vellum-ai 0.8.5__py3-none-any.whl → 0.8.6__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (83) hide show
  1. vellum/__init__.py +64 -104
  2. vellum/client.py +17 -17
  3. vellum/core/client_wrapper.py +1 -1
  4. vellum/resources/__init__.py +2 -2
  5. vellum/resources/ad_hoc/client.py +372 -0
  6. vellum/types/__init__.py +62 -102
  7. vellum/types/ad_hoc_execute_prompt_event.py +14 -0
  8. vellum/types/ad_hoc_expand_meta_request.py +33 -0
  9. vellum/types/ad_hoc_fulfilled_prompt_execution_meta.py +27 -0
  10. vellum/types/{open_api_const_property_request.py → ad_hoc_initiated_prompt_execution_meta.py} +4 -6
  11. vellum/types/{open_api_boolean_property_request.py → ad_hoc_rejected_prompt_execution_meta.py} +5 -6
  12. vellum/types/{tik_token_tokenizer_config_request.py → ad_hoc_streaming_prompt_execution_meta.py} +3 -4
  13. vellum/types/{open_api_one_of_property.py → chat_message_prompt_block_properties_request.py} +10 -9
  14. vellum/types/chat_message_prompt_block_request.py +36 -0
  15. vellum/types/{ml_model_developer_enum_value_label.py → ephemeral_prompt_cache_config_request.py} +4 -5
  16. vellum/types/ephemeral_prompt_cache_config_type_enum.py +5 -0
  17. vellum/types/fulfilled_ad_hoc_execute_prompt_event.py +28 -0
  18. vellum/types/function_definition_prompt_block_properties_request.py +42 -0
  19. vellum/types/function_definition_prompt_block_request.py +30 -0
  20. vellum/types/{hugging_face_tokenizer_config.py → initiated_ad_hoc_execute_prompt_event.py} +6 -5
  21. vellum/types/{ml_model_display_tag_enum_value_label.py → jinja_prompt_block_properties_request.py} +5 -5
  22. vellum/types/jinja_prompt_block_request.py +30 -0
  23. vellum/types/ml_model_usage.py +2 -0
  24. vellum/types/plain_text_prompt_block_request.py +29 -0
  25. vellum/types/prompt_block_request.py +19 -0
  26. vellum/types/prompt_block_state.py +5 -0
  27. vellum/types/{prompt_deployment_expand_meta_request_request.py → prompt_deployment_expand_meta_request.py} +1 -1
  28. vellum/types/prompt_parameters_request.py +27 -0
  29. vellum/types/{open_api_boolean_property.py → prompt_request_chat_history_input_request.py} +7 -7
  30. vellum/types/prompt_request_input_request.py +10 -0
  31. vellum/types/{hugging_face_tokenizer_config_request.py → prompt_request_json_input_request.py} +6 -6
  32. vellum/types/{tik_token_tokenizer_config.py → prompt_request_string_input_request.py} +6 -5
  33. vellum/types/rejected_ad_hoc_execute_prompt_event.py +28 -0
  34. vellum/types/rich_text_child_block_request.py +7 -0
  35. vellum/types/rich_text_prompt_block_request.py +30 -0
  36. vellum/types/streaming_ad_hoc_execute_prompt_event.py +33 -0
  37. vellum/types/variable_prompt_block_request.py +29 -0
  38. vellum/types/{ml_model_family_enum_value_label.py → vellum_variable_request.py} +5 -4
  39. {vellum_ai-0.8.5.dist-info → vellum_ai-0.8.6.dist-info}/METADATA +1 -1
  40. {vellum_ai-0.8.5.dist-info → vellum_ai-0.8.6.dist-info}/RECORD +43 -63
  41. vellum/resources/ml_models/client.py +0 -948
  42. vellum/types/hosted_by_enum.py +0 -26
  43. vellum/types/ml_model_developer.py +0 -27
  44. vellum/types/ml_model_display_config_labelled.py +0 -26
  45. vellum/types/ml_model_display_config_request.py +0 -26
  46. vellum/types/ml_model_display_tag.py +0 -7
  47. vellum/types/ml_model_exec_config.py +0 -34
  48. vellum/types/ml_model_exec_config_request.py +0 -34
  49. vellum/types/ml_model_family.py +0 -29
  50. vellum/types/ml_model_feature.py +0 -18
  51. vellum/types/ml_model_parameter_config.py +0 -32
  52. vellum/types/ml_model_parameter_config_request.py +0 -32
  53. vellum/types/ml_model_read.py +0 -92
  54. vellum/types/ml_model_request_authorization_config.py +0 -20
  55. vellum/types/ml_model_request_authorization_config_request.py +0 -20
  56. vellum/types/ml_model_request_authorization_config_type_enum.py +0 -5
  57. vellum/types/ml_model_request_config.py +0 -22
  58. vellum/types/ml_model_request_config_request.py +0 -22
  59. vellum/types/ml_model_response_config.py +0 -21
  60. vellum/types/ml_model_response_config_request.py +0 -21
  61. vellum/types/ml_model_tokenizer_config.py +0 -7
  62. vellum/types/ml_model_tokenizer_config_request.py +0 -7
  63. vellum/types/open_api_array_property.py +0 -41
  64. vellum/types/open_api_array_property_request.py +0 -41
  65. vellum/types/open_api_const_property.py +0 -26
  66. vellum/types/open_api_integer_property.py +0 -30
  67. vellum/types/open_api_integer_property_request.py +0 -30
  68. vellum/types/open_api_number_property.py +0 -31
  69. vellum/types/open_api_number_property_request.py +0 -31
  70. vellum/types/open_api_object_property.py +0 -40
  71. vellum/types/open_api_object_property_request.py +0 -40
  72. vellum/types/open_api_one_of_property_request.py +0 -33
  73. vellum/types/open_api_property.py +0 -27
  74. vellum/types/open_api_property_request.py +0 -27
  75. vellum/types/open_api_ref_property.py +0 -26
  76. vellum/types/open_api_ref_property_request.py +0 -26
  77. vellum/types/open_api_string_property.py +0 -30
  78. vellum/types/open_api_string_property_request.py +0 -30
  79. vellum/types/paginated_ml_model_read_list.py +0 -23
  80. vellum/types/visibility_enum.py +0 -5
  81. /vellum/resources/{ml_models → ad_hoc}/__init__.py +0 -0
  82. {vellum_ai-0.8.5.dist-info → vellum_ai-0.8.6.dist-info}/LICENSE +0 -0
  83. {vellum_ai-0.8.5.dist-info → vellum_ai-0.8.6.dist-info}/WHEEL +0 -0
@@ -1,948 +0,0 @@
1
- # This file was auto-generated by Fern from our API Definition.
2
-
3
- import typing
4
- from ...core.client_wrapper import SyncClientWrapper
5
- from ...core.request_options import RequestOptions
6
- from ...types.paginated_ml_model_read_list import PaginatedMlModelReadList
7
- from ...core.pydantic_utilities import parse_obj_as
8
- from json.decoder import JSONDecodeError
9
- from ...core.api_error import ApiError
10
- from ...types.ml_model_family import MlModelFamily
11
- from ...types.hosted_by_enum import HostedByEnum
12
- from ...types.ml_model_developer import MlModelDeveloper
13
- from ...types.ml_model_exec_config_request import MlModelExecConfigRequest
14
- from ...types.ml_model_parameter_config_request import MlModelParameterConfigRequest
15
- from ...types.ml_model_display_config_request import MlModelDisplayConfigRequest
16
- from ...types.visibility_enum import VisibilityEnum
17
- from ...types.ml_model_read import MlModelRead
18
- from ...core.jsonable_encoder import jsonable_encoder
19
- from ...core.client_wrapper import AsyncClientWrapper
20
-
21
- # this is used as the default value for optional parameters
22
- OMIT = typing.cast(typing.Any, ...)
23
-
24
-
25
- class MlModelsClient:
26
- def __init__(self, *, client_wrapper: SyncClientWrapper):
27
- self._client_wrapper = client_wrapper
28
-
29
- def list(
30
- self,
31
- *,
32
- limit: typing.Optional[int] = None,
33
- offset: typing.Optional[int] = None,
34
- ordering: typing.Optional[str] = None,
35
- request_options: typing.Optional[RequestOptions] = None,
36
- ) -> PaginatedMlModelReadList:
37
- """
38
- List all ML Models that your Workspace has access to.
39
-
40
- Parameters
41
- ----------
42
- limit : typing.Optional[int]
43
- Number of results to return per page.
44
-
45
- offset : typing.Optional[int]
46
- The initial index from which to return the results.
47
-
48
- ordering : typing.Optional[str]
49
- Which field to use when ordering the results.
50
-
51
- request_options : typing.Optional[RequestOptions]
52
- Request-specific configuration.
53
-
54
- Returns
55
- -------
56
- PaginatedMlModelReadList
57
-
58
-
59
- Examples
60
- --------
61
- from vellum import Vellum
62
-
63
- client = Vellum(
64
- api_key="YOUR_API_KEY",
65
- )
66
- client.ml_models.list()
67
- """
68
- _response = self._client_wrapper.httpx_client.request(
69
- "v1/ml-models",
70
- base_url=self._client_wrapper.get_environment().default,
71
- method="GET",
72
- params={
73
- "limit": limit,
74
- "offset": offset,
75
- "ordering": ordering,
76
- },
77
- request_options=request_options,
78
- )
79
- try:
80
- if 200 <= _response.status_code < 300:
81
- return typing.cast(
82
- PaginatedMlModelReadList,
83
- parse_obj_as(
84
- type_=PaginatedMlModelReadList, # type: ignore
85
- object_=_response.json(),
86
- ),
87
- )
88
- _response_json = _response.json()
89
- except JSONDecodeError:
90
- raise ApiError(status_code=_response.status_code, body=_response.text)
91
- raise ApiError(status_code=_response.status_code, body=_response_json)
92
-
93
- def create(
94
- self,
95
- *,
96
- name: str,
97
- family: MlModelFamily,
98
- hosted_by: HostedByEnum,
99
- developed_by: MlModelDeveloper,
100
- exec_config: MlModelExecConfigRequest,
101
- parameter_config: typing.Optional[MlModelParameterConfigRequest] = OMIT,
102
- display_config: typing.Optional[MlModelDisplayConfigRequest] = OMIT,
103
- visibility: typing.Optional[VisibilityEnum] = OMIT,
104
- request_options: typing.Optional[RequestOptions] = None,
105
- ) -> MlModelRead:
106
- """
107
- Creates a new ML Model.
108
-
109
- Parameters
110
- ----------
111
- name : str
112
- The unique name of the ML Model.
113
-
114
- family : MlModelFamily
115
- The family of the ML Model.
116
-
117
- * `CAPYBARA` - Capybara
118
- * `CHAT_GPT` - Chat GPT
119
- * `CLAUDE` - Claude
120
- * `COHERE` - Cohere
121
- * `FALCON` - Falcon
122
- * `GEMINI` - Gemini
123
- * `GRANITE` - Granite
124
- * `GPT3` - GPT-3
125
- * `FIREWORKS` - Fireworks
126
- * `LLAMA2` - Llama2
127
- * `LLAMA3` - Llama3
128
- * `MISTRAL` - Mistral
129
- * `MPT` - MPT
130
- * `OPENCHAT` - OpenChat
131
- * `PALM` - PaLM
132
- * `SOLAR` - Solar
133
- * `TITAN` - Titan
134
- * `WIZARD` - Wizard
135
- * `YI` - Yi
136
- * `ZEPHYR` - Zephyr
137
-
138
- hosted_by : HostedByEnum
139
- The organization hosting the ML Model.
140
-
141
- * `ANTHROPIC` - ANTHROPIC
142
- * `AWS_BEDROCK` - AWS_BEDROCK
143
- * `AZURE_OPENAI` - AZURE_OPENAI
144
- * `COHERE` - COHERE
145
- * `CUSTOM` - CUSTOM
146
- * `FIREWORKS_AI` - FIREWORKS_AI
147
- * `GOOGLE` - GOOGLE
148
- * `GOOGLE_VERTEX_AI` - GOOGLE_VERTEX_AI
149
- * `GROQ` - GROQ
150
- * `HUGGINGFACE` - HUGGINGFACE
151
- * `IBM_WATSONX` - IBM_WATSONX
152
- * `MOSAICML` - MOSAICML
153
- * `MYSTIC` - MYSTIC
154
- * `OPENAI` - OPENAI
155
- * `OPENPIPE` - OPENPIPE
156
- * `PYQ` - PYQ
157
- * `REPLICATE` - REPLICATE
158
-
159
- developed_by : MlModelDeveloper
160
- The organization that developed the ML Model.
161
-
162
- * `01_AI` - 01_AI
163
- * `AMAZON` - AMAZON
164
- * `ANTHROPIC` - ANTHROPIC
165
- * `COHERE` - COHERE
166
- * `ELUTHERAI` - ELUTHERAI
167
- * `FIREWORKS_AI` - FIREWORKS_AI
168
- * `GOOGLE` - GOOGLE
169
- * `HUGGINGFACE` - HUGGINGFACE
170
- * `IBM` - IBM
171
- * `META` - META
172
- * `MISTRAL_AI` - MISTRAL_AI
173
- * `MOSAICML` - MOSAICML
174
- * `NOUS_RESEARCH` - NOUS_RESEARCH
175
- * `OPENAI` - OPENAI
176
- * `OPENCHAT` - OPENCHAT
177
- * `OPENPIPE` - OPENPIPE
178
- * `TII` - TII
179
- * `WIZARDLM` - WIZARDLM
180
-
181
- exec_config : MlModelExecConfigRequest
182
- Configuration for how to execute the ML Model.
183
-
184
- parameter_config : typing.Optional[MlModelParameterConfigRequest]
185
- Configuration for the ML Model's parameters.
186
-
187
- display_config : typing.Optional[MlModelDisplayConfigRequest]
188
- Configuration for how to display the ML Model.
189
-
190
- visibility : typing.Optional[VisibilityEnum]
191
- The visibility of the ML Model.
192
-
193
- * `DEFAULT` - DEFAULT
194
- * `PUBLIC` - PUBLIC
195
- * `PRIVATE` - PRIVATE
196
- * `DISABLED` - DISABLED
197
-
198
- request_options : typing.Optional[RequestOptions]
199
- Request-specific configuration.
200
-
201
- Returns
202
- -------
203
- MlModelRead
204
-
205
-
206
- Examples
207
- --------
208
- from vellum import MlModelExecConfigRequest, Vellum
209
-
210
- client = Vellum(
211
- api_key="YOUR_API_KEY",
212
- )
213
- client.ml_models.create(
214
- name="name",
215
- family="CAPYBARA",
216
- hosted_by="ANTHROPIC",
217
- developed_by="01_AI",
218
- exec_config=MlModelExecConfigRequest(
219
- model_identifier="model_identifier",
220
- base_url="base_url",
221
- metadata={"key": "value"},
222
- features=["TEXT"],
223
- ),
224
- )
225
- """
226
- _response = self._client_wrapper.httpx_client.request(
227
- "v1/ml-models",
228
- base_url=self._client_wrapper.get_environment().default,
229
- method="POST",
230
- json={
231
- "name": name,
232
- "family": family,
233
- "hosted_by": hosted_by,
234
- "developed_by": developed_by,
235
- "exec_config": exec_config,
236
- "parameter_config": parameter_config,
237
- "display_config": display_config,
238
- "visibility": visibility,
239
- },
240
- request_options=request_options,
241
- omit=OMIT,
242
- )
243
- try:
244
- if 200 <= _response.status_code < 300:
245
- return typing.cast(
246
- MlModelRead,
247
- parse_obj_as(
248
- type_=MlModelRead, # type: ignore
249
- object_=_response.json(),
250
- ),
251
- )
252
- _response_json = _response.json()
253
- except JSONDecodeError:
254
- raise ApiError(status_code=_response.status_code, body=_response.text)
255
- raise ApiError(status_code=_response.status_code, body=_response_json)
256
-
257
- def retrieve(self, id: str, *, request_options: typing.Optional[RequestOptions] = None) -> MlModelRead:
258
- """
259
- Retrieve an ML Model by its UUID.
260
-
261
- Parameters
262
- ----------
263
- id : str
264
- Either the ML Model's ID or its unique name
265
-
266
- request_options : typing.Optional[RequestOptions]
267
- Request-specific configuration.
268
-
269
- Returns
270
- -------
271
- MlModelRead
272
-
273
-
274
- Examples
275
- --------
276
- from vellum import Vellum
277
-
278
- client = Vellum(
279
- api_key="YOUR_API_KEY",
280
- )
281
- client.ml_models.retrieve(
282
- id="id",
283
- )
284
- """
285
- _response = self._client_wrapper.httpx_client.request(
286
- f"v1/ml-models/{jsonable_encoder(id)}",
287
- base_url=self._client_wrapper.get_environment().default,
288
- method="GET",
289
- request_options=request_options,
290
- )
291
- try:
292
- if 200 <= _response.status_code < 300:
293
- return typing.cast(
294
- MlModelRead,
295
- parse_obj_as(
296
- type_=MlModelRead, # type: ignore
297
- object_=_response.json(),
298
- ),
299
- )
300
- _response_json = _response.json()
301
- except JSONDecodeError:
302
- raise ApiError(status_code=_response.status_code, body=_response.text)
303
- raise ApiError(status_code=_response.status_code, body=_response_json)
304
-
305
- def update(
306
- self,
307
- id: str,
308
- *,
309
- exec_config: typing.Optional[MlModelExecConfigRequest] = OMIT,
310
- parameter_config: typing.Optional[MlModelParameterConfigRequest] = OMIT,
311
- display_config: typing.Optional[MlModelDisplayConfigRequest] = OMIT,
312
- visibility: typing.Optional[VisibilityEnum] = OMIT,
313
- request_options: typing.Optional[RequestOptions] = None,
314
- ) -> MlModelRead:
315
- """
316
- Replace an ML Model with a new representation, keying off of its UUID.
317
-
318
- Parameters
319
- ----------
320
- id : str
321
- Either the ML Model's ID or its unique name
322
-
323
- exec_config : typing.Optional[MlModelExecConfigRequest]
324
- Configuration for how to execute the ML Model.
325
-
326
- parameter_config : typing.Optional[MlModelParameterConfigRequest]
327
- Configuration for the ML Model's parameters.
328
-
329
- display_config : typing.Optional[MlModelDisplayConfigRequest]
330
- Configuration for how to display the ML Model.
331
-
332
- visibility : typing.Optional[VisibilityEnum]
333
- The visibility of the ML Model.
334
-
335
- * `DEFAULT` - DEFAULT
336
- * `PUBLIC` - PUBLIC
337
- * `PRIVATE` - PRIVATE
338
- * `DISABLED` - DISABLED
339
-
340
- request_options : typing.Optional[RequestOptions]
341
- Request-specific configuration.
342
-
343
- Returns
344
- -------
345
- MlModelRead
346
-
347
-
348
- Examples
349
- --------
350
- from vellum import Vellum
351
-
352
- client = Vellum(
353
- api_key="YOUR_API_KEY",
354
- )
355
- client.ml_models.update(
356
- id="id",
357
- )
358
- """
359
- _response = self._client_wrapper.httpx_client.request(
360
- f"v1/ml-models/{jsonable_encoder(id)}",
361
- base_url=self._client_wrapper.get_environment().default,
362
- method="PUT",
363
- json={
364
- "exec_config": exec_config,
365
- "parameter_config": parameter_config,
366
- "display_config": display_config,
367
- "visibility": visibility,
368
- },
369
- request_options=request_options,
370
- omit=OMIT,
371
- )
372
- try:
373
- if 200 <= _response.status_code < 300:
374
- return typing.cast(
375
- MlModelRead,
376
- parse_obj_as(
377
- type_=MlModelRead, # type: ignore
378
- object_=_response.json(),
379
- ),
380
- )
381
- _response_json = _response.json()
382
- except JSONDecodeError:
383
- raise ApiError(status_code=_response.status_code, body=_response.text)
384
- raise ApiError(status_code=_response.status_code, body=_response_json)
385
-
386
- def partial_update(
387
- self,
388
- id: str,
389
- *,
390
- exec_config: typing.Optional[MlModelExecConfigRequest] = OMIT,
391
- parameter_config: typing.Optional[MlModelParameterConfigRequest] = OMIT,
392
- display_config: typing.Optional[MlModelDisplayConfigRequest] = OMIT,
393
- visibility: typing.Optional[VisibilityEnum] = OMIT,
394
- request_options: typing.Optional[RequestOptions] = None,
395
- ) -> MlModelRead:
396
- """
397
- Partially update an ML Model, keying off of its UUID.
398
-
399
- Parameters
400
- ----------
401
- id : str
402
- Either the ML Model's ID or its unique name
403
-
404
- exec_config : typing.Optional[MlModelExecConfigRequest]
405
- Configuration for how to execute the ML Model.
406
-
407
- parameter_config : typing.Optional[MlModelParameterConfigRequest]
408
- Configuration for the ML Model's parameters.
409
-
410
- display_config : typing.Optional[MlModelDisplayConfigRequest]
411
- Configuration for how to display the ML Model.
412
-
413
- visibility : typing.Optional[VisibilityEnum]
414
- The visibility of the ML Model.
415
-
416
- * `DEFAULT` - DEFAULT
417
- * `PUBLIC` - PUBLIC
418
- * `PRIVATE` - PRIVATE
419
- * `DISABLED` - DISABLED
420
-
421
- request_options : typing.Optional[RequestOptions]
422
- Request-specific configuration.
423
-
424
- Returns
425
- -------
426
- MlModelRead
427
-
428
-
429
- Examples
430
- --------
431
- from vellum import Vellum
432
-
433
- client = Vellum(
434
- api_key="YOUR_API_KEY",
435
- )
436
- client.ml_models.partial_update(
437
- id="id",
438
- )
439
- """
440
- _response = self._client_wrapper.httpx_client.request(
441
- f"v1/ml-models/{jsonable_encoder(id)}",
442
- base_url=self._client_wrapper.get_environment().default,
443
- method="PATCH",
444
- json={
445
- "exec_config": exec_config,
446
- "parameter_config": parameter_config,
447
- "display_config": display_config,
448
- "visibility": visibility,
449
- },
450
- request_options=request_options,
451
- omit=OMIT,
452
- )
453
- try:
454
- if 200 <= _response.status_code < 300:
455
- return typing.cast(
456
- MlModelRead,
457
- parse_obj_as(
458
- type_=MlModelRead, # type: ignore
459
- object_=_response.json(),
460
- ),
461
- )
462
- _response_json = _response.json()
463
- except JSONDecodeError:
464
- raise ApiError(status_code=_response.status_code, body=_response.text)
465
- raise ApiError(status_code=_response.status_code, body=_response_json)
466
-
467
-
468
- class AsyncMlModelsClient:
469
- def __init__(self, *, client_wrapper: AsyncClientWrapper):
470
- self._client_wrapper = client_wrapper
471
-
472
- async def list(
473
- self,
474
- *,
475
- limit: typing.Optional[int] = None,
476
- offset: typing.Optional[int] = None,
477
- ordering: typing.Optional[str] = None,
478
- request_options: typing.Optional[RequestOptions] = None,
479
- ) -> PaginatedMlModelReadList:
480
- """
481
- List all ML Models that your Workspace has access to.
482
-
483
- Parameters
484
- ----------
485
- limit : typing.Optional[int]
486
- Number of results to return per page.
487
-
488
- offset : typing.Optional[int]
489
- The initial index from which to return the results.
490
-
491
- ordering : typing.Optional[str]
492
- Which field to use when ordering the results.
493
-
494
- request_options : typing.Optional[RequestOptions]
495
- Request-specific configuration.
496
-
497
- Returns
498
- -------
499
- PaginatedMlModelReadList
500
-
501
-
502
- Examples
503
- --------
504
- import asyncio
505
-
506
- from vellum import AsyncVellum
507
-
508
- client = AsyncVellum(
509
- api_key="YOUR_API_KEY",
510
- )
511
-
512
-
513
- async def main() -> None:
514
- await client.ml_models.list()
515
-
516
-
517
- asyncio.run(main())
518
- """
519
- _response = await self._client_wrapper.httpx_client.request(
520
- "v1/ml-models",
521
- base_url=self._client_wrapper.get_environment().default,
522
- method="GET",
523
- params={
524
- "limit": limit,
525
- "offset": offset,
526
- "ordering": ordering,
527
- },
528
- request_options=request_options,
529
- )
530
- try:
531
- if 200 <= _response.status_code < 300:
532
- return typing.cast(
533
- PaginatedMlModelReadList,
534
- parse_obj_as(
535
- type_=PaginatedMlModelReadList, # type: ignore
536
- object_=_response.json(),
537
- ),
538
- )
539
- _response_json = _response.json()
540
- except JSONDecodeError:
541
- raise ApiError(status_code=_response.status_code, body=_response.text)
542
- raise ApiError(status_code=_response.status_code, body=_response_json)
543
-
544
- async def create(
545
- self,
546
- *,
547
- name: str,
548
- family: MlModelFamily,
549
- hosted_by: HostedByEnum,
550
- developed_by: MlModelDeveloper,
551
- exec_config: MlModelExecConfigRequest,
552
- parameter_config: typing.Optional[MlModelParameterConfigRequest] = OMIT,
553
- display_config: typing.Optional[MlModelDisplayConfigRequest] = OMIT,
554
- visibility: typing.Optional[VisibilityEnum] = OMIT,
555
- request_options: typing.Optional[RequestOptions] = None,
556
- ) -> MlModelRead:
557
- """
558
- Creates a new ML Model.
559
-
560
- Parameters
561
- ----------
562
- name : str
563
- The unique name of the ML Model.
564
-
565
- family : MlModelFamily
566
- The family of the ML Model.
567
-
568
- * `CAPYBARA` - Capybara
569
- * `CHAT_GPT` - Chat GPT
570
- * `CLAUDE` - Claude
571
- * `COHERE` - Cohere
572
- * `FALCON` - Falcon
573
- * `GEMINI` - Gemini
574
- * `GRANITE` - Granite
575
- * `GPT3` - GPT-3
576
- * `FIREWORKS` - Fireworks
577
- * `LLAMA2` - Llama2
578
- * `LLAMA3` - Llama3
579
- * `MISTRAL` - Mistral
580
- * `MPT` - MPT
581
- * `OPENCHAT` - OpenChat
582
- * `PALM` - PaLM
583
- * `SOLAR` - Solar
584
- * `TITAN` - Titan
585
- * `WIZARD` - Wizard
586
- * `YI` - Yi
587
- * `ZEPHYR` - Zephyr
588
-
589
- hosted_by : HostedByEnum
590
- The organization hosting the ML Model.
591
-
592
- * `ANTHROPIC` - ANTHROPIC
593
- * `AWS_BEDROCK` - AWS_BEDROCK
594
- * `AZURE_OPENAI` - AZURE_OPENAI
595
- * `COHERE` - COHERE
596
- * `CUSTOM` - CUSTOM
597
- * `FIREWORKS_AI` - FIREWORKS_AI
598
- * `GOOGLE` - GOOGLE
599
- * `GOOGLE_VERTEX_AI` - GOOGLE_VERTEX_AI
600
- * `GROQ` - GROQ
601
- * `HUGGINGFACE` - HUGGINGFACE
602
- * `IBM_WATSONX` - IBM_WATSONX
603
- * `MOSAICML` - MOSAICML
604
- * `MYSTIC` - MYSTIC
605
- * `OPENAI` - OPENAI
606
- * `OPENPIPE` - OPENPIPE
607
- * `PYQ` - PYQ
608
- * `REPLICATE` - REPLICATE
609
-
610
- developed_by : MlModelDeveloper
611
- The organization that developed the ML Model.
612
-
613
- * `01_AI` - 01_AI
614
- * `AMAZON` - AMAZON
615
- * `ANTHROPIC` - ANTHROPIC
616
- * `COHERE` - COHERE
617
- * `ELUTHERAI` - ELUTHERAI
618
- * `FIREWORKS_AI` - FIREWORKS_AI
619
- * `GOOGLE` - GOOGLE
620
- * `HUGGINGFACE` - HUGGINGFACE
621
- * `IBM` - IBM
622
- * `META` - META
623
- * `MISTRAL_AI` - MISTRAL_AI
624
- * `MOSAICML` - MOSAICML
625
- * `NOUS_RESEARCH` - NOUS_RESEARCH
626
- * `OPENAI` - OPENAI
627
- * `OPENCHAT` - OPENCHAT
628
- * `OPENPIPE` - OPENPIPE
629
- * `TII` - TII
630
- * `WIZARDLM` - WIZARDLM
631
-
632
- exec_config : MlModelExecConfigRequest
633
- Configuration for how to execute the ML Model.
634
-
635
- parameter_config : typing.Optional[MlModelParameterConfigRequest]
636
- Configuration for the ML Model's parameters.
637
-
638
- display_config : typing.Optional[MlModelDisplayConfigRequest]
639
- Configuration for how to display the ML Model.
640
-
641
- visibility : typing.Optional[VisibilityEnum]
642
- The visibility of the ML Model.
643
-
644
- * `DEFAULT` - DEFAULT
645
- * `PUBLIC` - PUBLIC
646
- * `PRIVATE` - PRIVATE
647
- * `DISABLED` - DISABLED
648
-
649
- request_options : typing.Optional[RequestOptions]
650
- Request-specific configuration.
651
-
652
- Returns
653
- -------
654
- MlModelRead
655
-
656
-
657
- Examples
658
- --------
659
- import asyncio
660
-
661
- from vellum import AsyncVellum, MlModelExecConfigRequest
662
-
663
- client = AsyncVellum(
664
- api_key="YOUR_API_KEY",
665
- )
666
-
667
-
668
- async def main() -> None:
669
- await client.ml_models.create(
670
- name="name",
671
- family="CAPYBARA",
672
- hosted_by="ANTHROPIC",
673
- developed_by="01_AI",
674
- exec_config=MlModelExecConfigRequest(
675
- model_identifier="model_identifier",
676
- base_url="base_url",
677
- metadata={"key": "value"},
678
- features=["TEXT"],
679
- ),
680
- )
681
-
682
-
683
- asyncio.run(main())
684
- """
685
- _response = await self._client_wrapper.httpx_client.request(
686
- "v1/ml-models",
687
- base_url=self._client_wrapper.get_environment().default,
688
- method="POST",
689
- json={
690
- "name": name,
691
- "family": family,
692
- "hosted_by": hosted_by,
693
- "developed_by": developed_by,
694
- "exec_config": exec_config,
695
- "parameter_config": parameter_config,
696
- "display_config": display_config,
697
- "visibility": visibility,
698
- },
699
- request_options=request_options,
700
- omit=OMIT,
701
- )
702
- try:
703
- if 200 <= _response.status_code < 300:
704
- return typing.cast(
705
- MlModelRead,
706
- parse_obj_as(
707
- type_=MlModelRead, # type: ignore
708
- object_=_response.json(),
709
- ),
710
- )
711
- _response_json = _response.json()
712
- except JSONDecodeError:
713
- raise ApiError(status_code=_response.status_code, body=_response.text)
714
- raise ApiError(status_code=_response.status_code, body=_response_json)
715
-
716
- async def retrieve(self, id: str, *, request_options: typing.Optional[RequestOptions] = None) -> MlModelRead:
717
- """
718
- Retrieve an ML Model by its UUID.
719
-
720
- Parameters
721
- ----------
722
- id : str
723
- Either the ML Model's ID or its unique name
724
-
725
- request_options : typing.Optional[RequestOptions]
726
- Request-specific configuration.
727
-
728
- Returns
729
- -------
730
- MlModelRead
731
-
732
-
733
- Examples
734
- --------
735
- import asyncio
736
-
737
- from vellum import AsyncVellum
738
-
739
- client = AsyncVellum(
740
- api_key="YOUR_API_KEY",
741
- )
742
-
743
-
744
- async def main() -> None:
745
- await client.ml_models.retrieve(
746
- id="id",
747
- )
748
-
749
-
750
- asyncio.run(main())
751
- """
752
- _response = await self._client_wrapper.httpx_client.request(
753
- f"v1/ml-models/{jsonable_encoder(id)}",
754
- base_url=self._client_wrapper.get_environment().default,
755
- method="GET",
756
- request_options=request_options,
757
- )
758
- try:
759
- if 200 <= _response.status_code < 300:
760
- return typing.cast(
761
- MlModelRead,
762
- parse_obj_as(
763
- type_=MlModelRead, # type: ignore
764
- object_=_response.json(),
765
- ),
766
- )
767
- _response_json = _response.json()
768
- except JSONDecodeError:
769
- raise ApiError(status_code=_response.status_code, body=_response.text)
770
- raise ApiError(status_code=_response.status_code, body=_response_json)
771
-
772
- async def update(
773
- self,
774
- id: str,
775
- *,
776
- exec_config: typing.Optional[MlModelExecConfigRequest] = OMIT,
777
- parameter_config: typing.Optional[MlModelParameterConfigRequest] = OMIT,
778
- display_config: typing.Optional[MlModelDisplayConfigRequest] = OMIT,
779
- visibility: typing.Optional[VisibilityEnum] = OMIT,
780
- request_options: typing.Optional[RequestOptions] = None,
781
- ) -> MlModelRead:
782
- """
783
- Replace an ML Model with a new representation, keying off of its UUID.
784
-
785
- Parameters
786
- ----------
787
- id : str
788
- Either the ML Model's ID or its unique name
789
-
790
- exec_config : typing.Optional[MlModelExecConfigRequest]
791
- Configuration for how to execute the ML Model.
792
-
793
- parameter_config : typing.Optional[MlModelParameterConfigRequest]
794
- Configuration for the ML Model's parameters.
795
-
796
- display_config : typing.Optional[MlModelDisplayConfigRequest]
797
- Configuration for how to display the ML Model.
798
-
799
- visibility : typing.Optional[VisibilityEnum]
800
- The visibility of the ML Model.
801
-
802
- * `DEFAULT` - DEFAULT
803
- * `PUBLIC` - PUBLIC
804
- * `PRIVATE` - PRIVATE
805
- * `DISABLED` - DISABLED
806
-
807
- request_options : typing.Optional[RequestOptions]
808
- Request-specific configuration.
809
-
810
- Returns
811
- -------
812
- MlModelRead
813
-
814
-
815
- Examples
816
- --------
817
- import asyncio
818
-
819
- from vellum import AsyncVellum
820
-
821
- client = AsyncVellum(
822
- api_key="YOUR_API_KEY",
823
- )
824
-
825
-
826
- async def main() -> None:
827
- await client.ml_models.update(
828
- id="id",
829
- )
830
-
831
-
832
- asyncio.run(main())
833
- """
834
- _response = await self._client_wrapper.httpx_client.request(
835
- f"v1/ml-models/{jsonable_encoder(id)}",
836
- base_url=self._client_wrapper.get_environment().default,
837
- method="PUT",
838
- json={
839
- "exec_config": exec_config,
840
- "parameter_config": parameter_config,
841
- "display_config": display_config,
842
- "visibility": visibility,
843
- },
844
- request_options=request_options,
845
- omit=OMIT,
846
- )
847
- try:
848
- if 200 <= _response.status_code < 300:
849
- return typing.cast(
850
- MlModelRead,
851
- parse_obj_as(
852
- type_=MlModelRead, # type: ignore
853
- object_=_response.json(),
854
- ),
855
- )
856
- _response_json = _response.json()
857
- except JSONDecodeError:
858
- raise ApiError(status_code=_response.status_code, body=_response.text)
859
- raise ApiError(status_code=_response.status_code, body=_response_json)
860
-
861
- async def partial_update(
862
- self,
863
- id: str,
864
- *,
865
- exec_config: typing.Optional[MlModelExecConfigRequest] = OMIT,
866
- parameter_config: typing.Optional[MlModelParameterConfigRequest] = OMIT,
867
- display_config: typing.Optional[MlModelDisplayConfigRequest] = OMIT,
868
- visibility: typing.Optional[VisibilityEnum] = OMIT,
869
- request_options: typing.Optional[RequestOptions] = None,
870
- ) -> MlModelRead:
871
- """
872
- Partially update an ML Model, keying off of its UUID.
873
-
874
- Parameters
875
- ----------
876
- id : str
877
- Either the ML Model's ID or its unique name
878
-
879
- exec_config : typing.Optional[MlModelExecConfigRequest]
880
- Configuration for how to execute the ML Model.
881
-
882
- parameter_config : typing.Optional[MlModelParameterConfigRequest]
883
- Configuration for the ML Model's parameters.
884
-
885
- display_config : typing.Optional[MlModelDisplayConfigRequest]
886
- Configuration for how to display the ML Model.
887
-
888
- visibility : typing.Optional[VisibilityEnum]
889
- The visibility of the ML Model.
890
-
891
- * `DEFAULT` - DEFAULT
892
- * `PUBLIC` - PUBLIC
893
- * `PRIVATE` - PRIVATE
894
- * `DISABLED` - DISABLED
895
-
896
- request_options : typing.Optional[RequestOptions]
897
- Request-specific configuration.
898
-
899
- Returns
900
- -------
901
- MlModelRead
902
-
903
-
904
- Examples
905
- --------
906
- import asyncio
907
-
908
- from vellum import AsyncVellum
909
-
910
- client = AsyncVellum(
911
- api_key="YOUR_API_KEY",
912
- )
913
-
914
-
915
- async def main() -> None:
916
- await client.ml_models.partial_update(
917
- id="id",
918
- )
919
-
920
-
921
- asyncio.run(main())
922
- """
923
- _response = await self._client_wrapper.httpx_client.request(
924
- f"v1/ml-models/{jsonable_encoder(id)}",
925
- base_url=self._client_wrapper.get_environment().default,
926
- method="PATCH",
927
- json={
928
- "exec_config": exec_config,
929
- "parameter_config": parameter_config,
930
- "display_config": display_config,
931
- "visibility": visibility,
932
- },
933
- request_options=request_options,
934
- omit=OMIT,
935
- )
936
- try:
937
- if 200 <= _response.status_code < 300:
938
- return typing.cast(
939
- MlModelRead,
940
- parse_obj_as(
941
- type_=MlModelRead, # type: ignore
942
- object_=_response.json(),
943
- ),
944
- )
945
- _response_json = _response.json()
946
- except JSONDecodeError:
947
- raise ApiError(status_code=_response.status_code, body=_response.text)
948
- raise ApiError(status_code=_response.status_code, body=_response_json)