versionhq 1.1.11.6__py3-none-any.whl → 1.1.11.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
versionhq/__init__.py CHANGED
@@ -17,7 +17,7 @@ from versionhq.tool.model import Tool
17
17
  from versionhq.tool.composio_tool import ComposioHandler
18
18
 
19
19
 
20
- __version__ = "1.1.11.6"
20
+ __version__ = "1.1.11.8"
21
21
  __all__ = [
22
22
  "Agent",
23
23
  "Customer",
versionhq/agent/model.py CHANGED
@@ -6,10 +6,10 @@ from typing_extensions import Self
6
6
  from dotenv import load_dotenv
7
7
  import litellm
8
8
 
9
- from pydantic import UUID4, BaseModel, Field, InstanceOf, PrivateAttr, model_validator, field_validator, ConfigDict
9
+ from pydantic import UUID4, BaseModel, Field, InstanceOf, PrivateAttr, model_validator, field_validator
10
10
  from pydantic_core import PydanticCustomError
11
11
 
12
- from versionhq.llm.model import LLM, DEFAULT_CONTEXT_WINDOW_SIZE, DEFAULT_MODEL_NAME
12
+ from versionhq.llm.model import LLM, DEFAULT_CONTEXT_WINDOW_SIZE, DEFAULT_MODEL_NAME, PROVIDERS
13
13
  from versionhq.tool.model import Tool, ToolSet
14
14
  from versionhq.knowledge.model import BaseKnowledgeSource, Knowledge
15
15
  from versionhq.memory.contextual_memory import ContextualMemory
@@ -99,7 +99,7 @@ class Agent(BaseModel):
99
99
  tools: Optional[List[InstanceOf[Tool | ToolSet] | Type[Tool] | Any]] = Field(default_factory=list)
100
100
 
101
101
  # knowledge
102
- knowledge_sources: Optional[List[BaseKnowledgeSource]] = Field(default=None)
102
+ knowledge_sources: Optional[List[BaseKnowledgeSource | Any]] = Field(default=None)
103
103
  _knowledge: Optional[Knowledge] = PrivateAttr(default=None)
104
104
 
105
105
  # memory
@@ -162,90 +162,44 @@ class Agent(BaseModel):
162
162
  @model_validator(mode="after")
163
163
  def set_up_llm(self) -> Self:
164
164
  """
165
- Set up the base model and function calling model (if any) using the LLM class.
166
- Pass the model config params: `llm`, `max_tokens`, `max_execution_time`, `callbacks`,`respect_context_window` to the LLM class.
167
- The base model is selected on the client app, else use the default model.
165
+ Set up `llm` and `function_calling_llm` as valid LLM objects using the given values.
168
166
  """
169
-
170
167
  self.agent_ops_agent_name = self.role
168
+ self.llm = self._set_llm(llm=self.llm)
169
+ function_calling_llm = self.function_calling_llm if self.function_calling_llm else self.llm if self.llm else None
170
+ self.function_calling_llm = self._set_llm(llm=function_calling_llm)
171
+ return self
171
172
 
172
- if isinstance(self.llm, LLM):
173
- llm = self._set_llm_params(self.llm)
174
- self.llm = llm
175
173
 
176
- elif isinstance(self.llm, str) or self.llm is None:
177
- model_name = self.llm if self.llm is not None else DEFAULT_MODEL_NAME
178
- llm = LLM(model=model_name)
179
- updated_llm = self._set_llm_params(llm)
180
- self.llm = updated_llm
174
+ def _set_llm(self, llm: Any | None) -> LLM:
175
+ llm = llm if llm is not None else DEFAULT_MODEL_NAME
181
176
 
182
- else:
183
- if isinstance(self.llm, dict):
184
- model_name = self.llm.pop("model_name", self.llm.pop("deployment_name", str(self.llm)))
185
- llm = LLM(model=model_name if model_name is not None else DEFAULT_MODEL_NAME)
186
- updated_llm = self._set_llm_params(llm, { k: v for k, v in self.llm.items() if v is not None })
187
- self.llm = updated_llm
177
+ match llm:
178
+ case LLM():
179
+ return self._set_llm_params(llm=llm)
188
180
 
189
- else:
181
+ case str():
182
+ llm_obj = LLM(model=llm)
183
+ return self._set_llm_params(llm=llm_obj)
184
+
185
+ case dict():
186
+ model_name = llm.pop("model_name", llm.pop("deployment_name", str(llm)))
187
+ llm_obj = LLM(model=model_name if model_name else DEFAULT_MODEL_NAME)
188
+ return self._set_llm_params(llm_obj, { k: v for k, v in llm.items() if v is not None })
189
+
190
+ case _:
190
191
  model_name = (getattr(self.llm, "model_name") or getattr(self.llm, "deployment_name") or str(self.llm))
191
- llm = LLM(model=model_name)
192
+ llm_obj = LLM(model=model_name)
192
193
  llm_params = {
193
- "max_tokens": (getattr(self.llm, "max_tokens") or self.max_tokens or 3000),
194
- "timeout": getattr(self.llm, "timeout", self.max_execution_time),
195
- "callbacks": getattr(self.llm, "callbacks", None),
196
- "temperature": getattr(self.llm, "temperature", None),
197
- "logprobs": getattr(self.llm, "logprobs", None),
198
- "api_key": getattr(self.llm, "api_key", os.environ.get("LITELLM_API_KEY", None)),
199
- "base_url": getattr(self.llm, "base_url", None),
194
+ "max_tokens": (getattr(llm, "max_tokens") or self.max_tokens or 3000),
195
+ "timeout": getattr(llm, "timeout", self.max_execution_time),
196
+ "callbacks": getattr(llm, "callbacks", None),
197
+ "temperature": getattr(llm, "temperature", None),
198
+ "logprobs": getattr(llm, "logprobs", None),
199
+ "api_key": getattr(llm, "api_key", os.environ.get("LITELLM_API_KEY", None)),
200
+ "base_url": getattr(llm, "base_url", None),
200
201
  }
201
- updated_llm = self._set_llm_params(llm, llm_params)
202
- self.llm = updated_llm
203
-
204
-
205
- """
206
- Set up funcion_calling LLM as well.
207
- Check if the model supports function calling, setup LLM instance accordingly, using the same params with the LLM.
208
- """
209
- if self.function_calling_llm:
210
- if isinstance(self.function_calling_llm, LLM):
211
- if self.function_calling_llm._supports_function_calling() == False:
212
- self.function_calling_llm = LLM(model=DEFAULT_MODEL_NAME)
213
-
214
- updated_llm = self._set_llm_params(self.function_calling_llm)
215
- self.function_calling_llm = updated_llm
216
-
217
- elif isinstance(self.function_calling_llm, str):
218
- llm = LLM(model=self.function_calling_llm)
219
-
220
- if llm._supports_function_calling() == False:
221
- llm = LLM(model=DEFAULT_MODEL_NAME)
222
-
223
- updated_llm = self._set_llm_params(llm)
224
- self.function_calling_llm = updated_llm
225
-
226
- else:
227
- if isinstance(self.function_calling_llm, dict):
228
- model_name = self.function_calling_llm.pop("model_name", self.function_calling_llm.pop("deployment_name", str(self.function_calling_llm)))
229
- llm = LLM(model=model_name)
230
- updated_llm = self._set_llm_params(llm, { k: v for k, v in self.function_calling_llm.items() if v is not None })
231
- self.function_calling_llm = updated_llm
232
-
233
- else:
234
- model_name = (getattr(self.function_calling_llm, "model_name") or getattr(self.function_calling_llm, "deployment_name") or str(self.function_calling_llm))
235
- llm = LLM(model=model_name)
236
- llm_params = {
237
- "max_tokens": (getattr(self.function_calling_llm, "max_tokens") or self.max_tokens or 3000),
238
- "timeout": getattr(self.function_calling_llm, "timeout", self.max_execution_time),
239
- "callbacks": getattr(self.function_calling_llm, "callbacks", None),
240
- "temperature": getattr(self.function_calling_llm, "temperature", None),
241
- "logprobs": getattr(self.function_calling_llm, "logprobs", None),
242
- "api_key": getattr(self.function_calling_llm, "api_key", os.environ.get("LITELLM_API_KEY", None)),
243
- "base_url": getattr(self.function_calling_llm, "base_url", None),
244
- }
245
- updated_llm = self._set_llm_params(llm, llm_params)
246
- self.function_calling_llm = updated_llm
247
-
248
- return self
202
+ return self._set_llm_params(llm=llm_obj, config=llm_params)
249
203
 
250
204
 
251
205
  def _set_llm_params(self, llm: LLM, config: Dict[str, Any] = None) -> LLM:
@@ -257,6 +211,11 @@ class Agent(BaseModel):
257
211
  llm.timeout = self.max_execution_time if llm.timeout is None else llm.timeout
258
212
  llm.max_tokens = self.max_tokens if self.max_tokens else llm.max_tokens
259
213
 
214
+ if llm.provider is None:
215
+ provider_name = llm.model.split("/")[0]
216
+ valid_provider = provider_name if provider_name in PROVIDERS else None
217
+ llm.provider = valid_provider
218
+
260
219
  if self.callbacks:
261
220
  llm.callbacks = self.callbacks
262
221
  llm._set_callbacks(llm.callbacks)
@@ -344,14 +303,46 @@ class Agent(BaseModel):
344
303
 
345
304
  @model_validator(mode="after")
346
305
  def set_up_knowledge(self) -> Self:
347
- if self.knowledge_sources:
348
- collection_name = f"{self.role.replace(' ', '_')}"
306
+ from versionhq.knowledge.source import BaseKnowledgeSource, StringKnowledgeSource, TextFileKnowledgeSource, CSVKnowledgeSource, ExcelKnowledgeSource, JSONKnowledgeSource
307
+ from versionhq.knowledge.source_docling import DoclingSource
349
308
 
350
- self._knowledge = Knowledge(
351
- sources=self.knowledge_sources,
352
- embedder_config=self.embedder_config,
353
- collection_name=collection_name,
354
- )
309
+ if self.knowledge_sources:
310
+ try:
311
+ collection_name = f"{self.role.replace(' ', '_')}"
312
+ knowledge_sources = []
313
+ docling_fp, txt_fp, json_fp, excel_fp, csv_fp, pdf_fp = [], [], [], [], [], []
314
+ str_cont = ""
315
+
316
+ for item in self.knowledge_sources:
317
+ if isinstance(item, BaseKnowledgeSource):
318
+ knowledge_sources.append(item)
319
+
320
+ elif isinstance(item, str) and "http" in item:
321
+ docling_fp.append(item)
322
+
323
+ elif isinstance(item, str):
324
+ match os.path.splitext(item)[1]:
325
+ case ".txt": txt_fp.append(item)
326
+ case ".json": json_fp.append(item)
327
+ case ".xls" | ".xlsx": excel_fp.append(item)
328
+ case ".pdf": pdf_fp.append(item)
329
+ case ".csv": csv_fp.append(item)
330
+ case _: str_cont += str(item)
331
+
332
+ else:
333
+ str_cont += str(item)
334
+
335
+ if docling_fp: knowledge_sources.append(DoclingSource(file_paths=docling_fp))
336
+ if str_cont: knowledge_sources.append(StringKnowledgeSource(content=str_cont))
337
+ if txt_fp: knowledge_sources.append(TextFileKnowledgeSource(file_paths=txt_fp))
338
+ if csv_fp: knowledge_sources.append(CSVKnowledgeSource(file_path=csv_fp))
339
+ if excel_fp: knowledge_sources.append(ExcelKnowledgeSource(file_path=excel_fp))
340
+ if json_fp: knowledge_sources.append(JSONKnowledgeSource(file_paths=json_fp))
341
+
342
+ self._knowledge = Knowledge(sources=knowledge_sources, embedder_config=self.embedder_config, collection_name=collection_name)
343
+
344
+ except:
345
+ self._logger.log(level="warning", message="We cannot find the format for the source. Add BaseKnowledgeSource objects instead.", color="yellow")
355
346
 
356
347
  return self
357
348
 
@@ -414,7 +405,7 @@ class Agent(BaseModel):
414
405
  self._logger.log(level="info", message=f"Messages sent to the model: {messages}", color="blue")
415
406
 
416
407
  if tool_res_as_final:
417
- func_llm = self.function_calling_llm if self.function_calling_llm and self.function_calling_llm._supports_function_calling() else LLM(model=DEFAULT_MODEL_NAME)
408
+ func_llm = self.function_calling_llm if self.function_calling_llm and self.function_calling_llm._supports_function_calling() else self.llm if self.llm and self.llm._supports_function_calling() else LLM(model=DEFAULT_MODEL_NAME)
418
409
  raw_response = func_llm.call(messages=messages, tools=tools, tool_res_as_final=True)
419
410
  task.tokens = func_llm._tokens
420
411
  else:
@@ -458,7 +449,7 @@ class Agent(BaseModel):
458
449
  from versionhq.knowledge._utils import extract_knowledge_context
459
450
 
460
451
  task: InstanceOf[Task] = task
461
- tools: Optional[List[InstanceOf[Tool]| InstanceOf[ToolSet] | Type[Tool]]] = task_tools + self.tools if task.can_use_agent_tools else task_tools
452
+ tools: Optional[List[InstanceOf[Tool | ToolSet] | Type[Tool]]] = task_tools + self.tools if task.can_use_agent_tools else task_tools
462
453
 
463
454
  if self.max_rpm and self._rpm_controller:
464
455
  self._rpm_controller._reset_request_count()
@@ -474,7 +465,6 @@ class Agent(BaseModel):
474
465
  if agent_knowledge_context:
475
466
  task_prompt += agent_knowledge_context
476
467
 
477
-
478
468
  if self.use_memory == True:
479
469
  contextual_memory = ContextualMemory(
480
470
  memory_config=self.memory_config, stm=self.short_term_memory, ltm=self.long_term_memory, um=self.user_memory
@@ -3,7 +3,6 @@ from typing import Iterator, List, Optional
3
3
  from urllib.parse import urlparse
4
4
 
5
5
  try:
6
- import docling
7
6
  from docling.datamodel.base_models import InputFormat
8
7
  from docling.document_converter import DocumentConverter
9
8
  from docling.exceptions import ConversionError
@@ -12,19 +11,12 @@ try:
12
11
  DOCLING_AVAILABLE = True
13
12
  except ImportError:
14
13
  import envoy
15
- r = envoy.run("uv add docling --optional docling")
16
-
17
- import docling
18
- from docling.datamodel.base_models import InputFormat
19
- from docling.document_converter import DocumentConverter
20
- from docling.exceptions import ConversionError
21
- from docling_core.transforms.chunker.hierarchical_chunker import HierarchicalChunker
22
- from docling_core.types.doc.document import DoclingDocument
14
+ envoy.run("uv add docling --optional docling")
23
15
  DOCLING_AVAILABLE = True
24
16
  except:
25
17
  DOCLING_AVAILABLE = False
26
18
 
27
- from pydantic import Field, InstanceOf
19
+ from pydantic import Field
28
20
 
29
21
  from versionhq.knowledge.source import BaseKnowledgeSource
30
22
  from versionhq.storage.utils import fetch_db_storage_path
@@ -54,11 +46,20 @@ class DoclingSource(BaseKnowledgeSource):
54
46
  ))
55
47
 
56
48
  def __init__(self, *args, **kwargs):
57
- if not DOCLING_AVAILABLE:
58
- raise ImportError("The docling package is required. Please install the package using: $ uv add docling.")
59
- else:
49
+ if DOCLING_AVAILABLE:
50
+ from docling.datamodel.base_models import InputFormat
51
+ from docling.document_converter import DocumentConverter
52
+ from docling.exceptions import ConversionError
53
+ from docling_core.transforms.chunker.hierarchical_chunker import HierarchicalChunker
54
+ from docling_core.types.doc.document import DoclingDocument
55
+
60
56
  super().__init__(*args, **kwargs)
61
57
 
58
+ else:
59
+ raise ImportError("The docling package is required. Please install the package using: $ uv add docling.")
60
+ # else:
61
+ # super().__init__(*args, **kwargs)
62
+
62
63
 
63
64
  def _convert_source_to_docling_documents(self) -> List["DoclingDocument"]:
64
65
  conv_results_iter = self.document_converter.convert_all(self.valid_file_paths)
versionhq/llm/llm_vars.py CHANGED
@@ -3,6 +3,33 @@ from typing import Type
3
3
 
4
4
  JSON_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
5
5
 
6
+ PROVIDERS = [
7
+ "openai",
8
+ "gemini",
9
+ "sagemaker",
10
+ "huggingface", # need api base
11
+ "anthropic",
12
+ "ollama",
13
+ "watson",
14
+ "bedrock",
15
+ "azure",
16
+ "cerebras",
17
+ "llama",
18
+ ]
19
+
20
+ ENDPOINT_PROVIDERS = [
21
+ # "openai",
22
+ # "gemini",
23
+ # "sagemaker",
24
+ "huggingface",
25
+ # "anthropic",
26
+ # "ollama",
27
+ # "watson",
28
+ # "bedrock",
29
+ # "azure",
30
+ # "cerebras",
31
+ # "llama",
32
+ ]
6
33
 
7
34
  """
8
35
  List of models available on the framework.
@@ -16,7 +43,6 @@ litellm.pick_cheapest_chat_models_from_llm_provider(custom_llm_provider: str, n=
16
43
 
17
44
  MODELS = {
18
45
  "openai": [
19
- # "gpt-3.5-turbo",
20
46
  "gpt-4",
21
47
  "gpt-4o",
22
48
  "gpt-4o-mini",
@@ -27,11 +53,7 @@ MODELS = {
27
53
  "gemini/gemini-1.5-flash",
28
54
  "gemini/gemini-1.5-pro",
29
55
  "gemini/gemini-2.0-flash-exp",
30
- # "gemini/gemini-gemma-2-9b-it",
31
- # "gemini/gemini-gemma-2-27b-it",
32
56
  ],
33
- # "vetrex_ai": [
34
- # ],
35
57
  "anthropic": [
36
58
  "claude-3-5-sonnet-20241022",
37
59
  "claude-3-5-sonnet-20240620",
@@ -39,10 +61,28 @@ MODELS = {
39
61
  "claude-3-opus-20240229",
40
62
  "claude-3-haiku-20240307",
41
63
  ],
42
- # "ollama": [
43
- # "ollama/llama3.1",
44
- # "ollama/mixtral",
45
- # ],
64
+ "huggingface": [
65
+ "huggingface/qwen/qwen2.5-VL-72B-Instruct",
66
+ ],
67
+ # "sagemaker": [
68
+ # "sagemaker/huggingface-text2text-flan-t5-base",
69
+ # "sagemaker/huggingface-llm-gemma-7b",
70
+ # "sagemaker/jumpstart-dft-meta-textgeneration-llama-2-13b",
71
+ # "sagemaker/jumpstart-dft-meta-textgeneration-llama-2-70b",
72
+ # "sagemaker/jumpstart-dft-meta-textgeneration-llama-3-8b",
73
+ # "sagemaker/jumpstart-dft-meta-textgeneration-llama-3-70b",
74
+ # "sagemaker/huggingface-llm-mistral-7b"
75
+ # ], #https://docs.aws.amazon.com/sagemaker/latest/dg/jumpstart-foundation-models-latest.html
76
+ "ollama": [
77
+ "ollama/llama3.1",
78
+ "ollama/mixtral",
79
+ "ollama/mixtral-8x22B-Instruct-v0.1",
80
+ ],
81
+ "deepseek": [
82
+ "deepseek/deepseek-reasoner",
83
+
84
+ ],
85
+
46
86
  # "watson": [
47
87
  # "watsonx/meta-llama/llama-3-1-70b-instruct",
48
88
  # "watsonx/meta-llama/llama-3-1-8b-instruct",
@@ -53,44 +93,48 @@ MODELS = {
53
93
  # "watsonx/mistral/mistral-large",
54
94
  # "watsonx/ibm/granite-3-8b-instruct",
55
95
  # ],
56
- # "bedrock": [
57
- # "bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0",
58
- # "bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
59
- # "bedrock/anthropic.claude-3-haiku-20240307-v1:0",
60
- # "bedrock/anthropic.claude-3-opus-20240229-v1:0",
61
- # "bedrock/anthropic.claude-v2:1",
62
- # "bedrock/anthropic.claude-v2",
63
- # "bedrock/anthropic.claude-instant-v1",
64
- # "bedrock/meta.llama3-1-405b-instruct-v1:0",
65
- # "bedrock/meta.llama3-1-70b-instruct-v1:0",
66
- # "bedrock/meta.llama3-1-8b-instruct-v1:0",
67
- # "bedrock/meta.llama3-70b-instruct-v1:0",
68
- # "bedrock/meta.llama3-8b-instruct-v1:0",
69
- # "bedrock/amazon.titan-text-lite-v1",
70
- # "bedrock/amazon.titan-text-express-v1",
71
- # "bedrock/cohere.command-text-v14",
72
- # "bedrock/ai21.j2-mid-v1",
73
- # "bedrock/ai21.j2-ultra-v1",
74
- # "bedrock/ai21.jamba-instruct-v1:0",
75
- # "bedrock/meta.llama2-13b-chat-v1",
76
- # "bedrock/meta.llama2-70b-chat-v1",
77
- # "bedrock/mistral.mistral-7b-instruct-v0:2",
78
- # "bedrock/mistral.mixtral-8x7b-instruct-v0:1",
79
- # ],
96
+ "bedrock": [
97
+ "bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0",
98
+ "bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
99
+ "bedrock/anthropic.claude-3-haiku-20240307-v1:0",
100
+ "bedrock/anthropic.claude-3-opus-20240229-v1:0",
101
+ # "bedrock/anthropic.claude-v2:1",
102
+ "bedrock/anthropic.claude-v2",
103
+ "bedrock/anthropic.claude-instant-v1",
104
+ "bedrock/meta.llama3-1-405b-instruct-v1:0",
105
+ "bedrock/meta.llama3-1-70b-instruct-v1:0",
106
+ "bedrock/meta.llama3-1-8b-instruct-v1:0",
107
+ "bedrock/meta.llama3-70b-instruct-v1:0",
108
+ "bedrock/meta.llama3-8b-instruct-v1:0",
109
+ "bedrock/amazon.titan-text-lite-v1",
110
+ "bedrock/amazon.titan-text-express-v1",
111
+ "bedrock/cohere.command-text-v14",
112
+ "bedrock/ai21.j2-mid-v1",
113
+ "bedrock/ai21.j2-ultra-v1",
114
+ "bedrock/ai21.jamba-instruct-v1:0",
115
+ "bedrock/meta.llama2-13b-chat-v1",
116
+ "bedrock/meta.llama2-70b-chat-v1",
117
+ "bedrock/mistral.mistral-7b-instruct-v0:2",
118
+ "bedrock/mistral.mixtral-8x7b-instruct-v0:1",
119
+ ],
80
120
  }
81
121
 
82
122
 
83
- PROVIDERS = [
84
- "openai",
85
- "anthropic",
86
- "gemini",
87
- "ollama",
88
- "watson",
89
- "bedrock",
90
- "azure",
91
- "cerebras",
92
- "llama",
93
- ]
123
+
124
+ KEYS = {
125
+ "openai": ["OPENAI_API_KEY"],
126
+ "gemini": ["GEMINI_API_KEY"],
127
+ "sagemaker": ["AWS_ACCESS_KEY_ID", "ADW_SECURET_ACCESS_KEY", "AWS_REGION_NAME"],
128
+ "anthropic": ["ANTHROPIC_API_KEY"],
129
+ }
130
+
131
+
132
+ """
133
+ Use base_url to specify
134
+ """
135
+ BASE_URLS = {
136
+ "deepseek": "https://api.deepseek.com"
137
+ }
94
138
 
95
139
 
96
140
  """
@@ -118,6 +162,8 @@ LLM_CONTEXT_WINDOW_SIZES = {
118
162
  "claude-3-haiku-20240307": 200000,
119
163
 
120
164
  "deepseek-chat": 128000,
165
+ "deepseek/deepseek-reasoner": 8192,
166
+
121
167
  "gemma2-9b-it": 8192,
122
168
  "gemma-7b-it": 8192,
123
169
  "llama3-groq-70b-8192-tool-use-preview": 8192,
@@ -135,11 +181,7 @@ LLM_CONTEXT_WINDOW_SIZES = {
135
181
  }
136
182
 
137
183
 
138
- LLM_API_KEY_NAMES = {
139
- "openai": "OPENAI_API_KEY",
140
- "anthropic": "ANTHROPIC_API_KEY",
141
- "gemini": "GEMINI_API_KEY",
142
- }
184
+
143
185
 
144
186
  LLM_BASE_URL_KEY_NAMES = {
145
187
  "openai": "OPENAI_API_BASE",
@@ -262,14 +304,8 @@ PARAMS = {
262
304
  ],
263
305
  "openai": [
264
306
  "timeout",
265
- # "temperature",
266
- # "top_p",
267
- # "n",
268
- # "stream",
269
307
  "stream_options",
270
- # "stop",
271
308
  "max_compl,etion_tokens",
272
- # "max_tokens",
273
309
  "modalities",
274
310
  "prediction",
275
311
  "audio",
@@ -277,10 +313,7 @@ PARAMS = {
277
313
  "frequency_penalty",
278
314
  "logit_bias",
279
315
  "user",
280
- # "response_format",
281
316
  "seed",
282
- # "tools",
283
- # "tool_choice",
284
317
  "logprobs",
285
318
  "top_logprobs",
286
319
  "parallel_tool_calls",
versionhq/llm/model.py CHANGED
@@ -4,23 +4,16 @@ import os
4
4
  import sys
5
5
  import threading
6
6
  import warnings
7
- import litellm
8
- from litellm import JSONSchemaValidationError
9
- from abc import ABC
10
7
  from dotenv import load_dotenv
11
- from litellm import get_supported_openai_params
8
+ import litellm
9
+ from litellm import get_supported_openai_params, JSONSchemaValidationError
12
10
  from contextlib import contextmanager
13
- from typing import Any, Dict, List, Optional, Type
11
+ from typing import Any, Dict, List, Optional
14
12
  from typing_extensions import Self
15
-
16
- from pydantic import UUID4, BaseModel, Field, PrivateAttr, field_validator, model_validator, create_model, InstanceOf, ConfigDict
13
+ from pydantic import BaseModel, Field, PrivateAttr, field_validator, model_validator, create_model, InstanceOf, ConfigDict
17
14
  from pydantic_core import PydanticCustomError
18
15
 
19
- from openai import OpenAI
20
-
21
- from versionhq.llm.llm_vars import LLM_CONTEXT_WINDOW_SIZES, LLM_API_KEY_NAMES, LLM_BASE_URL_KEY_NAMES, MODELS, PARAMS, SchemaType
22
- from versionhq.task import TaskOutputFormat
23
- from versionhq.task.model import ResponseField, Task
16
+ from versionhq.llm.llm_vars import LLM_CONTEXT_WINDOW_SIZES, MODELS, PARAMS, PROVIDERS, ENDPOINT_PROVIDERS
24
17
  from versionhq.tool.model import Tool, ToolSet
25
18
  from versionhq._utils.logger import Logger
26
19
 
@@ -29,10 +22,11 @@ load_dotenv(override=True)
29
22
  LITELLM_API_KEY = os.environ.get("LITELLM_API_KEY")
30
23
  LITELLM_API_BASE = os.environ.get("LITELLM_API_BASE")
31
24
  DEFAULT_CONTEXT_WINDOW_SIZE = int(8192 * 0.75)
32
- DEFAULT_MODEL_NAME = os.environ.get("DEFAULT_MODEL_NAME")
25
+ DEFAULT_MODEL_NAME = os.environ.get("DEFAULT_MODEL_NAME", "gpt-4o-mini")
26
+ DEFAULT_MODEL_PROVIDER_NAME = os.environ.get("DEFAULT_MODEL_PROVIDER_NAME", "openai")
33
27
 
34
- proxy_openai_client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"), organization="versionhq", base_url=LITELLM_API_BASE)
35
- openai_client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
28
+ # proxy_openai_client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"), organization="versionhq", base_url=LITELLM_API_BASE)
29
+ # openai_client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
36
30
 
37
31
 
38
32
  class FilteredStream:
@@ -74,10 +68,7 @@ def suppress_warnings():
74
68
 
75
69
  class LLM(BaseModel):
76
70
  """
77
- An LLM class to store params except for response formats which will be given in the task handling process.
78
- Use LiteLLM to connect with the model of choice.
79
- Some optional params are passed by the agent, else follow the default settings of the model provider.
80
- Ref. https://docs.litellm.ai/docs/completion/input
71
+ An LLM class to store params to send to the LLM. Use LiteLLM or custom providers for the endpoint.
81
72
  """
82
73
 
83
74
  _logger: Logger = PrivateAttr(default_factory=lambda: Logger(verbose=True))
@@ -85,10 +76,11 @@ class LLM(BaseModel):
85
76
  _tokens: int = PrivateAttr(default=0) # accumulate total tokens used for the call
86
77
  model_config = ConfigDict(extra="allow")
87
78
 
88
- model: str = Field(default=DEFAULT_MODEL_NAME)
89
- provider: Optional[str] = Field(default=None, description="model provider or custom model provider")
90
- base_url: Optional[str] = Field(default=None, description="api base of the model provider")
91
- api_key: Optional[str] = Field(default=None, description="api key of the model provider")
79
+ model: str = Field(default=None)
80
+ provider: Optional[str] = Field(default=None, description="model provider")
81
+ endpoint_provider: Optional[str] = Field(default=None, description="custom endpoint provider for pass through llm call. must need base_url")
82
+ base_url: Optional[str] = Field(default=None, description="api base url for endpoint provider")
83
+ api_key: Optional[str] = Field(default=None, description="api key to access the model")
92
84
 
93
85
  # optional params
94
86
  timeout: Optional[float | int] = Field(default=None)
@@ -121,55 +113,90 @@ class LLM(BaseModel):
121
113
  litellm.set_verbose = True
122
114
  os.environ['LITELLM_LOG'] = 'DEBUG'
123
115
 
116
+
124
117
  @model_validator(mode="after")
125
- def validate_base_params(self) -> Self:
118
+ def validate_model_providers(self) -> Self:
126
119
  """
127
- 1) Set up a valid model name with the provider name using the MODEL list.
128
- * Assign a default model and provider based on the given information when no model key is found in the MODEL list.
129
-
130
- 2) Set up other base parameters for the model and LiteLLM.
120
+ Validate the given model, provider, interface provider.
131
121
  """
132
122
 
133
- if self.model is None:
134
- self._logger.log(level="error", message="Model name is missing.", color="red")
135
- raise PydanticCustomError("model_missing", "The model name must be provided.", {})
123
+ self._init_model_name = self.model
136
124
 
125
+ if self.model is None and self.provider is None:
126
+ self.model = DEFAULT_MODEL_NAME
127
+ self.provider = DEFAULT_MODEL_PROVIDER_NAME
137
128
 
138
- self._init_model_name = self.model
139
- self.model = None
140
- self._tokens = 0
129
+ elif self.model is None and self.provider:
130
+ if self.provider not in PROVIDERS:
131
+ self._logger.log(level="warning", message=f"Invalid model provider is provided. We will assign a default model.", color="yellow")
132
+ self.model = DEFAULT_MODEL_NAME
133
+ self.provider = DEFAULT_MODEL_PROVIDER_NAME
141
134
 
142
- if self.provider and MODELS.get(self.provider):
143
- provider_model_list = MODELS.get(self.provider)
144
- for item in provider_model_list:
145
- if self.model is None:
146
- if item == self._init_model_name:
147
- self.model = item
148
- elif self._init_model_name in item and self.model is None:
149
- self.model = item
150
- else:
151
- temp_model = provider_model_list[0]
152
- self._logger.log(level="warning", message=f"The provided model: {self._init_model_name} is not in the list. We'll assign a model: {temp_model} from the selected model provider: {self.provider}.", color="yellow")
153
- self.model = temp_model
135
+ else:
136
+ provider_model_list = MODELS.get(self.provider)
137
+ if provider_model_list:
138
+ self.model = provider_model_list[0]
139
+ self.provider = self.provider
140
+ else:
141
+ self._logger.log(level="warning", message=f"This provider has not models to be called. We will assign a default model.", color="yellow")
142
+ self.model = DEFAULT_MODEL_NAME
143
+ self.provider = DEFAULT_MODEL_PROVIDER_NAME
144
+
145
+ elif self.model and self.provider is None:
146
+ model_match = [
147
+ item for item in [
148
+ [val for val in v if val == self.model][0] for k, v in MODELS.items() if [val for val in v if val == self.model]
149
+ ] if item
150
+ ]
151
+ model_partial_match = [
152
+ item for item in [
153
+ [val for val in v if val.find(self.model) != -1][0] for k, v in MODELS.items() if [val for val in v if val.find(self.model) != -1]
154
+ ] if item
155
+ ]
156
+ provider_match = [k for k, v in MODELS.items() if k == self.model]
157
+
158
+ if model_match:
159
+ self.model = model_match[0]
160
+ self.provider = [k for k, v in MODELS.items() if self.model in v][0]
161
+
162
+ elif model_partial_match:
163
+ self.model = model_partial_match[0]
164
+ self.provider = [k for k, v in MODELS.items() if [item for item in v if item.find(self.model) != -1]][0]
165
+
166
+ elif provider_match:
167
+ provider = provider_match[0]
168
+ if self.MODELS.get(provider):
169
+ self.provider = provider
170
+ self.model = self.MODELS.get(provider)[0]
171
+ else:
172
+ self.provider = DEFAULT_MODEL_PROVIDER_NAME
173
+ self.model = DEFAULT_MODEL_NAME
174
+
175
+ else:
176
+ self.model = DEFAULT_MODEL_NAME
177
+ self.provider = DEFAULT_MODEL_PROVIDER_NAME
154
178
 
155
179
  else:
156
- for k, v in MODELS.items():
157
- for item in v:
158
- if self.model is None:
159
- if self._init_model_name == item:
160
- self.model = item
161
- self.provider = k
162
-
163
- elif self.model is None and self._init_model_name in item:
164
- self.model = item
165
- self.provider = k
166
-
167
- if self.model is None:
168
- self._logger.log(level="warning", message=f"The provided model \'{self.model}\' is not in the list. We'll assign a default model.", color="yellow")
180
+ provider_model_list = MODELS.get(self.provider)
181
+ if self.model not in provider_model_list:
182
+ self._logger.log(level="warning", message=f"The provided model: {self._init_model_name} is not in the list. We will assign a default model.", color="yellow")
169
183
  self.model = DEFAULT_MODEL_NAME
170
- self.provider = "openai"
184
+ self.provider = DEFAULT_MODEL_PROVIDER_NAME
185
+
186
+ # trigger pass-through custom endpoint.
187
+ if self.provider in ENDPOINT_PROVIDERS:
188
+ self.endpoint_provider = self.provider
189
+
190
+ return self
171
191
 
172
192
 
193
+ @model_validator(mode="after")
194
+ def validate_model_params(self) -> Self:
195
+ """
196
+ After setting up a valid model, provider, interface provider, add params to the model.
197
+ """
198
+ self._tokens = 0
199
+
173
200
  if self.callbacks:
174
201
  self._set_callbacks(self.callbacks)
175
202
 
@@ -179,7 +206,9 @@ class LLM(BaseModel):
179
206
  if api_key_name:
180
207
  self.api_key = os.environ.get(api_key_name, None)
181
208
 
182
- base_url_key_name = self.provider.upper() + "_API_BASE" if self.provider else None
209
+
210
+ base_url_key_name = self.endpoint_provider.upper() + "_API_BASE" if self.endpoint_provider else None
211
+
183
212
  if base_url_key_name:
184
213
  self.base_url = os.environ.get(base_url_key_name)
185
214
  self.api_base = self.base_url
@@ -190,11 +219,8 @@ class LLM(BaseModel):
190
219
  def _create_valid_params(self, config: Dict[str, Any], provider: str = None) -> Dict[str, Any]:
191
220
  params = dict()
192
221
  valid_keys = list()
193
-
194
- if not provider:
195
- valid_keys = PARAMS.get("litellm") + PARAMS.get("common") + PARAMS.get(self.provider) if self.provider else PARAMS.get("litellm") + PARAMS.get("common")
196
- else:
197
- valid_keys = PARAMS.get("common") + PARAMS.get(self.provider)
222
+ provider = provider if provider else self.provider if self.provider else None
223
+ valid_keys = PARAMS.get("litellm") + PARAMS.get("common") + PARAMS.get(provider) if provider and PARAMS.get(provider) else PARAMS.get("litellm") + PARAMS.get("common")
198
224
 
199
225
  for item in valid_keys:
200
226
  if hasattr(self, item) and getattr(self, item):
@@ -224,7 +250,7 @@ class LLM(BaseModel):
224
250
  self._set_callbacks(self.callbacks) # passed by agent
225
251
 
226
252
  try:
227
- provider = self.provider if self.provider else "openai"
253
+ provider = self.provider if self.provider else DEFAULT_MODEL_PROVIDER_NAME
228
254
  self.response_format = { "type": "json_object" } if tool_res_as_final == True else response_format
229
255
 
230
256
  if not tools:
@@ -236,51 +262,51 @@ class LLM(BaseModel):
236
262
  else:
237
263
  self.tools = [item.tool.properties if isinstance(item, ToolSet) else item.properties for item in tools]
238
264
 
239
- if provider == "openai":
240
- params = self._create_valid_params(config=config, provider=provider)
241
- res = openai_client.chat.completions.create(messages=messages, model=self.model, tools=self.tools)
242
- tool_calls = res.choices[0].message.tool_calls
243
- tool_res = ""
244
-
245
- for item in tool_calls:
246
- func_name = item.function.name
247
- func_args = item.function.arguments
265
+ # if provider == "openai":
266
+ params = self._create_valid_params(config=config, provider=provider)
267
+ res = litellm.completion(messages=messages, model=self.model, tools=self.tools)
268
+ tool_calls = res.choices[0].message.tool_calls
269
+ tool_res = ""
270
+
271
+ for item in tool_calls:
272
+ func_name = item.function.name
273
+ func_args = item.function.arguments
274
+
275
+ if not isinstance(func_args, dict):
276
+ try:
277
+ func_args = json.loads(json.dumps(eval(str(func_args))))
278
+ except:
279
+ pass
280
+
281
+ for tool in tools:
282
+ if isinstance(tool, ToolSet) and (tool.tool.name == func_name or tool.tool.func.__name__ == func_name or func_name == "random_func"):
283
+ tool_instance = tool.tool
284
+ args = tool.kwargs
285
+ tool_res_to_add = tool_instance.run(params=args)
286
+
287
+ if tool_res_as_final:
288
+ tool_res += str(tool_res_to_add)
289
+ else:
290
+ messages.append(res.choices[0].message)
291
+ messages.append({ "role": "tool", "tool_call_id": item.id, "content": str(tool_res_to_add) })
248
292
 
249
- if not isinstance(func_args, dict):
293
+ else:
250
294
  try:
251
- func_args = json.loads(json.dumps(eval(str(func_args))))
252
- except:
253
- pass
254
-
255
- for tool in tools:
256
- if isinstance(tool, ToolSet) and (tool.tool.name == func_name or tool.tool.func.__name__ == func_name or func_name == "random_func"):
257
- tool_instance = tool.tool
258
- args = tool.kwargs
259
- tool_res_to_add = tool_instance.run(params=args)
260
-
295
+ tool_res_to_add = tool.run(params=func_args)
261
296
  if tool_res_as_final:
262
297
  tool_res += str(tool_res_to_add)
263
298
  else:
264
299
  messages.append(res.choices[0].message)
265
300
  messages.append({ "role": "tool", "tool_call_id": item.id, "content": str(tool_res_to_add) })
301
+ except:
302
+ pass
266
303
 
267
- else:
268
- try:
269
- tool_res_to_add = tool.run(params=func_args)
270
- if tool_res_as_final:
271
- tool_res += str(tool_res_to_add)
272
- else:
273
- messages.append(res.choices[0].message)
274
- messages.append({ "role": "tool", "tool_call_id": item.id, "content": str(tool_res_to_add) })
275
- except:
276
- pass
277
-
278
- if tool_res_as_final:
279
- return tool_res
280
- else:
281
- res = openai_client.chat.completions.create(messages=messages, model=self.model, tools=self.tools)
282
- self._tokens += int(res["usage"]["total_tokens"])
283
- return res.choices[0].message.content
304
+ if tool_res_as_final:
305
+ return tool_res
306
+ else:
307
+ res = litellm.completione(messages=messages, model=self.model, tools=self.tools)
308
+ self._tokens += int(res["usage"]["total_tokens"])
309
+ return res.choices[0].message.content
284
310
 
285
311
  except JSONSchemaValidationError as e:
286
312
  self._logger.log(level="error", message="Raw Response: {}".format(e.raw_response), color="red")
versionhq/task/model.py CHANGED
@@ -412,6 +412,8 @@ Ref. Output image: {output_formats_to_follow}
412
412
 
413
413
  response_format: Dict[str, Any] = None
414
414
 
415
+ # match model_provider:
416
+ # case "openai":
415
417
  if self.response_fields:
416
418
  properties, required_fields = {}, []
417
419
  for i, item in enumerate(self.response_fields):
@@ -439,6 +441,7 @@ Ref. Output image: {output_formats_to_follow}
439
441
  elif self.pydantic_output:
440
442
  response_format = StructuredOutput(response_format=self.pydantic_output)._format()
441
443
 
444
+ # case "gemini":
442
445
  return response_format
443
446
 
444
447
 
@@ -636,7 +639,7 @@ Ref. Output image: {output_formats_to_follow}
636
639
 
637
640
  if self.tool_res_as_final == True:
638
641
  tool_output = agent.execute_task(task=self, context=context, task_tools=task_tools)
639
- task_output = TaskOutput(task_id=self.id, tool_output=tool_output)
642
+ task_output = TaskOutput(task_id=self.id, tool_output=tool_output, raw=str(tool_output) if tool_output else "")
640
643
 
641
644
  else:
642
645
  raw_output = agent.execute_task(task=self, context=context, task_tools=task_tools)
@@ -82,12 +82,13 @@ class StructuredList:
82
82
 
83
83
  if nested_object_type == dict:
84
84
  props.update({
85
- "nest": {
85
+ # "nest": {
86
86
  "type": "object",
87
87
  "properties": { "item": { "type": "string"} }, #! REFINEME - field title <>`item`
88
88
  "required": ["item",],
89
89
  "additionalProperties": False
90
- }})
90
+ # }
91
+ })
91
92
 
92
93
  elif nested_object_type == list:
93
94
  props.update({
@@ -110,7 +111,7 @@ class StructuredList:
110
111
 
111
112
 
112
113
  class StructuredOutput(BaseModel):
113
- response_format: Any = None
114
+ response_format: Any = None # pydantic base model
114
115
  provider: str = "openai"
115
116
  applicable_models: List[InstanceOf[LLM] | str] = list()
116
117
  name: str = ""
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: versionhq
3
- Version: 1.1.11.6
3
+ Version: 1.1.11.8
4
4
  Summary: LLM orchestration frameworks for model-agnostic AI agents that handle complex outbound workflows
5
5
  Author-email: Kuriko Iwai <kuriko@versi0n.io>
6
6
  License: MIT License
@@ -319,8 +319,10 @@ src/
319
319
  pyenv install 3.12.8
320
320
  pyenv global 3.12.8 (optional: `pyenv global system` to get back to the system default ver.)
321
321
  uv python pin 3.12.8
322
+ echo 3.12.8 > .python-version
322
323
  ```
323
324
 
325
+
324
326
  3. Set up environment variables:
325
327
  Create a `.env` file in the project root and add the following:
326
328
  ```
@@ -1,4 +1,4 @@
1
- versionhq/__init__.py,sha256=khEpIbv1gBkv7txiWOdTPlq7MYqe15UUyLe63UaP-ro,863
1
+ versionhq/__init__.py,sha256=9QPw8-DjsW5Z2vOHQUBb-AMSyIR2RFcFkR42aXVbUFc,863
2
2
  versionhq/_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
3
  versionhq/_utils/i18n.py,sha256=TwA_PnYfDLA6VqlUDPuybdV9lgi3Frh_ASsb_X8jJo8,1483
4
4
  versionhq/_utils/logger.py,sha256=U-MpeGueA6YS8Ptfy0VnU_ePsZP-8Pvkvi0tZ4s_UMg,1438
@@ -7,7 +7,7 @@ versionhq/_utils/usage_metrics.py,sha256=hhq1OCW8Z4V93vwW2O2j528EyjOlF8wlTsX5IL-
7
7
  versionhq/_utils/vars.py,sha256=bZ5Dx_bFKlt3hi4-NNGXqdk7B23If_WaTIju2fiTyPQ,57
8
8
  versionhq/agent/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
9
9
  versionhq/agent/default_agents.py,sha256=Sea3xDswxxMccer1vVDhp1E5etXW3ddf2n20JTMHgqs,503
10
- versionhq/agent/model.py,sha256=kL949N0MELAZz58XB_vlQfE1YQU_o4iHggNDn_h_7yo,22758
10
+ versionhq/agent/model.py,sha256=U6kz8EE4tJYk9HBg4qeB2_-297ROEORxP_gE6C89aH0,22232
11
11
  versionhq/agent/parser.py,sha256=riG0dkdQCxH7uJ0AbdVdg7WvL0BXhUgJht0VtQvxJBc,4082
12
12
  versionhq/agent/rpm_controller.py,sha256=7AKIEPbWBq_ESOZCaiKVOGjfSPHd2qwg6-wbBlhqC0g,2367
13
13
  versionhq/agent/TEMPLATES/Backstory.py,sha256=IAhGnnt6VUMe3wO6IzeyZPDNu7XE7Uiu3VEXUreOcKs,532
@@ -25,11 +25,11 @@ versionhq/knowledge/_utils.py,sha256=YWRF8U533cfZes_gZqUvdj-K24MD2ri1R0gjc_aPYyc
25
25
  versionhq/knowledge/embedding.py,sha256=KfHc__1THxb5jrg1EMrF-v944RDuIr2hE0l-MtM3Bp0,6826
26
26
  versionhq/knowledge/model.py,sha256=n7kU4jQ24BUIxwosSVRK8tYhAFYhgc4yf7e4Q-bq4bk,1832
27
27
  versionhq/knowledge/source.py,sha256=WOARChmm_cNtBD-xGo4RoYmcuodzdalctXI-gDBCW6k,13610
28
- versionhq/knowledge/source_docling.py,sha256=Lv7PDE97pwV5_3SPcIgTzEu3H4obRbPfY3NALvfkgX8,5364
28
+ versionhq/knowledge/source_docling.py,sha256=hhHn3rS4KVsFKEPWcfllM8VxSL86PckZdAHDZNQNOq8,5411
29
29
  versionhq/knowledge/storage.py,sha256=7oxCg3W9mFjYH1YmuH9kFtTbNxquzYFjuUjd_TlsB9E,8170
30
30
  versionhq/llm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
31
- versionhq/llm/llm_vars.py,sha256=PO__b-h5e-6oQ-uoIgXx3lPSAUPUwXYfdVRW73fvX14,8761
32
- versionhq/llm/model.py,sha256=1uaBxT10GIlUl-BtE8Mfux-ZRcScp4HUIas_fD_cdWQ,14471
31
+ versionhq/llm/llm_vars.py,sha256=48IvN6w6h6QJUWqO0A44begGLoUbBaaS-HPO_wp7c84,9588
32
+ versionhq/llm/model.py,sha256=0qe3oC5u42erVBHc76WRpDKH9PDTzXyaraIuDJ6bDAY,15426
33
33
  versionhq/memory/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
34
34
  versionhq/memory/contextual_memory.py,sha256=tCsOOAUnfrOL7YiakqGoi3uShzzS870TmGnlGd3z_A4,3556
35
35
  versionhq/memory/model.py,sha256=6Sy-cnrhHNIx3ZN38uNO7d8YywIl_uo_OvDVzVM-w14,5755
@@ -44,8 +44,8 @@ versionhq/task/__init__.py,sha256=l2r_g01i91JAGlOoHZP_Gh2WCk6mo9D19lcqt7sKMpQ,18
44
44
  versionhq/task/evaluate.py,sha256=RCaFa9N4IibAYLWKUlTn6lWiQoI7t4f_XZVUvecjTxs,3486
45
45
  versionhq/task/formatter.py,sha256=N8Kmk9vtrMtBdgJ8J7RmlKNMdZWSmV8O1bDexmCWgU0,643
46
46
  versionhq/task/log_handler.py,sha256=KJRrcNZgFSKhlNzvtYFnvtp6xukaF1s7ifX9u4zWrN8,1683
47
- versionhq/task/model.py,sha256=Uxs5LaGb1O9CdnhWh36sSbgdKPfDYDCi2V4BNdvAMPc,30027
48
- versionhq/task/structured_response.py,sha256=h5GbbkCNJ27f4AbHcriGctQLFSp4qlmq2REDEfSd8xU,4786
47
+ versionhq/task/model.py,sha256=DCm2jS0RFm4iPkepzKbNgODUdxOtGCV0RCINMaI0c_Q,30162
48
+ versionhq/task/structured_response.py,sha256=YxuWcDMHcZLzdxI1ihW99Y-i6nl8yXBQ5Q_dFQac8jw,4837
49
49
  versionhq/task/TEMPLATES/Description.py,sha256=bChflSWGGQo9JpnO6QX6Ng9pnONiTf-zwQ3ke4xQgSQ,357
50
50
  versionhq/team/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
51
51
  versionhq/team/model.py,sha256=NzcRXWwP0adWL9vsnsmI-A5dOcE3199FGmGgemUB2VA,20043
@@ -57,8 +57,8 @@ versionhq/tool/composio_tool_vars.py,sha256=FvBuEXsOQUYnN7RTFxT20kAkiEYkxWKkiVtg
57
57
  versionhq/tool/decorator.py,sha256=C4ZM7Xi2gwtEMaSeRo-geo_g_MAkY77WkSLkAuY0AyI,1205
58
58
  versionhq/tool/model.py,sha256=7ccEnje_8LuxLVeog6pL38nToArXQXk4KY7A9hfprDo,12239
59
59
  versionhq/tool/tool_handler.py,sha256=2m41K8qo5bGCCbwMFferEjT-XZ-mE9F0mDUOBkgivOI,1416
60
- versionhq-1.1.11.6.dist-info/LICENSE,sha256=7CCXuMrAjPVsUvZrsBq9DsxI2rLDUSYXR_qj4yO_ZII,1077
61
- versionhq-1.1.11.6.dist-info/METADATA,sha256=6ApakYLq7bQHnNPx9kwvjTctXrXf7lYL4CJ-xTdPPgM,18638
62
- versionhq-1.1.11.6.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
63
- versionhq-1.1.11.6.dist-info/top_level.txt,sha256=DClQwxDWqIUGeRJkA8vBlgeNsYZs4_nJWMonzFt5Wj0,10
64
- versionhq-1.1.11.6.dist-info/RECORD,,
60
+ versionhq-1.1.11.8.dist-info/LICENSE,sha256=7CCXuMrAjPVsUvZrsBq9DsxI2rLDUSYXR_qj4yO_ZII,1077
61
+ versionhq-1.1.11.8.dist-info/METADATA,sha256=VKscq6wLejKxh7fF2p6V9fbgRveRHbzAjVw5KcBwpTg,18672
62
+ versionhq-1.1.11.8.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
63
+ versionhq-1.1.11.8.dist-info/top_level.txt,sha256=DClQwxDWqIUGeRJkA8vBlgeNsYZs4_nJWMonzFt5Wj0,10
64
+ versionhq-1.1.11.8.dist-info/RECORD,,