get_responsible_agent(self, task: Task) -> Agent | None:
|
240
243
|
if task is None:
|
241
244
|
return None
|
242
245
|
else:
|
@@ -244,7 +247,7 @@ class Team(BaseModel):
|
|
244
247
|
return None if len(res) == 0 else res[0]
|
245
248
|
|
246
249
|
|
247
|
-
def
|
250
|
+
def _handle_agent_formation(self) -> None:
|
248
251
|
"""
|
249
252
|
Form a team considering agents and tasks given, and update `self.members` field:
|
250
253
|
1. Idling managers to take the team tasks.
|
@@ -373,7 +376,7 @@ class Team(BaseModel):
|
|
373
376
|
|
374
377
|
responsible_agent = self._get_responsible_agent(task)
|
375
378
|
if responsible_agent is None:
|
376
|
-
self.
|
379
|
+
self._handle_agent_formation()
|
377
380
|
|
378
381
|
if isinstance(task, ConditionalTask):
|
379
382
|
skipped_task_output = task._handle_conditional_task(task_outputs, futures, task_index, was_replayed)
|
@@ -415,7 +418,7 @@ class Team(BaseModel):
|
|
415
418
|
metrics: List[UsageMetrics] = []
|
416
419
|
|
417
420
|
if self.team_tasks or self.member_tasks_without_agent:
|
418
|
-
self.
|
421
|
+
self._handle_agent_formation()
|
419
422
|
|
420
423
|
if kwargs_before is not None:
|
421
424
|
for before_callback in self.before_kickoff_callbacks:
|
@@ -432,9 +435,6 @@ class Team(BaseModel):
|
|
432
435
|
agent = member.agent
|
433
436
|
agent.team = self
|
434
437
|
|
435
|
-
if not agent.function_calling_llm and self.function_calling_llm:
|
436
|
-
agent.function_calling_llm = self.function_calling_llm
|
437
|
-
|
438
438
|
if self.step_callback:
|
439
439
|
agent.callbacks.append(self.step_callback)
|
440
440
|
|
@@ -1,11 +1,11 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: versionhq
|
3
|
-
Version: 1.1.
|
3
|
+
Version: 1.1.12.1
|
4
4
|
Summary: LLM orchestration frameworks for model-agnostic AI agents that handle complex outbound workflows
|
5
5
|
Author-email: Kuriko Iwai <kuriko@versi0n.io>
|
6
6
|
License: MIT License
|
7
7
|
|
8
|
-
Copyright (c) 2024 Version IO Sdn. Bhd.
|
8
|
+
Copyright (c) 2024-2025 Version IO Sdn. Bhd.
|
9
9
|
|
10
10
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
11
11
|
of this software and associated documentation files (the "Software"), to deal
|
@@ -78,12 +78,12 @@ Requires-Dist: numpy>=1.26.4; extra == "numpy"
|
|
78
78
|
|
79
79
|

|
80
80
|
[](https://github.com/versionHQ/multi-agent-system/actions/workflows/publish.yml)
|
81
|
-

|
82
|
+

|
83
83
|

|
84
84
|
|
85
85
|
|
86
|
-
LLM orchestration frameworks to deploy multi-agent systems with
|
86
|
+
LLM orchestration frameworks to deploy multi-agent systems and automate complex tasks with network formations.
|
87
87
|
|
88
88
|
**Visit:**
|
89
89
|
|
@@ -122,15 +122,16 @@ LLM orchestration frameworks to deploy multi-agent systems with task-based forma
|
|
122
122
|
|
123
123
|
## Key Features
|
124
124
|
|
125
|
-
Generate
|
125
|
+
Generate multi-agent systems based on the task complexity, execute tasks, and evaluate output based on the given criteria.
|
126
126
|
|
127
|
-
|
127
|
+
Agents are model-agnostic, and can handle and share RAG tools, knowledge, memory, and callbacks among other agents. (self-learn)
|
128
128
|
|
129
129
|
|
130
130
|
### Agent formation
|
131
|
-
Depending on the task complexity, agents can make a different formation.
|
132
131
|
|
133
|
-
|
132
|
+
Agents adapt their formation based on task complexity.
|
133
|
+
|
134
|
+
You can specify a desired formation or allow the agents to determine it autonomously (default).
|
134
135
|
|
135
136
|
|
136
137
|
| | **Solo Agent** | **Supervising** | **Network** | **Random** |
|
@@ -1,13 +1,13 @@
|
|
1
|
-
versionhq/__init__.py,sha256=
|
1
|
+
versionhq/__init__.py,sha256=oJDsufVGH28Hszr45GDKyjfs_OKDZaNrAhMOS4f9RmY,1031
|
2
2
|
versionhq/_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
3
3
|
versionhq/_utils/i18n.py,sha256=TwA_PnYfDLA6VqlUDPuybdV9lgi3Frh_ASsb_X8jJo8,1483
|
4
|
-
versionhq/_utils/logger.py,sha256=
|
4
|
+
versionhq/_utils/logger.py,sha256=j9SlQPIefdVUlwpGfJY83E2BUt1ejWgZ2M2I8aMyQ3c,1579
|
5
5
|
versionhq/_utils/process_config.py,sha256=jbPGXK2Kb4iyCugJ3FwRJuU0wL5Trq2x4xFQz2uOyFY,746
|
6
6
|
versionhq/_utils/usage_metrics.py,sha256=hhq1OCW8Z4V93vwW2O2j528EyjOlF8wlTsX5IL-7asA,1106
|
7
7
|
versionhq/_utils/vars.py,sha256=bZ5Dx_bFKlt3hi4-NNGXqdk7B23If_WaTIju2fiTyPQ,57
|
8
8
|
versionhq/agent/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
9
|
-
versionhq/agent/
|
10
|
-
versionhq/agent/model.py,sha256=
|
9
|
+
versionhq/agent/inhouse_agents.py,sha256=DLwSREmFICF0Wv9IvEXp0gu1yOXJYOex0980Vi0NRWw,913
|
10
|
+
versionhq/agent/model.py,sha256=1Y5au6ue6B4UbtoBL00kVATbl_0_IzY_-SBkuzVvL94,22423
|
11
11
|
versionhq/agent/parser.py,sha256=riG0dkdQCxH7uJ0AbdVdg7WvL0BXhUgJht0VtQvxJBc,4082
|
12
12
|
versionhq/agent/rpm_controller.py,sha256=7AKIEPbWBq_ESOZCaiKVOGjfSPHd2qwg6-wbBlhqC0g,2367
|
13
13
|
versionhq/agent/TEMPLATES/Backstory.py,sha256=IAhGnnt6VUMe3wO6IzeyZPDNu7XE7Uiu3VEXUreOcKs,532
|
@@ -28,8 +28,8 @@ versionhq/knowledge/source.py,sha256=WOARChmm_cNtBD-xGo4RoYmcuodzdalctXI-gDBCW6k
|
|
28
28
|
versionhq/knowledge/source_docling.py,sha256=hhHn3rS4KVsFKEPWcfllM8VxSL86PckZdAHDZNQNOq8,5411
|
29
29
|
versionhq/knowledge/storage.py,sha256=7oxCg3W9mFjYH1YmuH9kFtTbNxquzYFjuUjd_TlsB9E,8170
|
30
30
|
versionhq/llm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
31
|
-
versionhq/llm/llm_vars.py,sha256=
|
32
|
-
versionhq/llm/model.py,sha256=
|
31
|
+
versionhq/llm/llm_vars.py,sha256=asJtkKCcD0WWIbyVn7CYOWg-WZ6MSKS9lIRaYIkdib4,6778
|
32
|
+
versionhq/llm/model.py,sha256=wSjRGyk9AZtvDqNfcyyeOMoV_hpTaUHCM849hBF0MhU,15145
|
33
33
|
versionhq/memory/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
34
34
|
versionhq/memory/contextual_memory.py,sha256=tCsOOAUnfrOL7YiakqGoi3uShzzS870TmGnlGd3z_A4,3556
|
35
35
|
versionhq/memory/model.py,sha256=6Sy-cnrhHNIx3ZN38uNO7d8YywIl_uo_OvDVzVM-w14,5755
|
@@ -41,14 +41,14 @@ versionhq/storage/rag_storage.py,sha256=fBk-RJuFRPOH4gI9E67tkhJnTBoChWocSP2PdWUY
|
|
41
41
|
versionhq/storage/task_output_storage.py,sha256=gCsZywZ2SaNA1pYIsJk6BTrcpGp79TZTviZkWQF5USs,4579
|
42
42
|
versionhq/storage/utils.py,sha256=ByYXPoEIGJYLUqz-DWjbCAnneNrH1otiYbp12SCILpM,747
|
43
43
|
versionhq/task/__init__.py,sha256=l2r_g01i91JAGlOoHZP_Gh2WCk6mo9D19lcqt7sKMpQ,186
|
44
|
-
versionhq/task/evaluate.py,sha256=
|
44
|
+
versionhq/task/evaluate.py,sha256=sG_PFotpuRbDLW0rGDULseBk1uP8I0vYYtkh1npO0KE,3374
|
45
45
|
versionhq/task/formatter.py,sha256=N8Kmk9vtrMtBdgJ8J7RmlKNMdZWSmV8O1bDexmCWgU0,643
|
46
46
|
versionhq/task/log_handler.py,sha256=KJRrcNZgFSKhlNzvtYFnvtp6xukaF1s7ifX9u4zWrN8,1683
|
47
|
-
versionhq/task/model.py,sha256=
|
47
|
+
versionhq/task/model.py,sha256=kR4oqoT44xVbbTGK-gtVdfMz3m-riV62XumzRyqomiU,30418
|
48
48
|
versionhq/task/structured_response.py,sha256=YxuWcDMHcZLzdxI1ihW99Y-i6nl8yXBQ5Q_dFQac8jw,4837
|
49
49
|
versionhq/task/TEMPLATES/Description.py,sha256=bChflSWGGQo9JpnO6QX6Ng9pnONiTf-zwQ3ke4xQgSQ,357
|
50
50
|
versionhq/team/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
51
|
-
versionhq/team/model.py,sha256=
|
51
|
+
versionhq/team/model.py,sha256=MgjqigmEDLnmDzYfVnbGnwp7MeXmZ-zsgyWR2Vb2FAU,20036
|
52
52
|
versionhq/team/team_planner.py,sha256=UyIpw7GoRQXlgLNaojoi-G8F1sYaf5hTpLcTvWjRvlA,3596
|
53
53
|
versionhq/tool/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
54
54
|
versionhq/tool/cache_handler.py,sha256=iL8FH7X0G-cdT0uhJwzuhLDaadTXOdfybZcDy151-es,1085
|
@@ -57,8 +57,8 @@ versionhq/tool/composio_tool_vars.py,sha256=FvBuEXsOQUYnN7RTFxT20kAkiEYkxWKkiVtg
|
|
57
57
|
versionhq/tool/decorator.py,sha256=C4ZM7Xi2gwtEMaSeRo-geo_g_MAkY77WkSLkAuY0AyI,1205
|
58
58
|
versionhq/tool/model.py,sha256=7ccEnje_8LuxLVeog6pL38nToArXQXk4KY7A9hfprDo,12239
|
59
59
|
versionhq/tool/tool_handler.py,sha256=2m41K8qo5bGCCbwMFferEjT-XZ-mE9F0mDUOBkgivOI,1416
|
60
|
-
versionhq-1.1.
|
61
|
-
versionhq-1.1.
|
62
|
-
versionhq-1.1.
|
63
|
-
versionhq-1.1.
|
64
|
-
versionhq-1.1.
|
60
|
+
versionhq-1.1.12.1.dist-info/LICENSE,sha256=cRoGGdM73IiDs6nDWKqPlgSv7aR4n-qBXYnJlCMHCeE,1082
|
61
|
+
versionhq-1.1.12.1.dist-info/METADATA,sha256=rPZzAQlTUGo_Fh7FUyQFBELbuzxAOqnC9b83z-qvv20,18694
|
62
|
+
versionhq-1.1.12.1.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
63
|
+
versionhq-1.1.12.1.dist-info/top_level.txt,sha256=DClQwxDWqIUGeRJkA8vBlgeNsYZs4_nJWMonzFt5Wj0,10
|
64
|
+
versionhq-1.1.12.1.dist-info/RECORD,,
|
@@ -1,15 +0,0 @@
|
|
1
|
-
from versionhq.agent.model import Agent
|
2
|
-
from versionhq.llm.model import DEFAULT_MODEL_NAME
|
3
|
-
|
4
|
-
"""
|
5
|
-
List up agents to be called across the project.
|
6
|
-
"""
|
7
|
-
|
8
|
-
client_manager = Agent(role="Client Manager", goal="communicate with clients on the task progress", llm=DEFAULT_MODEL_NAME)
|
9
|
-
|
10
|
-
task_evaluator = Agent(
|
11
|
-
role="Task Evaluator",
|
12
|
-
goal="score the output according to the given evaluation criteria.",
|
13
|
-
llm=DEFAULT_MODEL_NAME,
|
14
|
-
llm_config=dict(top_p=0.8, top_k=30, max_tokens=5000, temperature=0.9)
|
15
|
-
)
|
File without changes
|
File without changes
|