versionhq 1.1.10.2__py3-none-any.whl → 1.1.10.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- versionhq/__init__.py +1 -1
- versionhq/agent/model.py +4 -29
- versionhq/llm/llm_vars.py +1 -1
- versionhq/llm/model.py +14 -7
- versionhq/task/model.py +41 -61
- versionhq/task/structured_response.py +140 -0
- {versionhq-1.1.10.2.dist-info → versionhq-1.1.10.4.dist-info}/METADATA +1 -1
- {versionhq-1.1.10.2.dist-info → versionhq-1.1.10.4.dist-info}/RECORD +11 -10
- {versionhq-1.1.10.2.dist-info → versionhq-1.1.10.4.dist-info}/LICENSE +0 -0
- {versionhq-1.1.10.2.dist-info → versionhq-1.1.10.4.dist-info}/WHEEL +0 -0
- {versionhq-1.1.10.2.dist-info → versionhq-1.1.10.4.dist-info}/top_level.txt +0 -0
versionhq/__init__.py
CHANGED
versionhq/agent/model.py
CHANGED
@@ -255,9 +255,9 @@ class Agent(BaseModel):
|
|
255
255
|
llm.timeout = self.max_execution_time if llm.timeout is None else llm.timeout
|
256
256
|
llm.max_tokens = self.max_tokens if self.max_tokens else llm.max_tokens
|
257
257
|
|
258
|
-
|
259
|
-
|
260
|
-
|
258
|
+
if self.callbacks:
|
259
|
+
llm.callbacks = self.callbacks
|
260
|
+
llm._set_callbacks(llm.callbacks)
|
261
261
|
|
262
262
|
if self.respect_context_window == False:
|
263
263
|
llm.context_window_size = DEFAULT_CONTEXT_WINDOW_SIZE
|
@@ -364,9 +364,6 @@ class Agent(BaseModel):
|
|
364
364
|
task_execution_counter += 1
|
365
365
|
self._logger.log(level="info", message=f"Agent response: {raw_response}", color="blue")
|
366
366
|
|
367
|
-
if raw_response and self.callbacks:
|
368
|
-
for item in self.callbacks:
|
369
|
-
raw_response = item(raw_response)
|
370
367
|
|
371
368
|
except Exception as e:
|
372
369
|
self._logger.log(level="error", message=f"An error occured. The agent will retry: {str(e)}", color="red")
|
@@ -379,10 +376,6 @@ class Agent(BaseModel):
|
|
379
376
|
task_execution_counter += 1
|
380
377
|
self._logger.log(level="info", message=f"Agent #{task_execution_counter} response: {raw_response}", color="blue")
|
381
378
|
|
382
|
-
if raw_response and self.callbacks:
|
383
|
-
for item in self.callbacks:
|
384
|
-
raw_response = item(raw_response)
|
385
|
-
|
386
379
|
if not raw_response:
|
387
380
|
self._logger.log(level="error", message="Received None or empty response from the model", color="red")
|
388
381
|
raise ValueError("Invalid response from LLM call - None or empty.")
|
@@ -390,7 +383,7 @@ class Agent(BaseModel):
|
|
390
383
|
return raw_response
|
391
384
|
|
392
385
|
|
393
|
-
def execute_task(self, task, context: Optional[str] = None, task_tools: Optional[List[Tool | ToolSet]] =
|
386
|
+
def execute_task(self, task, context: Optional[str] = None, task_tools: Optional[List[Tool | ToolSet]] = list()) -> str:
|
394
387
|
"""
|
395
388
|
Execute the task and return the response in string.
|
396
389
|
The agent utilizes the tools in task or their own tools if the task.can_use_agent_tools is True.
|
@@ -405,24 +398,6 @@ class Agent(BaseModel):
|
|
405
398
|
if context is not task.prompt_context:
|
406
399
|
task_prompt += context
|
407
400
|
|
408
|
-
# if agent_tools_to_run_without_llm:
|
409
|
-
# tool_results = []
|
410
|
-
# for item in agent_tools_to_run_without_llm:
|
411
|
-
# if isinstance(item, ToolSet):
|
412
|
-
# tool_result = item.tool.run(**item.kwargs)
|
413
|
-
# tool_results.append(tool_result)
|
414
|
-
# elif isinstance(item, Tool):
|
415
|
-
# tool_result = item.run()
|
416
|
-
# tool_results.append(tool_result)
|
417
|
-
# else:
|
418
|
-
# try:
|
419
|
-
# item.run()
|
420
|
-
# except:
|
421
|
-
# pass
|
422
|
-
|
423
|
-
# if task.tool_res_as_final is True:
|
424
|
-
# return tool_results
|
425
|
-
|
426
401
|
# if self.team and self.team._train:
|
427
402
|
# task_prompt = self._training_handler(task_prompt=task_prompt)
|
428
403
|
# else:
|
versionhq/llm/llm_vars.py
CHANGED
versionhq/llm/model.py
CHANGED
@@ -196,17 +196,18 @@ class LLM(BaseModel):
|
|
196
196
|
"""
|
197
197
|
Execute LLM based on the agent's params and model params.
|
198
198
|
"""
|
199
|
+
litellm.drop_params = True
|
199
200
|
|
200
201
|
with suppress_warnings():
|
201
202
|
if len(self.callbacks) > 0:
|
202
|
-
self._set_callbacks(self.callbacks)
|
203
|
+
self._set_callbacks(self.callbacks) # passed by agent
|
203
204
|
|
204
205
|
try:
|
205
206
|
if tools:
|
206
207
|
self.tools = [item.tool.properties if isinstance(item, ToolSet) else item.properties for item in tools]
|
207
208
|
|
208
209
|
if response_format:
|
209
|
-
self.response_format = { "type": "json_object" } if
|
210
|
+
self.response_format = { "type": "json_object" } if tool_res_as_final else response_format
|
210
211
|
|
211
212
|
provider = self.provider if self.provider else "openai"
|
212
213
|
|
@@ -227,6 +228,7 @@ class LLM(BaseModel):
|
|
227
228
|
res = litellm.completion(messages=messages, stream=False, **params)
|
228
229
|
|
229
230
|
if self.tools:
|
231
|
+
messages.append(res["choices"][0]["message"])
|
230
232
|
tool_calls = res["choices"][0]["message"]["tool_calls"]
|
231
233
|
tool_res = ""
|
232
234
|
|
@@ -242,18 +244,23 @@ class LLM(BaseModel):
|
|
242
244
|
tool_instance = tool.tool
|
243
245
|
args = tool.kwargs
|
244
246
|
res = tool_instance.run(params=args)
|
245
|
-
|
247
|
+
|
248
|
+
if tool_res_as_final:
|
249
|
+
tool_res += str(res)
|
250
|
+
else:
|
251
|
+
messages.append({ "role": "tool", "tool_call_id": item.id, "content": str(res) })
|
246
252
|
|
247
253
|
elif (isinstance(tool, Tool) or type(tool) == Tool) and (tool.name.replace(" ", "_") == func_name or tool.func.__name__ == func_name):
|
248
254
|
res = tool.run(params=func_args)
|
249
|
-
|
255
|
+
if tool_res_as_final:
|
256
|
+
tool_res += str(res)
|
257
|
+
else:
|
258
|
+
messages.append({ "role": "tool", "tool_call_id": item.id, "content": str(res) })
|
250
259
|
|
251
|
-
if tool_res_as_final
|
260
|
+
if tool_res_as_final:
|
252
261
|
return tool_res
|
253
|
-
pass
|
254
262
|
|
255
263
|
else:
|
256
|
-
messages.append({ "role": "tool", "tool_call_id": tool_calls.id, "content": tool_res })
|
257
264
|
res = litellm.completion(messages=messages, stream=False, **params)
|
258
265
|
|
259
266
|
return res["choices"][0]["message"]["content"]
|
versionhq/task/model.py
CHANGED
@@ -4,10 +4,10 @@ import datetime
|
|
4
4
|
import uuid
|
5
5
|
from concurrent.futures import Future
|
6
6
|
from hashlib import md5
|
7
|
-
from typing import Any, Dict, List, Set, Optional, Tuple, Callable, Type
|
7
|
+
from typing import Any, Dict, List, Set, Optional, Tuple, Callable, Type, TypeVar
|
8
8
|
from typing_extensions import Annotated, Self
|
9
9
|
|
10
|
-
from pydantic import UUID4, BaseModel, Field, PrivateAttr, field_validator, model_validator, create_model, InstanceOf
|
10
|
+
from pydantic import UUID4, BaseModel, Field, PrivateAttr, field_validator, model_validator, create_model, InstanceOf, field_validator
|
11
11
|
from pydantic_core import PydanticCustomError
|
12
12
|
|
13
13
|
from versionhq._utils.process_config import process_config
|
@@ -96,8 +96,8 @@ class ResponseField(BaseModel):
|
|
96
96
|
for item in self.properties:
|
97
97
|
p.update(**item._format_props())
|
98
98
|
|
99
|
-
if item.required:
|
100
|
-
|
99
|
+
# if item.required:
|
100
|
+
r.append(item.title)
|
101
101
|
|
102
102
|
props = {
|
103
103
|
"type": schema_type,
|
@@ -161,15 +161,15 @@ class ResponseField(BaseModel):
|
|
161
161
|
|
162
162
|
class TaskOutput(BaseModel):
|
163
163
|
"""
|
164
|
-
|
165
|
-
Depending on the task output format, use `raw`, `pydantic`, `json_dict` accordingly.
|
164
|
+
A class to store the final output of the given task in raw (string), json_dict, and pydantic class formats.
|
166
165
|
"""
|
167
166
|
|
168
167
|
task_id: UUID4 = Field(default_factory=uuid.uuid4, frozen=True, description="store Task ID")
|
169
168
|
raw: str = Field(default="", description="Raw output of the task")
|
170
169
|
json_dict: Dict[str, Any] = Field(default=None, description="`raw` converted to dictionary")
|
171
|
-
pydantic: Optional[Any] = Field(default=None
|
170
|
+
pydantic: Optional[Any] = Field(default=None)
|
172
171
|
tool_output: Optional[Any] = Field(default=None, description="store tool result when the task takes tool output as its final output")
|
172
|
+
gott: Optional[Any] = Field(default=None, description="store task or agent callback outcome")
|
173
173
|
|
174
174
|
def __str__(self) -> str:
|
175
175
|
return str(self.pydantic) if self.pydantic else str(self.json_dict) if self.json_dict else self.raw
|
@@ -244,7 +244,7 @@ class Task(BaseModel):
|
|
244
244
|
# execution rules
|
245
245
|
allow_delegation: bool = Field(default=False, description="ask other agents for help and run the task instead")
|
246
246
|
async_execution: bool = Field(default=False,description="whether the task should be executed asynchronously or not")
|
247
|
-
callback: Optional[
|
247
|
+
callback: Optional[Callable] = Field(default=None, description="callback to be executed after the task is completed.")
|
248
248
|
callback_kwargs: Optional[Dict[str, Any]] = Field(default_factory=dict, description="kwargs for the callback when the callback is callable")
|
249
249
|
|
250
250
|
# recording
|
@@ -256,7 +256,7 @@ class Task(BaseModel):
|
|
256
256
|
|
257
257
|
@model_validator(mode="before")
|
258
258
|
@classmethod
|
259
|
-
def
|
259
|
+
def process_config(cls, values: Dict[str, Any]) -> None:
|
260
260
|
return process_config(values_to_update=values, model_class=cls)
|
261
261
|
|
262
262
|
|
@@ -276,16 +276,16 @@ class Task(BaseModel):
|
|
276
276
|
return self
|
277
277
|
|
278
278
|
|
279
|
-
@model_validator(mode="after")
|
280
|
-
def set_attributes_based_on_config(self) -> Self:
|
281
|
-
|
282
|
-
|
283
|
-
|
279
|
+
# @model_validator(mode="after")
|
280
|
+
# def set_attributes_based_on_config(self) -> Self:
|
281
|
+
# """
|
282
|
+
# Set attributes based on the task configuration.
|
283
|
+
# """
|
284
284
|
|
285
|
-
|
286
|
-
|
287
|
-
|
288
|
-
|
285
|
+
# if self.config:
|
286
|
+
# for key, value in self.config.items():
|
287
|
+
# setattr(self, key, value)
|
288
|
+
# return self
|
289
289
|
|
290
290
|
|
291
291
|
@model_validator(mode="after")
|
@@ -322,7 +322,7 @@ class Task(BaseModel):
|
|
322
322
|
if self.pydantic_custom_output:
|
323
323
|
output_prompt = f"""
|
324
324
|
Your response MUST STRICTLY follow the given repsonse format:
|
325
|
-
JSON schema: {str(
|
325
|
+
JSON schema: {str(self.pydantic_custom_output)}
|
326
326
|
"""
|
327
327
|
|
328
328
|
elif self.response_fields:
|
@@ -380,16 +380,13 @@ Ref. Output image: {output_formats_to_follow}
|
|
380
380
|
|
381
381
|
def _structure_response_format(self, data_type: str = "object", model_provider: str = "gemini") -> Dict[str, Any] | None:
|
382
382
|
"""
|
383
|
-
|
384
|
-
|
385
|
-
- SDK objects from `pydantic_custom_output`.
|
386
|
-
OpenAI:
|
387
|
-
https://platform.openai.com/docs/guides/structured-outputs?context=ex1#function-calling-vs-response-format
|
388
|
-
https://platform.openai.com/docs/guides/structured-outputs?context=with_parse#some-type-specific-keywords-are-not-yet-supported
|
389
|
-
Gemini:
|
383
|
+
Structure a response format either from`response_fields` or `pydantic_custom_output`.
|
384
|
+
1 nested item is accepted.
|
390
385
|
"""
|
391
386
|
|
392
|
-
|
387
|
+
from versionhq.task.structured_response import StructuredOutput
|
388
|
+
|
389
|
+
response_format: Dict[str, Any] = None
|
393
390
|
|
394
391
|
if self.response_fields:
|
395
392
|
properties, required_fields = {}, []
|
@@ -406,37 +403,19 @@ Ref. Output image: {output_formats_to_follow}
|
|
406
403
|
"type": "object",
|
407
404
|
"properties": properties,
|
408
405
|
"required": required_fields,
|
409
|
-
"additionalProperties": False,
|
406
|
+
"additionalProperties": False,
|
410
407
|
}
|
411
408
|
|
412
|
-
|
413
|
-
|
414
|
-
|
415
|
-
**self.pydantic_custom_output.model_json_schema(),
|
416
|
-
"additionalProperties": False,
|
417
|
-
"required": [k for k, v in self.pydantic_custom_output.__fields__.items()],
|
418
|
-
"strict": True,
|
409
|
+
response_format = {
|
410
|
+
"type": "json_schema",
|
411
|
+
"json_schema": { "name": "outcome", "schema": response_schema }
|
419
412
|
}
|
420
413
|
|
421
414
|
|
422
|
-
|
423
|
-
|
424
|
-
return {
|
425
|
-
"type": data_type,
|
426
|
-
"response_schema": response_schema,
|
427
|
-
"enforce_validation": True
|
428
|
-
}
|
415
|
+
elif self.pydantic_custom_output:
|
416
|
+
response_format = StructuredOutput(response_format=self.pydantic_custom_output)._format()
|
429
417
|
|
430
|
-
|
431
|
-
if self.pydantic_custom_output:
|
432
|
-
return self.pydantic_custom_output
|
433
|
-
else:
|
434
|
-
return {
|
435
|
-
"type": "json_schema",
|
436
|
-
"json_schema": { "name": "outcome", "strict": True, "schema": response_schema },
|
437
|
-
}
|
438
|
-
else:
|
439
|
-
return None
|
418
|
+
return response_format
|
440
419
|
|
441
420
|
|
442
421
|
def _create_json_output(self, raw: str) -> Dict[str, Any]:
|
@@ -477,17 +456,16 @@ Ref. Output image: {output_formats_to_follow}
|
|
477
456
|
|
478
457
|
def _create_pydantic_output(self, raw: str = None, json_dict: Dict[str, Any] = None) -> InstanceOf[BaseModel]:
|
479
458
|
"""
|
480
|
-
Create pydantic output from
|
459
|
+
Create pydantic output from raw or json_dict output.
|
481
460
|
"""
|
482
461
|
|
483
|
-
output_pydantic =
|
484
|
-
json_dict = json_dict
|
462
|
+
output_pydantic = self.pydantic_custom_output
|
485
463
|
|
486
464
|
try:
|
487
|
-
if
|
488
|
-
json_dict = self._create_json_output(raw=raw)
|
465
|
+
json_dict = json_dict if json_dict else self._create_json_output(raw=raw)
|
489
466
|
|
490
|
-
|
467
|
+
for k, v in json_dict.items():
|
468
|
+
setattr(output_pydantic, k, v)
|
491
469
|
|
492
470
|
except:
|
493
471
|
pass
|
@@ -597,16 +575,18 @@ Ref. Output image: {output_formats_to_follow}
|
|
597
575
|
self.output = task_output
|
598
576
|
self.processed_by_agents.add(agent.role)
|
599
577
|
|
600
|
-
if self.callback:
|
601
|
-
self.callback(
|
578
|
+
if self.callback and isinstance(self.callback, Callable):
|
579
|
+
callback_res = self.callback(**self.callback_kwargs, **task_output.json_dict)
|
580
|
+
task_output.callback_output = callback_res
|
602
581
|
|
603
|
-
# if self.output_file:
|
582
|
+
# if self.output_file: ## disabled for now
|
604
583
|
# content = (
|
605
584
|
# json_output
|
606
585
|
# if json_output
|
607
586
|
# else pydantic_output.model_dump_json() if pydantic_output else result
|
608
587
|
# )
|
609
588
|
# self._save_file(content)
|
589
|
+
|
610
590
|
ended_at = datetime.datetime.now()
|
611
591
|
self.execution_span_in_sec = (ended_at - started_at).total_seconds()
|
612
592
|
|
@@ -0,0 +1,140 @@
|
|
1
|
+
from typing import Dict, Optional, Type, List, Any, TypeVar
|
2
|
+
|
3
|
+
from pydantic import BaseModel, Field, InstanceOf
|
4
|
+
|
5
|
+
from versionhq.llm.llm_vars import SchemaType
|
6
|
+
from versionhq.llm.model import LLM
|
7
|
+
|
8
|
+
|
9
|
+
"""
|
10
|
+
Structure a response schema (json schema) from the given Pydantic model.
|
11
|
+
"""
|
12
|
+
|
13
|
+
|
14
|
+
class StructuredObject:
|
15
|
+
"""
|
16
|
+
A class to store the structured dictionary.
|
17
|
+
"""
|
18
|
+
provider: str = "openai"
|
19
|
+
field: Type[Field]
|
20
|
+
|
21
|
+
title: str
|
22
|
+
dtype: str = "object"
|
23
|
+
properties: Dict[str, Dict[str, str]] = dict()
|
24
|
+
required: List[str] = list()
|
25
|
+
additionalProperties: bool = False
|
26
|
+
|
27
|
+
def __init__(self, name, field: Type[Field], provider: str | InstanceOf[LLM] = "openai"):
|
28
|
+
self.title = name
|
29
|
+
self.field = field
|
30
|
+
self.dtype = "object"
|
31
|
+
self.additionalProperties = False
|
32
|
+
self.provider = provider if isinstance(provider, str) else provider.provider
|
33
|
+
|
34
|
+
def _format(self):
|
35
|
+
if not self.field:
|
36
|
+
pass
|
37
|
+
else:
|
38
|
+
description = self.field.description if hasattr(self.field, "description") and self.field.description is not None else ""
|
39
|
+
self.properties.update({"item": { "type": SchemaType(self.field.annotation.__args__).convert() }})
|
40
|
+
self.required.append("item")
|
41
|
+
|
42
|
+
return {
|
43
|
+
self.title: {
|
44
|
+
"type": self.dtype,
|
45
|
+
"description": description,
|
46
|
+
"properties": self.properties,
|
47
|
+
"additionalProperties": self.additionalProperties,
|
48
|
+
"required": self.required
|
49
|
+
}
|
50
|
+
}
|
51
|
+
|
52
|
+
|
53
|
+
|
54
|
+
class StructuredList:
|
55
|
+
"""
|
56
|
+
A class to store a structured list with 1 nested object.
|
57
|
+
"""
|
58
|
+
provider: str = "openai"
|
59
|
+
field: Type[Field]
|
60
|
+
title: str = ""
|
61
|
+
dtype: str = "array"
|
62
|
+
items: Dict[str, Dict[str, str]] = dict()
|
63
|
+
|
64
|
+
def __init__(self, name, field: Type[Field], provider: str | LLM = "openai"):
|
65
|
+
self.provider = provider if isinstance(provider, str) else provider.provider
|
66
|
+
self.field = field
|
67
|
+
self.title = name
|
68
|
+
self.dtype = "array"
|
69
|
+
self.items = dict()
|
70
|
+
|
71
|
+
|
72
|
+
def _format(self):
|
73
|
+
field = self.field
|
74
|
+
if not field:
|
75
|
+
pass
|
76
|
+
else:
|
77
|
+
description = "" if field.description is None else field.description
|
78
|
+
props = {}
|
79
|
+
|
80
|
+
for item in field.annotation.__args__:
|
81
|
+
nested_object_type = item.__origin__ if hasattr(item, "__origin__") else item
|
82
|
+
|
83
|
+
if nested_object_type == dict:
|
84
|
+
props.update({
|
85
|
+
"nest": {
|
86
|
+
"type": "object",
|
87
|
+
"properties": { "item": { "type": "string"} }, #! REFINEME - field title <>`item`
|
88
|
+
"required": ["item",],
|
89
|
+
"additionalProperties": False
|
90
|
+
}})
|
91
|
+
|
92
|
+
elif nested_object_type == list:
|
93
|
+
props.update({
|
94
|
+
# "nest": {
|
95
|
+
"type": "array",
|
96
|
+
"items": { "type": "string" } , #! REFINEME - field title <>`item`
|
97
|
+
# }
|
98
|
+
})
|
99
|
+
else:
|
100
|
+
props.update({ "type": SchemaType(nested_object_type).convert() })
|
101
|
+
|
102
|
+
self.items = { **props }
|
103
|
+
return {
|
104
|
+
self.title: {
|
105
|
+
"type": self.dtype,
|
106
|
+
"description": description,
|
107
|
+
"items": self.items,
|
108
|
+
}
|
109
|
+
}
|
110
|
+
|
111
|
+
|
112
|
+
class StructuredOutput(BaseModel):
|
113
|
+
response_format: Any = None
|
114
|
+
provider: str = "openai"
|
115
|
+
applicable_models: List[InstanceOf[LLM] | str] = list()
|
116
|
+
name: str = ""
|
117
|
+
schema: Dict[str, Any] = dict(type="object", additionalProperties=False, properties=dict(), required=list())
|
118
|
+
|
119
|
+
|
120
|
+
def _format(self, **kwargs):
|
121
|
+
if self.response_format is None:
|
122
|
+
pass
|
123
|
+
|
124
|
+
self.name = self.response_format.__name__
|
125
|
+
|
126
|
+
for name, field in self.response_format.model_fields.items():
|
127
|
+
self.schema["required"].append(name)
|
128
|
+
|
129
|
+
if hasattr(field.annotation, "__origin__") and field.annotation.__origin__ == dict:
|
130
|
+
self.schema["properties"].update(StructuredObject(name=name, field=field)._format())
|
131
|
+
|
132
|
+
elif hasattr(field.annotation, "__origin__") and field.annotation.__origin__ == list:
|
133
|
+
self.schema["properties"].update(StructuredList(name=name, field=field)._format())
|
134
|
+
else:
|
135
|
+
self.schema["properties"].update({ name: { "type": SchemaType(field.annotation).convert(), **kwargs }})
|
136
|
+
|
137
|
+
return {
|
138
|
+
"type": "json_schema",
|
139
|
+
"json_schema": { "name": self.name, "schema": self.schema }
|
140
|
+
}
|
@@ -1,4 +1,4 @@
|
|
1
|
-
versionhq/__init__.py,sha256=
|
1
|
+
versionhq/__init__.py,sha256=Qyl2FbktMQEDCkzVHeRjD9bAfYO_1XpEMXph6wJHu4w,951
|
2
2
|
versionhq/_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
3
3
|
versionhq/_utils/i18n.py,sha256=TwA_PnYfDLA6VqlUDPuybdV9lgi3Frh_ASsb_X8jJo8,1483
|
4
4
|
versionhq/_utils/logger.py,sha256=U-MpeGueA6YS8Ptfy0VnU_ePsZP-8Pvkvi0tZ4s_UMg,1438
|
@@ -6,7 +6,7 @@ versionhq/_utils/process_config.py,sha256=jbPGXK2Kb4iyCugJ3FwRJuU0wL5Trq2x4xFQz2
|
|
6
6
|
versionhq/_utils/rpm_controller.py,sha256=dUgFd6JtdjiLLTRmrjsBHdTaLn73XFuKpLbJh7thf2A,2289
|
7
7
|
versionhq/_utils/usage_metrics.py,sha256=hhq1OCW8Z4V93vwW2O2j528EyjOlF8wlTsX5IL-7asA,1106
|
8
8
|
versionhq/agent/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
9
|
-
versionhq/agent/model.py,sha256=
|
9
|
+
versionhq/agent/model.py,sha256=6lXKEPOo8BLpiUWppMQkeenb1NR0i7LIBAvfPvSLLSQ,19281
|
10
10
|
versionhq/agent/parser.py,sha256=Z_swUPO3piJQuYU8oVYwXWeR2zjmNb4PxbXZeR-GlIg,4694
|
11
11
|
versionhq/agent/TEMPLATES/Backstory.py,sha256=Gub3SUbdrNAwV0ITLYdZFJ4VFZRDfDRPdBZrtlknrds,554
|
12
12
|
versionhq/agent/TEMPLATES/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -19,14 +19,15 @@ versionhq/clients/product/model.py,sha256=hLTvvQsatNuq0DtyTqpP_gRKgnv6N4uRjavnGf
|
|
19
19
|
versionhq/clients/workflow/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
20
20
|
versionhq/clients/workflow/model.py,sha256=FNftenLLoha0bkivrjId32awLHAkBwIT8iNljdic_bw,6003
|
21
21
|
versionhq/llm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
22
|
-
versionhq/llm/llm_vars.py,sha256=
|
23
|
-
versionhq/llm/model.py,sha256=
|
22
|
+
versionhq/llm/llm_vars.py,sha256=PO__b-h5e-6oQ-uoIgXx3lPSAUPUwXYfdVRW73fvX14,8761
|
23
|
+
versionhq/llm/model.py,sha256=KAONedzfpGFpkQCv0THJGj2ffMxrrDSRcN7bsYEuGv0,13386
|
24
24
|
versionhq/storage/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
25
25
|
versionhq/storage/task_output_storage.py,sha256=xoBJHeqUyQt6iJoR1WQTghP-fyxXL66qslpX1QC2-4o,4827
|
26
26
|
versionhq/task/__init__.py,sha256=l2r_g01i91JAGlOoHZP_Gh2WCk6mo9D19lcqt7sKMpQ,186
|
27
27
|
versionhq/task/formatter.py,sha256=N8Kmk9vtrMtBdgJ8J7RmlKNMdZWSmV8O1bDexmCWgU0,643
|
28
28
|
versionhq/task/log_handler.py,sha256=KJRrcNZgFSKhlNzvtYFnvtp6xukaF1s7ifX9u4zWrN8,1683
|
29
|
-
versionhq/task/model.py,sha256
|
29
|
+
versionhq/task/model.py,sha256=-ZBCHXdNdvSQKeSeu-GloE_JYYR2Ljei8faTLY4Nn98,25441
|
30
|
+
versionhq/task/structured_response.py,sha256=h5GbbkCNJ27f4AbHcriGctQLFSp4qlmq2REDEfSd8xU,4786
|
30
31
|
versionhq/team/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
31
32
|
versionhq/team/model.py,sha256=NzcRXWwP0adWL9vsnsmI-A5dOcE3199FGmGgemUB2VA,20043
|
32
33
|
versionhq/team/team_planner.py,sha256=XkM93ItI59cuEzMN1s1jJ-B4LyalSZnAlYBY5SUCbVs,3603
|
@@ -37,8 +38,8 @@ versionhq/tool/composio_tool_vars.py,sha256=FvBuEXsOQUYnN7RTFxT20kAkiEYkxWKkiVtg
|
|
37
38
|
versionhq/tool/decorator.py,sha256=C4ZM7Xi2gwtEMaSeRo-geo_g_MAkY77WkSLkAuY0AyI,1205
|
38
39
|
versionhq/tool/model.py,sha256=5qG-OH7zohvepPDOjdjDulhEqmNUM4osiyk5LaxmSiU,12333
|
39
40
|
versionhq/tool/tool_handler.py,sha256=2m41K8qo5bGCCbwMFferEjT-XZ-mE9F0mDUOBkgivOI,1416
|
40
|
-
versionhq-1.1.10.
|
41
|
-
versionhq-1.1.10.
|
42
|
-
versionhq-1.1.10.
|
43
|
-
versionhq-1.1.10.
|
44
|
-
versionhq-1.1.10.
|
41
|
+
versionhq-1.1.10.4.dist-info/LICENSE,sha256=7CCXuMrAjPVsUvZrsBq9DsxI2rLDUSYXR_qj4yO_ZII,1077
|
42
|
+
versionhq-1.1.10.4.dist-info/METADATA,sha256=czccqTaFssL2JXVnEcP62zWL2BIsnHAlfPYeH8hc8yQ,16356
|
43
|
+
versionhq-1.1.10.4.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
44
|
+
versionhq-1.1.10.4.dist-info/top_level.txt,sha256=DClQwxDWqIUGeRJkA8vBlgeNsYZs4_nJWMonzFt5Wj0,10
|
45
|
+
versionhq-1.1.10.4.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|