versionhq 1.1.10.2__py3-none-any.whl → 1.1.10.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
versionhq/__init__.py CHANGED
@@ -18,7 +18,7 @@ from versionhq.tool.model import Tool
18
18
  from versionhq.tool.composio_tool import ComposioHandler
19
19
 
20
20
 
21
- __version__ = "1.1.10.2"
21
+ __version__ = "1.1.10.4"
22
22
  __all__ = [
23
23
  "Agent",
24
24
  "Customer",
versionhq/agent/model.py CHANGED
@@ -255,9 +255,9 @@ class Agent(BaseModel):
255
255
  llm.timeout = self.max_execution_time if llm.timeout is None else llm.timeout
256
256
  llm.max_tokens = self.max_tokens if self.max_tokens else llm.max_tokens
257
257
 
258
- # if self.callbacks:
259
- # llm.callbacks = self.callbacks
260
- # llm._set_callbacks(llm.callbacks)
258
+ if self.callbacks:
259
+ llm.callbacks = self.callbacks
260
+ llm._set_callbacks(llm.callbacks)
261
261
 
262
262
  if self.respect_context_window == False:
263
263
  llm.context_window_size = DEFAULT_CONTEXT_WINDOW_SIZE
@@ -364,9 +364,6 @@ class Agent(BaseModel):
364
364
  task_execution_counter += 1
365
365
  self._logger.log(level="info", message=f"Agent response: {raw_response}", color="blue")
366
366
 
367
- if raw_response and self.callbacks:
368
- for item in self.callbacks:
369
- raw_response = item(raw_response)
370
367
 
371
368
  except Exception as e:
372
369
  self._logger.log(level="error", message=f"An error occured. The agent will retry: {str(e)}", color="red")
@@ -379,10 +376,6 @@ class Agent(BaseModel):
379
376
  task_execution_counter += 1
380
377
  self._logger.log(level="info", message=f"Agent #{task_execution_counter} response: {raw_response}", color="blue")
381
378
 
382
- if raw_response and self.callbacks:
383
- for item in self.callbacks:
384
- raw_response = item(raw_response)
385
-
386
379
  if not raw_response:
387
380
  self._logger.log(level="error", message="Received None or empty response from the model", color="red")
388
381
  raise ValueError("Invalid response from LLM call - None or empty.")
@@ -390,7 +383,7 @@ class Agent(BaseModel):
390
383
  return raw_response
391
384
 
392
385
 
393
- def execute_task(self, task, context: Optional[str] = None, task_tools: Optional[List[Tool | ToolSet]] = None) -> str:
386
+ def execute_task(self, task, context: Optional[str] = None, task_tools: Optional[List[Tool | ToolSet]] = list()) -> str:
394
387
  """
395
388
  Execute the task and return the response in string.
396
389
  The agent utilizes the tools in task or their own tools if the task.can_use_agent_tools is True.
@@ -405,24 +398,6 @@ class Agent(BaseModel):
405
398
  if context is not task.prompt_context:
406
399
  task_prompt += context
407
400
 
408
- # if agent_tools_to_run_without_llm:
409
- # tool_results = []
410
- # for item in agent_tools_to_run_without_llm:
411
- # if isinstance(item, ToolSet):
412
- # tool_result = item.tool.run(**item.kwargs)
413
- # tool_results.append(tool_result)
414
- # elif isinstance(item, Tool):
415
- # tool_result = item.run()
416
- # tool_results.append(tool_result)
417
- # else:
418
- # try:
419
- # item.run()
420
- # except:
421
- # pass
422
-
423
- # if task.tool_res_as_final is True:
424
- # return tool_results
425
-
426
401
  # if self.team and self.team._train:
427
402
  # task_prompt = self._training_handler(task_prompt=task_prompt)
428
403
  # else:
versionhq/llm/llm_vars.py CHANGED
@@ -16,7 +16,7 @@ litellm.pick_cheapest_chat_models_from_llm_provider(custom_llm_provider: str, n=
16
16
 
17
17
  MODELS = {
18
18
  "openai": [
19
- "gpt-3.5-turbo",
19
+ # "gpt-3.5-turbo",
20
20
  "gpt-4",
21
21
  "gpt-4o",
22
22
  "gpt-4o-mini",
versionhq/llm/model.py CHANGED
@@ -196,17 +196,18 @@ class LLM(BaseModel):
196
196
  """
197
197
  Execute LLM based on the agent's params and model params.
198
198
  """
199
+ litellm.drop_params = True
199
200
 
200
201
  with suppress_warnings():
201
202
  if len(self.callbacks) > 0:
202
- self._set_callbacks(self.callbacks)
203
+ self._set_callbacks(self.callbacks) # passed by agent
203
204
 
204
205
  try:
205
206
  if tools:
206
207
  self.tools = [item.tool.properties if isinstance(item, ToolSet) else item.properties for item in tools]
207
208
 
208
209
  if response_format:
209
- self.response_format = { "type": "json_object" } if self.model == "gpt-3.5-turbo" or tool_res_as_final else response_format
210
+ self.response_format = { "type": "json_object" } if tool_res_as_final else response_format
210
211
 
211
212
  provider = self.provider if self.provider else "openai"
212
213
 
@@ -227,6 +228,7 @@ class LLM(BaseModel):
227
228
  res = litellm.completion(messages=messages, stream=False, **params)
228
229
 
229
230
  if self.tools:
231
+ messages.append(res["choices"][0]["message"])
230
232
  tool_calls = res["choices"][0]["message"]["tool_calls"]
231
233
  tool_res = ""
232
234
 
@@ -242,18 +244,23 @@ class LLM(BaseModel):
242
244
  tool_instance = tool.tool
243
245
  args = tool.kwargs
244
246
  res = tool_instance.run(params=args)
245
- tool_res += str(res)
247
+
248
+ if tool_res_as_final:
249
+ tool_res += str(res)
250
+ else:
251
+ messages.append({ "role": "tool", "tool_call_id": item.id, "content": str(res) })
246
252
 
247
253
  elif (isinstance(tool, Tool) or type(tool) == Tool) and (tool.name.replace(" ", "_") == func_name or tool.func.__name__ == func_name):
248
254
  res = tool.run(params=func_args)
249
- tool_res += str(res)
255
+ if tool_res_as_final:
256
+ tool_res += str(res)
257
+ else:
258
+ messages.append({ "role": "tool", "tool_call_id": item.id, "content": str(res) })
250
259
 
251
- if tool_res_as_final == True:
260
+ if tool_res_as_final:
252
261
  return tool_res
253
- pass
254
262
 
255
263
  else:
256
- messages.append({ "role": "tool", "tool_call_id": tool_calls.id, "content": tool_res })
257
264
  res = litellm.completion(messages=messages, stream=False, **params)
258
265
 
259
266
  return res["choices"][0]["message"]["content"]
versionhq/task/model.py CHANGED
@@ -4,10 +4,10 @@ import datetime
4
4
  import uuid
5
5
  from concurrent.futures import Future
6
6
  from hashlib import md5
7
- from typing import Any, Dict, List, Set, Optional, Tuple, Callable, Type
7
+ from typing import Any, Dict, List, Set, Optional, Tuple, Callable, Type, TypeVar
8
8
  from typing_extensions import Annotated, Self
9
9
 
10
- from pydantic import UUID4, BaseModel, Field, PrivateAttr, field_validator, model_validator, create_model, InstanceOf
10
+ from pydantic import UUID4, BaseModel, Field, PrivateAttr, field_validator, model_validator, create_model, InstanceOf, field_validator
11
11
  from pydantic_core import PydanticCustomError
12
12
 
13
13
  from versionhq._utils.process_config import process_config
@@ -96,8 +96,8 @@ class ResponseField(BaseModel):
96
96
  for item in self.properties:
97
97
  p.update(**item._format_props())
98
98
 
99
- if item.required:
100
- r.append(item.title)
99
+ # if item.required:
100
+ r.append(item.title)
101
101
 
102
102
  props = {
103
103
  "type": schema_type,
@@ -161,15 +161,15 @@ class ResponseField(BaseModel):
161
161
 
162
162
  class TaskOutput(BaseModel):
163
163
  """
164
- Store the final output of the task in TaskOutput class.
165
- Depending on the task output format, use `raw`, `pydantic`, `json_dict` accordingly.
164
+ A class to store the final output of the given task in raw (string), json_dict, and pydantic class formats.
166
165
  """
167
166
 
168
167
  task_id: UUID4 = Field(default_factory=uuid.uuid4, frozen=True, description="store Task ID")
169
168
  raw: str = Field(default="", description="Raw output of the task")
170
169
  json_dict: Dict[str, Any] = Field(default=None, description="`raw` converted to dictionary")
171
- pydantic: Optional[Any] = Field(default=None, description="`raw` converted to the abs. pydantic model")
170
+ pydantic: Optional[Any] = Field(default=None)
172
171
  tool_output: Optional[Any] = Field(default=None, description="store tool result when the task takes tool output as its final output")
172
+ gott: Optional[Any] = Field(default=None, description="store task or agent callback outcome")
173
173
 
174
174
  def __str__(self) -> str:
175
175
  return str(self.pydantic) if self.pydantic else str(self.json_dict) if self.json_dict else self.raw
@@ -244,7 +244,7 @@ class Task(BaseModel):
244
244
  # execution rules
245
245
  allow_delegation: bool = Field(default=False, description="ask other agents for help and run the task instead")
246
246
  async_execution: bool = Field(default=False,description="whether the task should be executed asynchronously or not")
247
- callback: Optional[Any] = Field(default=None, description="callback to be executed after the task is completed.")
247
+ callback: Optional[Callable] = Field(default=None, description="callback to be executed after the task is completed.")
248
248
  callback_kwargs: Optional[Dict[str, Any]] = Field(default_factory=dict, description="kwargs for the callback when the callback is callable")
249
249
 
250
250
  # recording
@@ -256,7 +256,7 @@ class Task(BaseModel):
256
256
 
257
257
  @model_validator(mode="before")
258
258
  @classmethod
259
- def process_model_config(cls, values: Dict[str, Any]) -> None:
259
+ def process_config(cls, values: Dict[str, Any]) -> None:
260
260
  return process_config(values_to_update=values, model_class=cls)
261
261
 
262
262
 
@@ -276,16 +276,16 @@ class Task(BaseModel):
276
276
  return self
277
277
 
278
278
 
279
- @model_validator(mode="after")
280
- def set_attributes_based_on_config(self) -> Self:
281
- """
282
- Set attributes based on the task configuration.
283
- """
279
+ # @model_validator(mode="after")
280
+ # def set_attributes_based_on_config(self) -> Self:
281
+ # """
282
+ # Set attributes based on the task configuration.
283
+ # """
284
284
 
285
- if self.config:
286
- for key, value in self.config.items():
287
- setattr(self, key, value)
288
- return self
285
+ # if self.config:
286
+ # for key, value in self.config.items():
287
+ # setattr(self, key, value)
288
+ # return self
289
289
 
290
290
 
291
291
  @model_validator(mode="after")
@@ -322,7 +322,7 @@ class Task(BaseModel):
322
322
  if self.pydantic_custom_output:
323
323
  output_prompt = f"""
324
324
  Your response MUST STRICTLY follow the given repsonse format:
325
- JSON schema: {str({k: v for k, v in self.pydantic_custom_output.__fields__.items()})}
325
+ JSON schema: {str(self.pydantic_custom_output)}
326
326
  """
327
327
 
328
328
  elif self.response_fields:
@@ -380,16 +380,13 @@ Ref. Output image: {output_formats_to_follow}
380
380
 
381
381
  def _structure_response_format(self, data_type: str = "object", model_provider: str = "gemini") -> Dict[str, Any] | None:
382
382
  """
383
- Create and return a valid response format using
384
- - mannual response schema from `self.response_fields`, or
385
- - SDK objects from `pydantic_custom_output`.
386
- OpenAI:
387
- https://platform.openai.com/docs/guides/structured-outputs?context=ex1#function-calling-vs-response-format
388
- https://platform.openai.com/docs/guides/structured-outputs?context=with_parse#some-type-specific-keywords-are-not-yet-supported
389
- Gemini:
383
+ Structure a response format either from`response_fields` or `pydantic_custom_output`.
384
+ 1 nested item is accepted.
390
385
  """
391
386
 
392
- response_schema = None
387
+ from versionhq.task.structured_response import StructuredOutput
388
+
389
+ response_format: Dict[str, Any] = None
393
390
 
394
391
  if self.response_fields:
395
392
  properties, required_fields = {}, []
@@ -406,37 +403,19 @@ Ref. Output image: {output_formats_to_follow}
406
403
  "type": "object",
407
404
  "properties": properties,
408
405
  "required": required_fields,
409
- "additionalProperties": False, # for openai
406
+ "additionalProperties": False,
410
407
  }
411
408
 
412
-
413
- elif self.pydantic_custom_output:
414
- response_schema = {
415
- **self.pydantic_custom_output.model_json_schema(),
416
- "additionalProperties": False,
417
- "required": [k for k, v in self.pydantic_custom_output.__fields__.items()],
418
- "strict": True,
409
+ response_format = {
410
+ "type": "json_schema",
411
+ "json_schema": { "name": "outcome", "schema": response_schema }
419
412
  }
420
413
 
421
414
 
422
- if response_schema:
423
- if model_provider == "gemini":
424
- return {
425
- "type": data_type,
426
- "response_schema": response_schema,
427
- "enforce_validation": True
428
- }
415
+ elif self.pydantic_custom_output:
416
+ response_format = StructuredOutput(response_format=self.pydantic_custom_output)._format()
429
417
 
430
- if model_provider == "openai":
431
- if self.pydantic_custom_output:
432
- return self.pydantic_custom_output
433
- else:
434
- return {
435
- "type": "json_schema",
436
- "json_schema": { "name": "outcome", "strict": True, "schema": response_schema },
437
- }
438
- else:
439
- return None
418
+ return response_format
440
419
 
441
420
 
442
421
  def _create_json_output(self, raw: str) -> Dict[str, Any]:
@@ -477,17 +456,16 @@ Ref. Output image: {output_formats_to_follow}
477
456
 
478
457
  def _create_pydantic_output(self, raw: str = None, json_dict: Dict[str, Any] = None) -> InstanceOf[BaseModel]:
479
458
  """
480
- Create pydantic output from the `raw` result.
459
+ Create pydantic output from raw or json_dict output.
481
460
  """
482
461
 
483
- output_pydantic = None
484
- json_dict = json_dict
462
+ output_pydantic = self.pydantic_custom_output
485
463
 
486
464
  try:
487
- if not json_dict:
488
- json_dict = self._create_json_output(raw=raw)
465
+ json_dict = json_dict if json_dict else self._create_json_output(raw=raw)
489
466
 
490
- output_pydantic = self.pydantic_custom_output(**json_dict)
467
+ for k, v in json_dict.items():
468
+ setattr(output_pydantic, k, v)
491
469
 
492
470
  except:
493
471
  pass
@@ -597,16 +575,18 @@ Ref. Output image: {output_formats_to_follow}
597
575
  self.output = task_output
598
576
  self.processed_by_agents.add(agent.role)
599
577
 
600
- if self.callback:
601
- self.callback({ **self.callback_kwargs, **self.output.__dict__ })
578
+ if self.callback and isinstance(self.callback, Callable):
579
+ callback_res = self.callback(**self.callback_kwargs, **task_output.json_dict)
580
+ task_output.callback_output = callback_res
602
581
 
603
- # if self.output_file:
582
+ # if self.output_file: ## disabled for now
604
583
  # content = (
605
584
  # json_output
606
585
  # if json_output
607
586
  # else pydantic_output.model_dump_json() if pydantic_output else result
608
587
  # )
609
588
  # self._save_file(content)
589
+
610
590
  ended_at = datetime.datetime.now()
611
591
  self.execution_span_in_sec = (ended_at - started_at).total_seconds()
612
592
 
@@ -0,0 +1,140 @@
1
+ from typing import Dict, Optional, Type, List, Any, TypeVar
2
+
3
+ from pydantic import BaseModel, Field, InstanceOf
4
+
5
+ from versionhq.llm.llm_vars import SchemaType
6
+ from versionhq.llm.model import LLM
7
+
8
+
9
+ """
10
+ Structure a response schema (json schema) from the given Pydantic model.
11
+ """
12
+
13
+
14
+ class StructuredObject:
15
+ """
16
+ A class to store the structured dictionary.
17
+ """
18
+ provider: str = "openai"
19
+ field: Type[Field]
20
+
21
+ title: str
22
+ dtype: str = "object"
23
+ properties: Dict[str, Dict[str, str]] = dict()
24
+ required: List[str] = list()
25
+ additionalProperties: bool = False
26
+
27
+ def __init__(self, name, field: Type[Field], provider: str | InstanceOf[LLM] = "openai"):
28
+ self.title = name
29
+ self.field = field
30
+ self.dtype = "object"
31
+ self.additionalProperties = False
32
+ self.provider = provider if isinstance(provider, str) else provider.provider
33
+
34
+ def _format(self):
35
+ if not self.field:
36
+ pass
37
+ else:
38
+ description = self.field.description if hasattr(self.field, "description") and self.field.description is not None else ""
39
+ self.properties.update({"item": { "type": SchemaType(self.field.annotation.__args__).convert() }})
40
+ self.required.append("item")
41
+
42
+ return {
43
+ self.title: {
44
+ "type": self.dtype,
45
+ "description": description,
46
+ "properties": self.properties,
47
+ "additionalProperties": self.additionalProperties,
48
+ "required": self.required
49
+ }
50
+ }
51
+
52
+
53
+
54
+ class StructuredList:
55
+ """
56
+ A class to store a structured list with 1 nested object.
57
+ """
58
+ provider: str = "openai"
59
+ field: Type[Field]
60
+ title: str = ""
61
+ dtype: str = "array"
62
+ items: Dict[str, Dict[str, str]] = dict()
63
+
64
+ def __init__(self, name, field: Type[Field], provider: str | LLM = "openai"):
65
+ self.provider = provider if isinstance(provider, str) else provider.provider
66
+ self.field = field
67
+ self.title = name
68
+ self.dtype = "array"
69
+ self.items = dict()
70
+
71
+
72
+ def _format(self):
73
+ field = self.field
74
+ if not field:
75
+ pass
76
+ else:
77
+ description = "" if field.description is None else field.description
78
+ props = {}
79
+
80
+ for item in field.annotation.__args__:
81
+ nested_object_type = item.__origin__ if hasattr(item, "__origin__") else item
82
+
83
+ if nested_object_type == dict:
84
+ props.update({
85
+ "nest": {
86
+ "type": "object",
87
+ "properties": { "item": { "type": "string"} }, #! REFINEME - field title <>`item`
88
+ "required": ["item",],
89
+ "additionalProperties": False
90
+ }})
91
+
92
+ elif nested_object_type == list:
93
+ props.update({
94
+ # "nest": {
95
+ "type": "array",
96
+ "items": { "type": "string" } , #! REFINEME - field title <>`item`
97
+ # }
98
+ })
99
+ else:
100
+ props.update({ "type": SchemaType(nested_object_type).convert() })
101
+
102
+ self.items = { **props }
103
+ return {
104
+ self.title: {
105
+ "type": self.dtype,
106
+ "description": description,
107
+ "items": self.items,
108
+ }
109
+ }
110
+
111
+
112
+ class StructuredOutput(BaseModel):
113
+ response_format: Any = None
114
+ provider: str = "openai"
115
+ applicable_models: List[InstanceOf[LLM] | str] = list()
116
+ name: str = ""
117
+ schema: Dict[str, Any] = dict(type="object", additionalProperties=False, properties=dict(), required=list())
118
+
119
+
120
+ def _format(self, **kwargs):
121
+ if self.response_format is None:
122
+ pass
123
+
124
+ self.name = self.response_format.__name__
125
+
126
+ for name, field in self.response_format.model_fields.items():
127
+ self.schema["required"].append(name)
128
+
129
+ if hasattr(field.annotation, "__origin__") and field.annotation.__origin__ == dict:
130
+ self.schema["properties"].update(StructuredObject(name=name, field=field)._format())
131
+
132
+ elif hasattr(field.annotation, "__origin__") and field.annotation.__origin__ == list:
133
+ self.schema["properties"].update(StructuredList(name=name, field=field)._format())
134
+ else:
135
+ self.schema["properties"].update({ name: { "type": SchemaType(field.annotation).convert(), **kwargs }})
136
+
137
+ return {
138
+ "type": "json_schema",
139
+ "json_schema": { "name": self.name, "schema": self.schema }
140
+ }
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: versionhq
3
- Version: 1.1.10.2
3
+ Version: 1.1.10.4
4
4
  Summary: LLM orchestration frameworks for model-agnostic AI agents that handle complex outbound workflows
5
5
  Author-email: Kuriko Iwai <kuriko@versi0n.io>
6
6
  License: MIT License
@@ -1,4 +1,4 @@
1
- versionhq/__init__.py,sha256=GkGY1ob5I6BdJjds_hdxOYWJ8n3EIWjTAQ48v1UheoQ,951
1
+ versionhq/__init__.py,sha256=Qyl2FbktMQEDCkzVHeRjD9bAfYO_1XpEMXph6wJHu4w,951
2
2
  versionhq/_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
3
  versionhq/_utils/i18n.py,sha256=TwA_PnYfDLA6VqlUDPuybdV9lgi3Frh_ASsb_X8jJo8,1483
4
4
  versionhq/_utils/logger.py,sha256=U-MpeGueA6YS8Ptfy0VnU_ePsZP-8Pvkvi0tZ4s_UMg,1438
@@ -6,7 +6,7 @@ versionhq/_utils/process_config.py,sha256=jbPGXK2Kb4iyCugJ3FwRJuU0wL5Trq2x4xFQz2
6
6
  versionhq/_utils/rpm_controller.py,sha256=dUgFd6JtdjiLLTRmrjsBHdTaLn73XFuKpLbJh7thf2A,2289
7
7
  versionhq/_utils/usage_metrics.py,sha256=hhq1OCW8Z4V93vwW2O2j528EyjOlF8wlTsX5IL-7asA,1106
8
8
  versionhq/agent/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
9
- versionhq/agent/model.py,sha256=g8S8d0uHORrpq2mAUzo1Tx1hZmtYKk8HT55iOICSte8,20344
9
+ versionhq/agent/model.py,sha256=6lXKEPOo8BLpiUWppMQkeenb1NR0i7LIBAvfPvSLLSQ,19281
10
10
  versionhq/agent/parser.py,sha256=Z_swUPO3piJQuYU8oVYwXWeR2zjmNb4PxbXZeR-GlIg,4694
11
11
  versionhq/agent/TEMPLATES/Backstory.py,sha256=Gub3SUbdrNAwV0ITLYdZFJ4VFZRDfDRPdBZrtlknrds,554
12
12
  versionhq/agent/TEMPLATES/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -19,14 +19,15 @@ versionhq/clients/product/model.py,sha256=hLTvvQsatNuq0DtyTqpP_gRKgnv6N4uRjavnGf
19
19
  versionhq/clients/workflow/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
20
20
  versionhq/clients/workflow/model.py,sha256=FNftenLLoha0bkivrjId32awLHAkBwIT8iNljdic_bw,6003
21
21
  versionhq/llm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
22
- versionhq/llm/llm_vars.py,sha256=SSrkrph1Nf6nvwsqf48vMovs2byxbL33CI8kcoakHK0,8759
23
- versionhq/llm/model.py,sha256=2waDxP_pISqqF2MTTdvzARi0hS9xna_d7YoGMwf8RGM,13020
22
+ versionhq/llm/llm_vars.py,sha256=PO__b-h5e-6oQ-uoIgXx3lPSAUPUwXYfdVRW73fvX14,8761
23
+ versionhq/llm/model.py,sha256=KAONedzfpGFpkQCv0THJGj2ffMxrrDSRcN7bsYEuGv0,13386
24
24
  versionhq/storage/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
25
25
  versionhq/storage/task_output_storage.py,sha256=xoBJHeqUyQt6iJoR1WQTghP-fyxXL66qslpX1QC2-4o,4827
26
26
  versionhq/task/__init__.py,sha256=l2r_g01i91JAGlOoHZP_Gh2WCk6mo9D19lcqt7sKMpQ,186
27
27
  versionhq/task/formatter.py,sha256=N8Kmk9vtrMtBdgJ8J7RmlKNMdZWSmV8O1bDexmCWgU0,643
28
28
  versionhq/task/log_handler.py,sha256=KJRrcNZgFSKhlNzvtYFnvtp6xukaF1s7ifX9u4zWrN8,1683
29
- versionhq/task/model.py,sha256=Kj_a67TitiQsy9uZST7yDdi3mXcQqRhbdOF3DZ_fwjA,26207
29
+ versionhq/task/model.py,sha256=-ZBCHXdNdvSQKeSeu-GloE_JYYR2Ljei8faTLY4Nn98,25441
30
+ versionhq/task/structured_response.py,sha256=h5GbbkCNJ27f4AbHcriGctQLFSp4qlmq2REDEfSd8xU,4786
30
31
  versionhq/team/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
31
32
  versionhq/team/model.py,sha256=NzcRXWwP0adWL9vsnsmI-A5dOcE3199FGmGgemUB2VA,20043
32
33
  versionhq/team/team_planner.py,sha256=XkM93ItI59cuEzMN1s1jJ-B4LyalSZnAlYBY5SUCbVs,3603
@@ -37,8 +38,8 @@ versionhq/tool/composio_tool_vars.py,sha256=FvBuEXsOQUYnN7RTFxT20kAkiEYkxWKkiVtg
37
38
  versionhq/tool/decorator.py,sha256=C4ZM7Xi2gwtEMaSeRo-geo_g_MAkY77WkSLkAuY0AyI,1205
38
39
  versionhq/tool/model.py,sha256=5qG-OH7zohvepPDOjdjDulhEqmNUM4osiyk5LaxmSiU,12333
39
40
  versionhq/tool/tool_handler.py,sha256=2m41K8qo5bGCCbwMFferEjT-XZ-mE9F0mDUOBkgivOI,1416
40
- versionhq-1.1.10.2.dist-info/LICENSE,sha256=7CCXuMrAjPVsUvZrsBq9DsxI2rLDUSYXR_qj4yO_ZII,1077
41
- versionhq-1.1.10.2.dist-info/METADATA,sha256=UJJNvaPJqRsEQepGITgpHi6rcGmpXPO-zS_tuNVJpiY,16356
42
- versionhq-1.1.10.2.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
43
- versionhq-1.1.10.2.dist-info/top_level.txt,sha256=DClQwxDWqIUGeRJkA8vBlgeNsYZs4_nJWMonzFt5Wj0,10
44
- versionhq-1.1.10.2.dist-info/RECORD,,
41
+ versionhq-1.1.10.4.dist-info/LICENSE,sha256=7CCXuMrAjPVsUvZrsBq9DsxI2rLDUSYXR_qj4yO_ZII,1077
42
+ versionhq-1.1.10.4.dist-info/METADATA,sha256=czccqTaFssL2JXVnEcP62zWL2BIsnHAlfPYeH8hc8yQ,16356
43
+ versionhq-1.1.10.4.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
44
+ versionhq-1.1.10.4.dist-info/top_level.txt,sha256=DClQwxDWqIUGeRJkA8vBlgeNsYZs4_nJWMonzFt5Wj0,10
45
+ versionhq-1.1.10.4.dist-info/RECORD,,