vellum-ai 1.3.7__py3-none-any.whl → 1.3.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -27,10 +27,10 @@ class BaseClientWrapper:
27
27
 
28
28
  def get_headers(self) -> typing.Dict[str, str]:
29
29
  headers: typing.Dict[str, str] = {
30
- "User-Agent": "vellum-ai/1.3.7",
30
+ "User-Agent": "vellum-ai/1.3.8",
31
31
  "X-Fern-Language": "Python",
32
32
  "X-Fern-SDK-Name": "vellum-ai",
33
- "X-Fern-SDK-Version": "1.3.7",
33
+ "X-Fern-SDK-Version": "1.3.8",
34
34
  **(self.get_custom_headers() or {}),
35
35
  }
36
36
  if self._api_version is not None:
@@ -11,6 +11,7 @@ from .vellum_sdk_error import VellumSdkError
11
11
  class NodeExecutionRejectedBody(UniversalBaseModel):
12
12
  node_definition: VellumCodeResourceDefinition
13
13
  error: VellumSdkError
14
+ stacktrace: typing.Optional[str] = None
14
15
 
15
16
  if IS_PYDANTIC_V2:
16
17
  model_config: typing.ClassVar[pydantic.ConfigDict] = pydantic.ConfigDict(extra="allow", frozen=True) # type: ignore # Pydantic v2
@@ -10,6 +10,7 @@ from .workflow_execution_event_error_code import WorkflowExecutionEventErrorCode
10
10
  class WorkflowEventError(UniversalBaseModel):
11
11
  message: str
12
12
  code: WorkflowExecutionEventErrorCode
13
+ stacktrace: typing.Optional[str] = None
13
14
 
14
15
  if IS_PYDANTIC_V2:
15
16
  model_config: typing.ClassVar[pydantic.ConfigDict] = pydantic.ConfigDict(extra="allow", frozen=True) # type: ignore # Pydantic v2
@@ -11,6 +11,7 @@ from .vellum_sdk_error import VellumSdkError
11
11
  class WorkflowExecutionRejectedBody(UniversalBaseModel):
12
12
  workflow_definition: VellumCodeResourceDefinition
13
13
  error: VellumSdkError
14
+ stacktrace: typing.Optional[str] = None
14
15
 
15
16
  if IS_PYDANTIC_V2:
16
17
  model_config: typing.ClassVar[pydantic.ConfigDict] = pydantic.ConfigDict(extra="allow", frozen=True) # type: ignore # Pydantic v2
@@ -1,2 +1,19 @@
1
+ from vellum.workflows.errors import WorkflowError, WorkflowErrorCode
2
+
3
+
1
4
  class InvalidExpressionException(Exception):
2
- pass
5
+ def __init__(self, message: str, code: WorkflowErrorCode = WorkflowErrorCode.NODE_EXECUTION):
6
+ self.message = message
7
+ self.code = code
8
+ super().__init__(message)
9
+
10
+ @property
11
+ def error(self) -> WorkflowError:
12
+ return WorkflowError(
13
+ message=self.message,
14
+ code=self.code,
15
+ )
16
+
17
+ @staticmethod
18
+ def of(workflow_error: WorkflowError) -> "InvalidExpressionException":
19
+ return InvalidExpressionException(message=workflow_error.message, code=workflow_error.code)
@@ -17,6 +17,20 @@ from vellum import (
17
17
  VellumVariable,
18
18
  )
19
19
  from vellum.client import ApiError, RequestOptions
20
+ from vellum.client.types import (
21
+ PromptRequestAudioInput,
22
+ PromptRequestDocumentInput,
23
+ PromptRequestImageInput,
24
+ PromptRequestVideoInput,
25
+ VellumAudio,
26
+ VellumAudioRequest,
27
+ VellumDocument,
28
+ VellumDocumentRequest,
29
+ VellumImage,
30
+ VellumImageRequest,
31
+ VellumVideo,
32
+ VellumVideoRequest,
33
+ )
20
34
  from vellum.client.types.chat_message_request import ChatMessageRequest
21
35
  from vellum.client.types.prompt_exec_config import PromptExecConfig
22
36
  from vellum.client.types.prompt_settings import PromptSettings
@@ -273,6 +287,78 @@ class BaseInlinePromptNode(BasePromptNode[StateType], Generic[StateType]):
273
287
  value=chat_history,
274
288
  )
275
289
  )
290
+ elif isinstance(input_value, (VellumAudio, VellumAudioRequest)):
291
+ input_variables.append(
292
+ VellumVariable(
293
+ id=str(uuid4()),
294
+ key=input_name,
295
+ type="AUDIO",
296
+ )
297
+ )
298
+ input_values.append(
299
+ PromptRequestAudioInput(
300
+ key=input_name,
301
+ value=(
302
+ input_value
303
+ if isinstance(input_value, VellumAudio)
304
+ else VellumAudio.model_validate(input_value.model_dump())
305
+ ),
306
+ )
307
+ )
308
+ elif isinstance(input_value, (VellumVideo, VellumVideoRequest)):
309
+ input_variables.append(
310
+ VellumVariable(
311
+ id=str(uuid4()),
312
+ key=input_name,
313
+ type="VIDEO",
314
+ )
315
+ )
316
+ input_values.append(
317
+ PromptRequestVideoInput(
318
+ key=input_name,
319
+ value=(
320
+ input_value
321
+ if isinstance(input_value, VellumVideo)
322
+ else VellumVideo.model_validate(input_value.model_dump())
323
+ ),
324
+ )
325
+ )
326
+ elif isinstance(input_value, (VellumImage, VellumImageRequest)):
327
+ input_variables.append(
328
+ VellumVariable(
329
+ id=str(uuid4()),
330
+ key=input_name,
331
+ type="IMAGE",
332
+ )
333
+ )
334
+ input_values.append(
335
+ PromptRequestImageInput(
336
+ key=input_name,
337
+ value=(
338
+ input_value
339
+ if isinstance(input_value, VellumImage)
340
+ else VellumImage.model_validate(input_value.model_dump())
341
+ ),
342
+ )
343
+ )
344
+ elif isinstance(input_value, (VellumDocument, VellumDocumentRequest)):
345
+ input_variables.append(
346
+ VellumVariable(
347
+ id=str(uuid4()),
348
+ key=input_name,
349
+ type="DOCUMENT",
350
+ )
351
+ )
352
+ input_values.append(
353
+ PromptRequestDocumentInput(
354
+ key=input_name,
355
+ value=(
356
+ input_value
357
+ if isinstance(input_value, VellumDocument)
358
+ else VellumDocument.model_validate(input_value.model_dump())
359
+ ),
360
+ )
361
+ )
276
362
  else:
277
363
  try:
278
364
  input_value = default_serializer(input_value)
@@ -9,22 +9,34 @@ from pydantic import BaseModel
9
9
  from vellum import (
10
10
  AdHocExecutePromptEvent,
11
11
  ChatMessagePromptBlock,
12
+ ExecutePromptEvent,
12
13
  FulfilledAdHocExecutePromptEvent,
14
+ FulfilledExecutePromptEvent,
15
+ FulfilledPromptExecutionMeta,
16
+ InitiatedExecutePromptEvent,
13
17
  JinjaPromptBlock,
14
18
  PlainTextPromptBlock,
15
19
  PromptBlock,
20
+ PromptOutput,
16
21
  PromptParameters,
22
+ PromptRequestAudioInput,
23
+ PromptRequestDocumentInput,
24
+ PromptRequestImageInput,
25
+ PromptRequestStringInput,
26
+ PromptRequestVideoInput,
17
27
  PromptSettings,
18
28
  RichTextPromptBlock,
29
+ StringVellumValue,
19
30
  VariablePromptBlock,
31
+ VellumAudio,
32
+ VellumAudioRequest,
33
+ VellumDocument,
34
+ VellumDocumentRequest,
35
+ VellumImage,
36
+ VellumImageRequest,
37
+ VellumVideo,
38
+ VellumVideoRequest,
20
39
  )
21
- from vellum.client.types.execute_prompt_event import ExecutePromptEvent
22
- from vellum.client.types.fulfilled_execute_prompt_event import FulfilledExecutePromptEvent
23
- from vellum.client.types.fulfilled_prompt_execution_meta import FulfilledPromptExecutionMeta
24
- from vellum.client.types.initiated_execute_prompt_event import InitiatedExecutePromptEvent
25
- from vellum.client.types.prompt_output import PromptOutput
26
- from vellum.client.types.prompt_request_string_input import PromptRequestStringInput
27
- from vellum.client.types.string_vellum_value import StringVellumValue
28
40
  from vellum.workflows.errors import WorkflowErrorCode
29
41
  from vellum.workflows.exceptions import NodeException
30
42
  from vellum.workflows.inputs import BaseInputs
@@ -725,3 +737,71 @@ def test_inline_prompt_node__empty_string_output_with_length_finish_reason(vellu
725
737
 
726
738
  # AND the exception should have the correct error code
727
739
  assert excinfo.value.code == WorkflowErrorCode.INVALID_OUTPUTS
740
+
741
+
742
+ @pytest.mark.parametrize(
743
+ [
744
+ "raw_input",
745
+ "expected_vellum_variable_type",
746
+ "expected_compiled_inputs",
747
+ ],
748
+ [
749
+ # Cast VellumX -> VellumXRequest
750
+ (
751
+ VellumAudio(src="data:audio/wav;base64,mockaudio"),
752
+ "AUDIO",
753
+ [PromptRequestAudioInput(key="file_input", value=VellumAudio(src="data:audio/wav;base64,mockaudio"))],
754
+ ),
755
+ (
756
+ VellumImage(src=""),
757
+ "IMAGE",
758
+ [PromptRequestImageInput(key="file_input", value=VellumImage(src=""))],
759
+ ),
760
+ (
761
+ VellumVideo(src="data:video/mp4;base64,mockvideo"),
762
+ "VIDEO",
763
+ [PromptRequestVideoInput(key="file_input", value=VellumVideo(src="data:video/mp4;base64,mockvideo"))],
764
+ ),
765
+ (
766
+ VellumDocument(src="mockdocument"),
767
+ "DOCUMENT",
768
+ [PromptRequestDocumentInput(key="file_input", value=VellumDocument(src="mockdocument"))],
769
+ ),
770
+ # No casting required
771
+ (
772
+ VellumAudioRequest(src="data:audio/wav;base64,mockaudio"),
773
+ "AUDIO",
774
+ [PromptRequestAudioInput(key="file_input", value=VellumAudio(src="data:audio/wav;base64,mockaudio"))],
775
+ ),
776
+ (
777
+ VellumImageRequest(src=""),
778
+ "IMAGE",
779
+ [PromptRequestImageInput(key="file_input", value=VellumImage(src=""))],
780
+ ),
781
+ (
782
+ VellumVideoRequest(src="data:video/mp4;base64,mockvideo"),
783
+ "VIDEO",
784
+ [PromptRequestVideoInput(key="file_input", value=VellumVideo(src="data:video/mp4;base64,mockvideo"))],
785
+ ),
786
+ (
787
+ VellumDocumentRequest(src="mockdocument"),
788
+ "DOCUMENT",
789
+ [PromptRequestDocumentInput(key="file_input", value=VellumDocument(src="mockdocument"))],
790
+ ),
791
+ ],
792
+ )
793
+ def test_file_input_compilation(raw_input, expected_vellum_variable_type, expected_compiled_inputs):
794
+ # GIVEN a prompt node with file input
795
+ class MyPromptDeploymentNode(InlinePromptNode):
796
+ ml_model = "test-model"
797
+ ml_model_fallbacks = None
798
+
799
+ prompt_inputs = {"file_input": raw_input}
800
+
801
+ # WHEN we compile the inputs
802
+ vellum_variables, compiled_inputs = MyPromptDeploymentNode()._compile_prompt_inputs()
803
+
804
+ # THEN we should get the correct input type
805
+ assert len(vellum_variables) == 1
806
+ assert vellum_variables[0].type == expected_vellum_variable_type
807
+ assert compiled_inputs == expected_compiled_inputs
@@ -3,15 +3,27 @@ from uuid import UUID
3
3
  from typing import Any, ClassVar, Dict, Generator, Generic, Iterator, List, Optional, Sequence, Set, Union
4
4
 
5
5
  from vellum import (
6
+ AudioInputRequest,
6
7
  ChatHistoryInputRequest,
7
8
  ChatMessage,
9
+ DocumentInputRequest,
8
10
  ExecutePromptEvent,
11
+ ImageInputRequest,
9
12
  JsonInputRequest,
10
13
  PromptDeploymentExpandMetaRequest,
11
14
  PromptDeploymentInputRequest,
12
15
  PromptOutput,
13
16
  RawPromptExecutionOverridesRequest,
14
17
  StringInputRequest,
18
+ VellumAudio,
19
+ VellumAudioRequest,
20
+ VellumDocument,
21
+ VellumDocumentRequest,
22
+ VellumImage,
23
+ VellumImageRequest,
24
+ VellumVideo,
25
+ VellumVideoRequest,
26
+ VideoInputRequest,
15
27
  )
16
28
  from vellum.client import ApiError, RequestOptions
17
29
  from vellum.client.types.chat_message_request import ChatMessageRequest
@@ -202,6 +214,54 @@ class BasePromptDeploymentNode(BasePromptNode, Generic[StateType]):
202
214
  value=chat_history,
203
215
  )
204
216
  )
217
+ elif isinstance(input_value, (VellumAudio, VellumAudioRequest)):
218
+ audio_value = (
219
+ input_value
220
+ if isinstance(input_value, VellumAudioRequest)
221
+ else VellumAudioRequest.model_validate(input_value.model_dump())
222
+ )
223
+ compiled_inputs.append(
224
+ AudioInputRequest(
225
+ name=input_name,
226
+ value=audio_value,
227
+ )
228
+ )
229
+ elif isinstance(input_value, (VellumImage, VellumImageRequest)):
230
+ image_value = (
231
+ input_value
232
+ if isinstance(input_value, VellumImageRequest)
233
+ else VellumImageRequest.model_validate(input_value.model_dump())
234
+ )
235
+ compiled_inputs.append(
236
+ ImageInputRequest(
237
+ name=input_name,
238
+ value=image_value,
239
+ )
240
+ )
241
+ elif isinstance(input_value, (VellumDocument, VellumDocumentRequest)):
242
+ document_value = (
243
+ input_value
244
+ if isinstance(input_value, VellumDocumentRequest)
245
+ else VellumDocumentRequest.model_validate(input_value.model_dump())
246
+ )
247
+ compiled_inputs.append(
248
+ DocumentInputRequest(
249
+ name=input_name,
250
+ value=document_value,
251
+ )
252
+ )
253
+ elif isinstance(input_value, (VellumVideo, VellumVideoRequest)):
254
+ video_value = (
255
+ input_value
256
+ if isinstance(input_value, VellumVideoRequest)
257
+ else VellumVideoRequest.model_validate(input_value.model_dump())
258
+ )
259
+ compiled_inputs.append(
260
+ VideoInputRequest(
261
+ name=input_name,
262
+ value=video_value,
263
+ )
264
+ )
205
265
  else:
206
266
  try:
207
267
  input_value = default_serializer(input_value)
@@ -27,6 +27,7 @@ from typing import (
27
27
  from vellum.workflows.constants import undefined
28
28
  from vellum.workflows.context import ExecutionContext, execution_context, get_execution_context
29
29
  from vellum.workflows.descriptors.base import BaseDescriptor
30
+ from vellum.workflows.descriptors.exceptions import InvalidExpressionException
30
31
  from vellum.workflows.errors import WorkflowError, WorkflowErrorCode
31
32
  from vellum.workflows.events import (
32
33
  NodeExecutionFulfilledEvent,
@@ -433,6 +434,21 @@ class WorkflowRunner(Generic[StateType]):
433
434
  parent=execution.parent_context,
434
435
  )
435
436
  )
437
+ except InvalidExpressionException as e:
438
+ logger.info(e)
439
+ captured_stacktrace = traceback.format_exc()
440
+ self._workflow_event_inner_queue.put(
441
+ NodeExecutionRejectedEvent(
442
+ trace_id=execution.trace_id,
443
+ span_id=span_id,
444
+ body=NodeExecutionRejectedBody(
445
+ node_definition=node.__class__,
446
+ error=e.error,
447
+ stacktrace=captured_stacktrace,
448
+ ),
449
+ parent=execution.parent_context,
450
+ )
451
+ )
436
452
 
437
453
  except Exception as e:
438
454
  error_message = self._parse_error_message(e)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: vellum-ai
3
- Version: 1.3.7
3
+ Version: 1.3.8
4
4
  Summary:
5
5
  License: MIT
6
6
  Requires-Python: >=3.9,<4.0
@@ -60,7 +60,7 @@ vellum_ee/workflows/display/nodes/vellum/tests/test_code_execution_node.py,sha25
60
60
  vellum_ee/workflows/display/nodes/vellum/tests/test_error_node.py,sha256=540FoWMpJ3EN_DPjHsr9ODJWCRVcUa5hZBn-5T2GiHU,1665
61
61
  vellum_ee/workflows/display/nodes/vellum/tests/test_inline_subworkflow_node.py,sha256=SKOYan-dxY4gsO0R4JyQUyWrABHBN8XImKw9Eeo4wGo,3535
62
62
  vellum_ee/workflows/display/nodes/vellum/tests/test_note_node.py,sha256=uiMB0cOxKZzos7YKnj4ef4DFa2bOvZJWIv-hfbUV6Go,1218
63
- vellum_ee/workflows/display/nodes/vellum/tests/test_prompt_deployment_node.py,sha256=G-qJyTNJkpqJiEZ3kCJl86CXJINLeFyf2lM0bQHCCOs,3822
63
+ vellum_ee/workflows/display/nodes/vellum/tests/test_prompt_deployment_node.py,sha256=54oatuBB98Dfbr08NqZU8ZNhfQdJWhODIwjsegPPJJw,6376
64
64
  vellum_ee/workflows/display/nodes/vellum/tests/test_prompt_node.py,sha256=h3rXIfB349w11cMgNpqEWCI3ucTsTb30cWskXN8FoV0,14053
65
65
  vellum_ee/workflows/display/nodes/vellum/tests/test_retry_node.py,sha256=WyqX_g-jN4BOVHIto_HDRVb-uWCmDTaiCwHho4uYKOM,1954
66
66
  vellum_ee/workflows/display/nodes/vellum/tests/test_search_node.py,sha256=KvByxgbUkVyfPIVxTUBUk6a92JiJMi8eReZWxzfPExU,3864
@@ -155,7 +155,7 @@ vellum/client/README.md,sha256=flqu57ubZNTfpq60CdLtJC9gp4WEkyjb_n_eZ4OYf9w,6497
155
155
  vellum/client/__init__.py,sha256=T5Ht_w-Mk_9nzGqdadhQB8V20M0vYj7am06ut0A3P1o,73401
156
156
  vellum/client/core/__init__.py,sha256=lTcqUPXcx4112yLDd70RAPeqq6tu3eFMe1pKOqkW9JQ,1562
157
157
  vellum/client/core/api_error.py,sha256=44vPoTyWN59gonCIZMdzw7M1uspygiLnr3GNFOoVL2Q,614
158
- vellum/client/core/client_wrapper.py,sha256=KMoMI878fMQf0TrjYh3YzBK3pntYQnSutU6ad-cuzsc,2840
158
+ vellum/client/core/client_wrapper.py,sha256=3jamH9TZmnQVnQ_3AONYmIgWDW0mHBDzFiOfpCYnSXk,2840
159
159
  vellum/client/core/datetime_utils.py,sha256=nBys2IsYrhPdszxGKCNRPSOCwa-5DWOHG95FB8G9PKo,1047
160
160
  vellum/client/core/file.py,sha256=d4NNbX8XvXP32z8KpK2Xovv33nFfruIrpz0QWxlgpZk,2663
161
161
  vellum/client/core/force_multipart.py,sha256=awxh5MtcRYe74ehY8U76jzv6fYM_w_D3Rur7KQQzSDk,429
@@ -524,7 +524,7 @@ vellum/client/types/node_execution_initiated_body.py,sha256=PmI24HmrlHFoROgJdAJI
524
524
  vellum/client/types/node_execution_initiated_event.py,sha256=MEEcgN9AjEAdDeUCGQyg7WaaxEpfPPA6AJKmIMGZMF8,1897
525
525
  vellum/client/types/node_execution_paused_body.py,sha256=pAySHgvgRO6iV1pfO_lRyufk4ecA0LON8CCap4YTZsk,640
526
526
  vellum/client/types/node_execution_paused_event.py,sha256=9JqnlTAtnMhnSlztrp9GpjCdSYVcKvV_h1jQszRInt8,1876
527
- vellum/client/types/node_execution_rejected_body.py,sha256=C8I1CXaKXrTxCi2DZyNKUg00IcP1ZkT8Ktra6yYFgzw,713
527
+ vellum/client/types/node_execution_rejected_body.py,sha256=PxLPedDB-Budfm9OtFtyjLnpaMO3rK_DQg62sv1TpsA,757
528
528
  vellum/client/types/node_execution_rejected_event.py,sha256=JzbQux0bYivwK7edTydq6vrGQEVRdvypa4ZipTrmsig,1890
529
529
  vellum/client/types/node_execution_resumed_body.py,sha256=M8nhwykvfwFgRKAyiVXJZC3Mrd7JankiTdO8muHQWMA,641
530
530
  vellum/client/types/node_execution_resumed_event.py,sha256=SQ0EPqJnnAWulBb2H46v5p809UznM8YVIsdbyPOHn_s,1883
@@ -837,7 +837,7 @@ vellum/client/types/workflow_deployment_release_workflow_deployment.py,sha256=Zm
837
837
  vellum/client/types/workflow_deployment_release_workflow_version.py,sha256=VbVrwsDHapwPSsGEt8OM9Gjs31esIqkp8ta5zrZvPTw,885
838
838
  vellum/client/types/workflow_error.py,sha256=iDMQ3Wx7E8lf6BYtBTGpeIxG46iF9mjzTpjxyJVTXgM,283
839
839
  vellum/client/types/workflow_event.py,sha256=M_ra0CjUffCPqPRFJM_oR1IY4egHDGa0tY1HAoA8j5k,1532
840
- vellum/client/types/workflow_event_error.py,sha256=fHcTT7jmu0wPARjHtTBQl25V8aM2Cble60A831b6tVk,651
840
+ vellum/client/types/workflow_event_error.py,sha256=Isqu59qZywEFRZbgHwn2NKh2CZ3RA9qoqZSbzdQcy5g,695
841
841
  vellum/client/types/workflow_event_execution_read.py,sha256=DRB19CN0E3r3t1mtfNLhaxiVtPKh5nJLYkCwVtomM7w,2456
842
842
  vellum/client/types/workflow_execution_actual.py,sha256=QJn7xXOtSJT30se2KdOyAYVJKjU53uhdvpjcMDIz1eM,962
843
843
  vellum/client/types/workflow_execution_actual_chat_history_request.py,sha256=E3Vt4l6PpE24_teWe3Kfu_4z1sbosaz_Uk1iUI9cZ-s,1957
@@ -853,7 +853,7 @@ vellum/client/types/workflow_execution_initiated_event.py,sha256=JpzYEKYJPe5blgM
853
853
  vellum/client/types/workflow_execution_node_result_event.py,sha256=4rLmfNqLq2UYUGW1_CBb1yCXaCgBwFjq1UQ4-txSimU,1040
854
854
  vellum/client/types/workflow_execution_paused_body.py,sha256=YzALzCHE9wRkyRuseriaGKst_oidAaIUNar9B6doMrY,769
855
855
  vellum/client/types/workflow_execution_paused_event.py,sha256=nLzQ4j_qB7Z7q9D8TfPDCeCYfGuk-8_emlBcAx_oOu4,1904
856
- vellum/client/types/workflow_execution_rejected_body.py,sha256=f606Ud-hv3pITSWL9sgHr0pEgbFPrOzOzI4G5lOM4us,721
856
+ vellum/client/types/workflow_execution_rejected_body.py,sha256=biJQ8_PDeJGELgjjUbZayC3tzoDkFSs2o-o04IKA6fg,765
857
857
  vellum/client/types/workflow_execution_rejected_event.py,sha256=j1QzOxkcmcFfA9zHOiKBnv7qF_YrFePq380us1nnYEk,1918
858
858
  vellum/client/types/workflow_execution_resumed_body.py,sha256=L0Atzk7328tpjhRKC0Y8AoWuMebtdHzd4gBjYkvKDIM,649
859
859
  vellum/client/types/workflow_execution_resumed_event.py,sha256=7PTH1rLBlvC4414LG3L3AdMRrJEmtrJSOWwM5sptAZc,1911
@@ -1717,7 +1717,7 @@ vellum/workflows/constants.py,sha256=xweiPRUSVEnGz9BJvpIWu96Gfok89QneARu4K7wj7f8
1717
1717
  vellum/workflows/context.py,sha256=ViyIeMDhUv-MhnynLaXPlvlbYxRU45ySvYidCNSbFZU,2458
1718
1718
  vellum/workflows/descriptors/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1719
1719
  vellum/workflows/descriptors/base.py,sha256=fRnRkECyDjfz2QEDCY9Q5mAerlJ6jR0R4nE-MP2VP_k,16558
1720
- vellum/workflows/descriptors/exceptions.py,sha256=gUy4UD9JFUKSeQnQpeuDSLiRqWjWiIsxLahB7p_q3JY,54
1720
+ vellum/workflows/descriptors/exceptions.py,sha256=Rv2uMiaO2a2SADhJzl_VHhV6dqwAhZAzaJPoThP7SZc,653
1721
1721
  vellum/workflows/descriptors/tests/test_utils.py,sha256=HJ5DoRz0sJvViGxyZ_FtytZjxN2J8xTkGtaVwCy6Q90,6928
1722
1722
  vellum/workflows/descriptors/utils.py,sha256=7QvS_IOZWIoKvhNwpYBOTP3NasLSIBKTnhyASry2HCM,4320
1723
1723
  vellum/workflows/edges/__init__.py,sha256=wSkmAnz9xyi4vZwtDbKxwlplt2skD7n3NsxkvR_pUus,50
@@ -1840,10 +1840,10 @@ vellum/workflows/nodes/displayable/bases/api_node/tests/test_node.py,sha256=5C59
1840
1840
  vellum/workflows/nodes/displayable/bases/base_prompt_node/__init__.py,sha256=Org3xTvgp1pA0uUXFfnJr29D3HzCey2lEdYF4zbIUgo,70
1841
1841
  vellum/workflows/nodes/displayable/bases/base_prompt_node/node.py,sha256=ea20icDM1HB942wkH-XtXNSNCBDcjeOiN3vowkHL4fs,4477
1842
1842
  vellum/workflows/nodes/displayable/bases/inline_prompt_node/__init__.py,sha256=Hl35IAoepRpE-j4cALaXVJIYTYOF3qszyVbxTj4kS1s,82
1843
- vellum/workflows/nodes/displayable/bases/inline_prompt_node/node.py,sha256=qxABS2tl7gXfU350-0geBMoL25QrgyqR6-vhUAQt4Qk,14065
1843
+ vellum/workflows/nodes/displayable/bases/inline_prompt_node/node.py,sha256=TkVfwD5-GGWG32vtGMo4ZjuxWrjVYbK7tDWq0U9OBCM,17316
1844
1844
  vellum/workflows/nodes/displayable/bases/inline_prompt_node/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1845
- vellum/workflows/nodes/displayable/bases/inline_prompt_node/tests/test_inline_prompt_node.py,sha256=Hk_u2IxLIeeqL_s0RTgoyL5QGYwY9VllKT8z5_JHiDU,24956
1846
- vellum/workflows/nodes/displayable/bases/prompt_deployment_node.py,sha256=0a40fkkZkFMmZN0CsWf6EP_y1H6x36EGa3WcfVNyOsM,9797
1845
+ vellum/workflows/nodes/displayable/bases/inline_prompt_node/tests/test_inline_prompt_node.py,sha256=xc53wGwVqxBnN7eoyWkJ-RJ-FeUpHKekkKjViASHAFg,27495
1846
+ vellum/workflows/nodes/displayable/bases/prompt_deployment_node.py,sha256=H9mM75EQpP6PUvsXCTbwjw4CqMMLf36m1G2XqiPEvH4,12139
1847
1847
  vellum/workflows/nodes/displayable/bases/search_node.py,sha256=9TtFn6oNpEkpCL59QdBViUe4WPjcITajbiS7EOjOGag,6114
1848
1848
  vellum/workflows/nodes/displayable/bases/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1849
1849
  vellum/workflows/nodes/displayable/bases/tests/test_utils.py,sha256=eqdqbKNRWVMDPevgwLg1i6YK0g4L4bCy-7xCBN5yYZI,3156
@@ -1939,7 +1939,7 @@ vellum/workflows/resolvers/resolver.py,sha256=yK-oY0HDsFJcjlNKAm3vpsPKRIFerIh59F
1939
1939
  vellum/workflows/resolvers/tests/test_resolver.py,sha256=jXkJBb9SwtoH__bBN-ECohpyD0aTIB9ErEvtFhuTMQM,9750
1940
1940
  vellum/workflows/resolvers/types.py,sha256=Hndhlk69g6EKLh_LYg5ILepW5U_h_BYNllfzhS9k8p4,237
1941
1941
  vellum/workflows/runner/__init__.py,sha256=i1iG5sAhtpdsrlvwgH6B-m49JsINkiWyPWs8vyT-bqM,72
1942
- vellum/workflows/runner/runner.py,sha256=UJPCSddeczBcGu06j63KGM2IbbQ5xISTOwP-tFDptaI,40341
1942
+ vellum/workflows/runner/runner.py,sha256=lnVbqA1nSdWuyY1SZDpLDvnpLRQcQyWYOWrx3RIJpcg,41043
1943
1943
  vellum/workflows/sandbox.py,sha256=jwlFFQjHDwmbVoBah_Q3i8K_BrzOt-F6TXFauiyVyIk,3021
1944
1944
  vellum/workflows/state/__init__.py,sha256=yUUdR-_Vl7UiixNDYQZ-GEM_kJI9dnOia75TtuNEsnE,60
1945
1945
  vellum/workflows/state/base.py,sha256=m9fCqbZn21GshCVCjJTD1dPZEQjFrsMXqlg7tM9fIwM,24283
@@ -1982,8 +1982,8 @@ vellum/workflows/workflows/event_filters.py,sha256=GSxIgwrX26a1Smfd-6yss2abGCnad
1982
1982
  vellum/workflows/workflows/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1983
1983
  vellum/workflows/workflows/tests/test_base_workflow.py,sha256=ptMntHzVyy8ZuzNgeTuk7hREgKQ5UBdgq8VJFSGaW4Y,20832
1984
1984
  vellum/workflows/workflows/tests/test_context.py,sha256=VJBUcyWVtMa_lE5KxdhgMu0WYNYnUQUDvTF7qm89hJ0,2333
1985
- vellum_ai-1.3.7.dist-info/LICENSE,sha256=hOypcdt481qGNISA784bnAGWAE6tyIf9gc2E78mYC3E,1574
1986
- vellum_ai-1.3.7.dist-info/METADATA,sha256=raPRArltl5WpYibdvsHEP9v-SzQBgXazawHIkodYryY,5547
1987
- vellum_ai-1.3.7.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
1988
- vellum_ai-1.3.7.dist-info/entry_points.txt,sha256=HCH4yc_V3J_nDv3qJzZ_nYS8llCHZViCDP1ejgCc5Ak,42
1989
- vellum_ai-1.3.7.dist-info/RECORD,,
1985
+ vellum_ai-1.3.8.dist-info/LICENSE,sha256=hOypcdt481qGNISA784bnAGWAE6tyIf9gc2E78mYC3E,1574
1986
+ vellum_ai-1.3.8.dist-info/METADATA,sha256=KV_O-jG8Vwr7C8sWo7lhOV_jCflTi2AJQJKTBkxftN8,5547
1987
+ vellum_ai-1.3.8.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
1988
+ vellum_ai-1.3.8.dist-info/entry_points.txt,sha256=HCH4yc_V3J_nDv3qJzZ_nYS8llCHZViCDP1ejgCc5Ak,42
1989
+ vellum_ai-1.3.8.dist-info/RECORD,,
@@ -3,6 +3,20 @@ from datetime import datetime
3
3
  from uuid import UUID, uuid4
4
4
  from typing import Type
5
5
 
6
+ from vellum import (
7
+ AudioInputRequest,
8
+ DocumentInputRequest,
9
+ ImageInputRequest,
10
+ VellumAudio,
11
+ VellumAudioRequest,
12
+ VellumDocument,
13
+ VellumDocumentRequest,
14
+ VellumImage,
15
+ VellumImageRequest,
16
+ VellumVideo,
17
+ VellumVideoRequest,
18
+ VideoInputRequest,
19
+ )
6
20
  from vellum.workflows import BaseWorkflow
7
21
  from vellum.workflows.nodes import PromptDeploymentNode
8
22
  from vellum_ee.workflows.display.nodes.vellum.prompt_deployment_node import BasePromptDeploymentNodeDisplay
@@ -105,3 +119,59 @@ def test_serialize_node__prompt_inputs(GetDisplayClass, expected_input_id, mock_
105
119
  },
106
120
  }
107
121
  ]
122
+
123
+
124
+ @pytest.mark.parametrize(
125
+ [
126
+ "raw_input",
127
+ "expected_compiled_inputs",
128
+ ],
129
+ [
130
+ # Cast VellumX -> VellumXRequest
131
+ (
132
+ VellumAudio(src="data:audio/wav;base64,mockaudio"),
133
+ [AudioInputRequest(name="file_input", value=VellumAudioRequest(src="data:audio/wav;base64,mockaudio"))],
134
+ ),
135
+ (
136
+ VellumImage(src=""),
137
+ [ImageInputRequest(name="file_input", value=VellumImageRequest(src=""))],
138
+ ),
139
+ (
140
+ VellumVideo(src="data:video/mp4;base64,mockvideo"),
141
+ [VideoInputRequest(name="file_input", value=VellumVideoRequest(src="data:video/mp4;base64,mockvideo"))],
142
+ ),
143
+ (
144
+ VellumDocument(src="mockdocument"),
145
+ [DocumentInputRequest(name="file_input", value=VellumDocumentRequest(src="mockdocument"))],
146
+ ),
147
+ # No casting required
148
+ (
149
+ VellumAudioRequest(src="data:audio/wav;base64,mockaudio"),
150
+ [AudioInputRequest(name="file_input", value=VellumAudioRequest(src="data:audio/wav;base64,mockaudio"))],
151
+ ),
152
+ (
153
+ VellumImageRequest(src=""),
154
+ [ImageInputRequest(name="file_input", value=VellumImageRequest(src=""))],
155
+ ),
156
+ (
157
+ VellumVideoRequest(src="data:video/mp4;base64,mockvideo"),
158
+ [VideoInputRequest(name="file_input", value=VellumVideoRequest(src="data:video/mp4;base64,mockvideo"))],
159
+ ),
160
+ (
161
+ VellumDocumentRequest(src="mockdocument"),
162
+ [DocumentInputRequest(name="file_input", value=VellumDocumentRequest(src="mockdocument"))],
163
+ ),
164
+ ],
165
+ )
166
+ def test_file_input_compilation(raw_input, expected_compiled_inputs):
167
+ # GIVEN a prompt node with file input
168
+ class MyPromptDeploymentNode(PromptDeploymentNode):
169
+ deployment = "DEPLOYMENT"
170
+ prompt_inputs = {"file_input": raw_input}
171
+ ml_model_fallbacks = None
172
+
173
+ # WHEN we compile the inputs
174
+ compiled_inputs = MyPromptDeploymentNode()._compile_prompt_inputs()
175
+
176
+ # THEN we should get the correct input type
177
+ assert compiled_inputs == expected_compiled_inputs