vellum-ai 0.7.1__py3-none-any.whl → 0.7.3__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (30) hide show
  1. vellum/__init__.py +46 -0
  2. vellum/client.py +45 -12
  3. vellum/core/client_wrapper.py +1 -1
  4. vellum/resources/deployments/client.py +11 -0
  5. vellum/types/__init__.py +48 -0
  6. vellum/types/array_vellum_value_item_request.py +82 -0
  7. vellum/types/compile_prompt_deployment_expand_meta_request.py +38 -0
  8. vellum/types/compile_prompt_meta.py +31 -0
  9. vellum/types/deployment_provider_payload_response.py +2 -0
  10. vellum/types/error_vellum_value_request.py +30 -0
  11. vellum/types/function_call_vellum_value_request.py +30 -0
  12. vellum/types/image_vellum_value_request.py +30 -0
  13. vellum/types/json_vellum_value_request.py +29 -0
  14. vellum/types/named_test_case_array_variable_value.py +31 -0
  15. vellum/types/named_test_case_array_variable_value_request.py +31 -0
  16. vellum/types/named_test_case_variable_value.py +12 -0
  17. vellum/types/named_test_case_variable_value_request.py +12 -0
  18. vellum/types/number_vellum_value_request.py +29 -0
  19. vellum/types/prompt_deployment_expand_meta_request_request.py +11 -11
  20. vellum/types/prompt_execution_meta.py +1 -1
  21. vellum/types/prompt_node_execution_meta.py +30 -0
  22. vellum/types/prompt_node_result_data.py +2 -0
  23. vellum/types/string_vellum_value_request.py +29 -0
  24. vellum/types/test_case_array_variable_value.py +32 -0
  25. vellum/types/test_case_variable_value.py +12 -0
  26. vellum/types/workflow_expand_meta_request.py +28 -0
  27. {vellum_ai-0.7.1.dist-info → vellum_ai-0.7.3.dist-info}/METADATA +1 -1
  28. {vellum_ai-0.7.1.dist-info → vellum_ai-0.7.3.dist-info}/RECORD +30 -16
  29. {vellum_ai-0.7.1.dist-info → vellum_ai-0.7.3.dist-info}/LICENSE +0 -0
  30. {vellum_ai-0.7.1.dist-info → vellum_ai-0.7.3.dist-info}/WHEEL +0 -0
@@ -0,0 +1,29 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+
9
+
10
+ class NumberVellumValueRequest(pydantic_v1.BaseModel):
11
+ """
12
+ A value representing a number.
13
+ """
14
+
15
+ value: typing.Optional[float] = None
16
+
17
+ def json(self, **kwargs: typing.Any) -> str:
18
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
19
+ return super().json(**kwargs_with_defaults)
20
+
21
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
22
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
23
+ return super().dict(**kwargs_with_defaults)
24
+
25
+ class Config:
26
+ frozen = True
27
+ smart_union = True
28
+ extra = pydantic_v1.Extra.allow
29
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -10,32 +10,32 @@ from ..core.pydantic_utilities import pydantic_v1
10
10
  class PromptDeploymentExpandMetaRequestRequest(pydantic_v1.BaseModel):
11
11
  model_name: typing.Optional[bool] = pydantic_v1.Field(default=None)
12
12
  """
13
- If enabled, the response will include the model identifier representing the ML Model invoked by the Prompt Deployment.
13
+ If enabled, the response will include the model identifier representing the ML Model invoked by the Prompt.
14
14
  """
15
15
 
16
- latency: typing.Optional[bool] = pydantic_v1.Field(default=None)
16
+ usage: typing.Optional[bool] = pydantic_v1.Field(default=None)
17
17
  """
18
- If enabled, the response will include the time in nanoseconds it took to execute the Prompt Deployment.
18
+ If enabled, the response will include model host usage tracking. This may increase latency for some model hosts.
19
19
  """
20
20
 
21
- deployment_release_tag: typing.Optional[bool] = pydantic_v1.Field(default=None)
21
+ finish_reason: typing.Optional[bool] = pydantic_v1.Field(default=None)
22
22
  """
23
- If enabled, the response will include the release tag of the Prompt Deployment.
23
+ If enabled, the response will include the reason provided by the model for why the execution finished.
24
24
  """
25
25
 
26
- prompt_version_id: typing.Optional[bool] = pydantic_v1.Field(default=None)
26
+ latency: typing.Optional[bool] = pydantic_v1.Field(default=None)
27
27
  """
28
- If enabled, the response will include the ID of the Prompt Version backing the deployment.
28
+ If enabled, the response will include the time in nanoseconds it took to execute the Prompt Deployment.
29
29
  """
30
30
 
31
- finish_reason: typing.Optional[bool] = pydantic_v1.Field(default=None)
31
+ deployment_release_tag: typing.Optional[bool] = pydantic_v1.Field(default=None)
32
32
  """
33
- If enabled, the response will include the reason provided by the model for why the execution finished.
33
+ If enabled, the response will include the release tag of the Prompt Deployment.
34
34
  """
35
35
 
36
- usage: typing.Optional[bool] = pydantic_v1.Field(default=None)
36
+ prompt_version_id: typing.Optional[bool] = pydantic_v1.Field(default=None)
37
37
  """
38
- If enabled, the response will include model host usage tracking. This may increase latency for some model hosts.
38
+ If enabled, the response will include the ID of the Prompt Version backing the deployment.
39
39
  """
40
40
 
41
41
  def json(self, **kwargs: typing.Any) -> str:
@@ -14,12 +14,12 @@ class PromptExecutionMeta(pydantic_v1.BaseModel):
14
14
  The subset of the metadata tracked by Vellum during prompt execution that the request opted into with `expand_meta`.
15
15
  """
16
16
 
17
- usage: typing.Optional[MlModelUsage] = None
18
17
  model_name: typing.Optional[str] = None
19
18
  latency: typing.Optional[int] = None
20
19
  deployment_release_tag: typing.Optional[str] = None
21
20
  prompt_version_id: typing.Optional[str] = None
22
21
  finish_reason: typing.Optional[FinishReasonEnum] = None
22
+ usage: typing.Optional[MlModelUsage] = None
23
23
 
24
24
  def json(self, **kwargs: typing.Any) -> str:
25
25
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -0,0 +1,30 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+ from .ml_model_usage import MlModelUsage
9
+
10
+
11
+ class PromptNodeExecutionMeta(pydantic_v1.BaseModel):
12
+ """
13
+ The subset of the metadata tracked by Vellum during prompt execution that the request opted into with `expand_meta`.
14
+ """
15
+
16
+ usage: typing.Optional[MlModelUsage] = None
17
+
18
+ def json(self, **kwargs: typing.Any) -> str:
19
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
+ return super().json(**kwargs_with_defaults)
21
+
22
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().dict(**kwargs_with_defaults)
25
+
26
+ class Config:
27
+ frozen = True
28
+ smart_union = True
29
+ extra = pydantic_v1.Extra.allow
30
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -5,9 +5,11 @@ import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
7
  from ..core.pydantic_utilities import pydantic_v1
8
+ from .prompt_node_execution_meta import PromptNodeExecutionMeta
8
9
 
9
10
 
10
11
  class PromptNodeResultData(pydantic_v1.BaseModel):
12
+ execution_meta: typing.Optional[PromptNodeExecutionMeta] = None
11
13
  output_id: str
12
14
  array_output_id: typing.Optional[str] = None
13
15
  execution_id: typing.Optional[str] = None
@@ -0,0 +1,29 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+
9
+
10
+ class StringVellumValueRequest(pydantic_v1.BaseModel):
11
+ """
12
+ A value representing a string.
13
+ """
14
+
15
+ value: typing.Optional[str] = None
16
+
17
+ def json(self, **kwargs: typing.Any) -> str:
18
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
19
+ return super().json(**kwargs_with_defaults)
20
+
21
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
22
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
23
+ return super().dict(**kwargs_with_defaults)
24
+
25
+ class Config:
26
+ frozen = True
27
+ smart_union = True
28
+ extra = pydantic_v1.Extra.allow
29
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,32 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+ from .array_vellum_value_item import ArrayVellumValueItem
9
+
10
+
11
+ class TestCaseArrayVariableValue(pydantic_v1.BaseModel):
12
+ """
13
+ An Array value for a variable in a Test Case.
14
+ """
15
+
16
+ variable_id: str
17
+ name: str
18
+ value: typing.Optional[typing.List[ArrayVellumValueItem]] = None
19
+
20
+ def json(self, **kwargs: typing.Any) -> str:
21
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
22
+ return super().json(**kwargs_with_defaults)
23
+
24
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
25
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
26
+ return super().dict(**kwargs_with_defaults)
27
+
28
+ class Config:
29
+ frozen = True
30
+ smart_union = True
31
+ extra = pydantic_v1.Extra.allow
32
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -4,6 +4,7 @@ from __future__ import annotations
4
4
 
5
5
  import typing
6
6
 
7
+ from .test_case_array_variable_value import TestCaseArrayVariableValue
7
8
  from .test_case_chat_history_variable_value import TestCaseChatHistoryVariableValue
8
9
  from .test_case_error_variable_value import TestCaseErrorVariableValue
9
10
  from .test_case_function_call_variable_value import TestCaseFunctionCallVariableValue
@@ -83,6 +84,16 @@ class TestCaseVariableValue_FunctionCall(TestCaseFunctionCallVariableValue):
83
84
  populate_by_name = True
84
85
 
85
86
 
87
+ class TestCaseVariableValue_Array(TestCaseArrayVariableValue):
88
+ type: typing.Literal["ARRAY"] = "ARRAY"
89
+
90
+ class Config:
91
+ frozen = True
92
+ smart_union = True
93
+ allow_population_by_field_name = True
94
+ populate_by_name = True
95
+
96
+
86
97
  TestCaseVariableValue = typing.Union[
87
98
  TestCaseVariableValue_String,
88
99
  TestCaseVariableValue_Number,
@@ -91,4 +102,5 @@ TestCaseVariableValue = typing.Union[
91
102
  TestCaseVariableValue_SearchResults,
92
103
  TestCaseVariableValue_Error,
93
104
  TestCaseVariableValue_FunctionCall,
105
+ TestCaseVariableValue_Array,
94
106
  ]
@@ -0,0 +1,28 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+
9
+
10
+ class WorkflowExpandMetaRequest(pydantic_v1.BaseModel):
11
+ usage: typing.Optional[bool] = pydantic_v1.Field(default=None)
12
+ """
13
+ If enabled, the Prompt Node FULFILLED events will include model host usage tracking. This may increase latency for some model hosts.
14
+ """
15
+
16
+ def json(self, **kwargs: typing.Any) -> str:
17
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
18
+ return super().json(**kwargs_with_defaults)
19
+
20
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
21
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
22
+ return super().dict(**kwargs_with_defaults)
23
+
24
+ class Config:
25
+ frozen = True
26
+ smart_union = True
27
+ extra = pydantic_v1.Extra.allow
28
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: vellum-ai
3
- Version: 0.7.1
3
+ Version: 0.7.3
4
4
  Summary:
5
5
  Requires-Python: >=3.8,<4.0
6
6
  Classifier: Programming Language :: Python :: 3
@@ -1,8 +1,8 @@
1
- vellum/__init__.py,sha256=HnKNRQlRrHR1mezmUxtJLVZLjLYpv_uTVOljprL3Z6Y,46221
2
- vellum/client.py,sha256=t01FNNiiRqLAiY9uri-seWPoRLGMHmMLZg7IiyAUgCE,99763
1
+ vellum/__init__.py,sha256=rIWJOrL92yjgdD7LvFC2j2WhlCe0IeWFyRkNUyv-IO8,47897
2
+ vellum/client.py,sha256=Go36j4cYimrlAZ_k_jZe9pE56pJZKJukwuixq7lngso,102237
3
3
  vellum/core/__init__.py,sha256=1pNSKkwyQvMl_F0wohBqmoQAITptg3zlvCwsoSSzy7c,853
4
4
  vellum/core/api_error.py,sha256=RE8LELok2QCjABadECTvtDp7qejA1VmINCh6TbqPwSE,426
5
- vellum/core/client_wrapper.py,sha256=YQTlX78y7r1z5qEDpWeiBYhBwIrNtkBawAbjIacHTN8,1697
5
+ vellum/core/client_wrapper.py,sha256=psuDNoW8kHKhxBiyKsygUleQggJMYaK9CJlbk9eZjiY,1697
6
6
  vellum/core/datetime_utils.py,sha256=nBys2IsYrhPdszxGKCNRPSOCwa-5DWOHG95FB8G9PKo,1047
7
7
  vellum/core/file.py,sha256=sy1RUGZ3aJYuw998bZytxxo6QdgKmlnlgBaMvwEKCGg,1480
8
8
  vellum/core/http_client.py,sha256=5ok6hqgZDJhg57EHvMnr0BBaHdG50QxFPKaCZ9aVWTc,5059
@@ -28,7 +28,7 @@ vellum/lib/utils/paginator.py,sha256=yDvgehocYBDclLt5SewZH4hCIyq0yLHdBzkyPCoYPjs
28
28
  vellum/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
29
29
  vellum/resources/__init__.py,sha256=K9Pl_nZ5i7-cdT-rzttq8bZxustkIxPjDhcDEitCLoA,780
30
30
  vellum/resources/deployments/__init__.py,sha256=AE0TcFwLrLBljM0ZDX-pPw4Kqt-1f5JDpIok2HS80QI,157
31
- vellum/resources/deployments/client.py,sha256=p-n2k6RQIwNBDm9dU-wE6pI0kRhNjQiARBeQYWX9wuM,30612
31
+ vellum/resources/deployments/client.py,sha256=wsKy1SXcr1Lt-e0ms7IyA4SXAzqnmusM2LTBnrTeD1I,31240
32
32
  vellum/resources/deployments/types/__init__.py,sha256=IhwnmoXJ0r_QEhh1b2tBcaAm_x3fWMVuIhYmAapp_ZA,183
33
33
  vellum/resources/deployments/types/deployments_list_request_status.py,sha256=CxlQD16KZXme7x31YYCe_3aAgEueutDTeJo5A4Au-aU,174
34
34
  vellum/resources/document_indexes/__init__.py,sha256=YpOl_9IV7xOlH4OmusQxtAJB11kxQfCSMDyT1_UD0oM,165
@@ -60,7 +60,7 @@ vellum/terraform/document_index/__init__.py,sha256=qq2zENI22bUvqGk_a1lmsoTr5O_xC
60
60
  vellum/terraform/provider/__init__.py,sha256=K1yLlTZkYBxhD4bhUV1v23hxDGgbfsAIGsSyeB54dNQ,10298
61
61
  vellum/terraform/py.typed,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
62
62
  vellum/terraform/versions.json,sha256=STW6Mg3BKDacFmbWHXziHxE90GWncZf4AIzCLiXm_7o,56
63
- vellum/types/__init__.py,sha256=xjHl3jWaymMfVImGRZ3pRkVQ62pzF1uUvTbZvHvmSCI,62059
63
+ vellum/types/__init__.py,sha256=euLAWtWd419o4Aev3JfzcF36pl3FcPJisvj0A0joGJA,64294
64
64
  vellum/types/add_openai_api_key_enum.py,sha256=GB7sLK_Ou7-Xn73sKJHUo6Gx3TjyhU7uJvWZAg4UeaI,92
65
65
  vellum/types/api_node_result.py,sha256=SvYIi1T-N_P3FVjzv9I91PaCT0IN958A3easp5Q7jqE,983
66
66
  vellum/types/api_node_result_data.py,sha256=KFBmmizcEg73GwQMXUtEdJ4e9YGFpRLYAnalwxIcDug,1161
@@ -71,6 +71,7 @@ vellum/types/array_chat_message_content_request.py,sha256=RjOzVEKHKqOTLHCT0D1XkH
71
71
  vellum/types/array_enum.py,sha256=4p5fpx2piS8FhkPAEz6Xu3OIOKFuDZF-aokSW6-dV0E,116
72
72
  vellum/types/array_variable_value_item.py,sha256=MHfgHHXxVOPJRFk3oK4ORsOw8Q06VWcs2JIsGSP5v9I,2228
73
73
  vellum/types/array_vellum_value_item.py,sha256=KjXgZLvRL8WI5vT5nyn5mXFJjS9AkF3wKK3tng_NwuA,2166
74
+ vellum/types/array_vellum_value_item_request.py,sha256=UfOCdy1s8nbpyg5SwTuNL_X4GtztZD_gD5sc7rBwdZM,2389
74
75
  vellum/types/basic_vectorizer_intfloat_multilingual_e_5_large.py,sha256=P9B-Ofq4V1KV5lBiX4tZzV76L76Usy4RqVuKn5K8dzE,1004
75
76
  vellum/types/basic_vectorizer_intfloat_multilingual_e_5_large_request.py,sha256=DwIOSqUudFZygt84XPryCGCy3fyArDEa0eelSuGQDQs,1011
76
77
  vellum/types/basic_vectorizer_sentence_transformers_multi_qa_mpnet_base_cos_v_1.py,sha256=Rb8q5E5_MG3Ht7rR5BVxkFAcO83_iicc0Zim6rdkdiU,1036
@@ -95,6 +96,8 @@ vellum/types/code_execution_node_result_data.py,sha256=mQ3I1kKh7UeZjKfxlZ5W3Uhk3
95
96
  vellum/types/code_execution_node_result_output.py,sha256=JlqgCO5Og1fo_fHgrn5Dq-g8UfYBaamaHw_xdyDAhNQ,3377
96
97
  vellum/types/code_execution_node_search_results_result.py,sha256=sX2alyDbwH6M8X-LZLJZMgiS2otjJMFpv0KTItGli5I,972
97
98
  vellum/types/code_execution_node_string_result.py,sha256=w_FeNnHyjpc-bjXPKBxHywO6lLszNGqia9xgYInIs0w,903
99
+ vellum/types/compile_prompt_deployment_expand_meta_request.py,sha256=flkepAeBAEPRW6Z-Shr8A__zdhuHYSw2f7398WRnn3Y,1439
100
+ vellum/types/compile_prompt_meta.py,sha256=Xil3NW1lJuNdW7ha2d7FfzcMfxFLjnjd1vPCTpKVsqM,1142
98
101
  vellum/types/conditional_node_result.py,sha256=mR8FHOnTwLDO8U5uVNB2SkDrJSDRkcyLqXPSSL8Dil4,1022
99
102
  vellum/types/conditional_node_result_data.py,sha256=BoSK8B_qDx-CztZw5qwl2Gk0Ow56gifNu2Ahg-P15iE,898
100
103
  vellum/types/create_enum.py,sha256=38jp66mStym6pDxoXS4z6y7bfArh1jgjjV8xgf4KBBw,118
@@ -102,7 +105,7 @@ vellum/types/create_test_suite_test_case_request.py,sha256=10jAv5EDKNFcS42q_oggc
102
105
  vellum/types/created_enum.py,sha256=_dfKJhEenYcIUYY1uKQuq1uNS3k9HbPGCxXnW-Tu5uo,120
103
106
  vellum/types/delete_enum.py,sha256=g6Rnc2pbgXkEbqhG0Bx1z-ZGr4DMkb8QK8du9dQQcpQ,118
104
107
  vellum/types/deleted_enum.py,sha256=F7VTcnxIkXrwyQr5CjGikBbCnlo6To_rP0pibWm-ioo,120
105
- vellum/types/deployment_provider_payload_response.py,sha256=Y1gNhvAKlreRXchZZpX_5QHCu9Tbs887E6_Ghs3Dlbg,1009
108
+ vellum/types/deployment_provider_payload_response.py,sha256=Isu9eqW0ScdyMmuuK4Y15h_HGPccsIHqY_7K7ZLmBlo,1112
106
109
  vellum/types/deployment_provider_payload_response_payload.py,sha256=Jpu_z0WZ0Uu0Xu5h77GrNNAjP1R8pn4K-aHJPqk8c50,171
107
110
  vellum/types/deployment_read.py,sha256=Ob9ArdqKJb5vjRx26hX_iOnPF2MwtBYxB5xx2LVNbEk,2100
108
111
  vellum/types/deployment_release_tag_deployment_history_item.py,sha256=997C-J0NOEvOm7Y_dyyaqYvKMIEHCDj0JEpAcmOjOEQ,903
@@ -121,6 +124,7 @@ vellum/types/environment_enum.py,sha256=Wcewxp1cpGAMDIAZbTp4Y0GGfvy2Bq_Qu_67f_wB
121
124
  vellum/types/error_enum.py,sha256=HF_ubfzqmFQN3vVCDFZALADjHFRChuvkU_-zqjxa3ns,116
122
125
  vellum/types/error_variable_value.py,sha256=x5t2f3jk5zC6KyXYpk_ZgKv_lIRq_-P5hahou9Lohb0,926
123
126
  vellum/types/error_vellum_value.py,sha256=LhArYgM0L1o1BkCl_Oym9R1dwRP24lxa_5kEEmTes7w,976
127
+ vellum/types/error_vellum_value_request.py,sha256=_9GzKPZ1nZ8j5glqdHOVMLlxcJOWEmEoAN6t6AvfW9M,1005
124
128
  vellum/types/execute_prompt_api_error_response.py,sha256=-RA-JhnAyj8_L9zNOCy4RsmmNwsldmIhTo-_mjHX60s,948
125
129
  vellum/types/execute_prompt_event.py,sha256=WBKdWBRgtDYoxMbHC7FjCjCxxTuOgjINonDYQITD1-4,1636
126
130
  vellum/types/execute_prompt_response.py,sha256=HHD1EoPDz78OQA8XYcsopklbzk0fVYk-rXwjwW19n6M,914
@@ -155,6 +159,7 @@ vellum/types/function_call_enum.py,sha256=QK__nqbfcaPx1d6paBAoCFth7mWOStqgutY3MI
155
159
  vellum/types/function_call_request.py,sha256=gwhQfL0vKfDzSKR2Pt5Q2E8bkoQKcNQ2ItAAxT_dWlo,1088
156
160
  vellum/types/function_call_variable_value.py,sha256=3XFxR5zkeo4sc7fB_ot6x6fFT_QC4QKYC9c0cCQENlI,936
157
161
  vellum/types/function_call_vellum_value.py,sha256=Zn_tu4bfy569R9KJ9BiXx92N_AsB3KvMVv24DRbjvk8,993
162
+ vellum/types/function_call_vellum_value_request.py,sha256=aGaYczwL-Ie_rQ-CiK8x3a5B1wsiDbbuxdjsl-p335c,1022
158
163
  vellum/types/generate_error_response.py,sha256=Zrnq_Acm_2CfmZkZ60Axgw_uUISOjd6tbJBIkFuj2U0,940
159
164
  vellum/types/generate_options_request.py,sha256=SD-39FB3py_HAZzMTaFyNeDRG0QbPPnayKICo2p9fTk,1079
160
165
  vellum/types/generate_request.py,sha256=PdbtFLB-RfFJatIIB_b1prMWks-LSxChbXVszMIPIuw,1572
@@ -173,6 +178,7 @@ vellum/types/image_chat_message_content_request.py,sha256=FelTpTbRUP_Fs5JW4FjdzT
173
178
  vellum/types/image_enum.py,sha256=tCaNHfgdFi9F5MInvgaRq19i9lghWolWWmZpBH5uSJQ,116
174
179
  vellum/types/image_variable_value.py,sha256=sTEWJjSx7Hh7uoZnH2eNpdF1lJltSw-yWQrbKYA5PzQ,1000
175
180
  vellum/types/image_vellum_value.py,sha256=LBVZLsVItp_BSiDwxDVvbtOJyD0JJmzCNVzMsy3cWKI,998
181
+ vellum/types/image_vellum_value_request.py,sha256=YYR2eQRSSyqFGX5ZPo9DAr6JaFAcNKgH7yuC5VInKmA,1027
176
182
  vellum/types/indexing_config_vectorizer.py,sha256=zW4Fn0_gx4Ges-kXI0-rfOa6_2SwnCyxGQz4Ok18uYI,3802
177
183
  vellum/types/indexing_config_vectorizer_request.py,sha256=3rqeTX2055DI9cybFS29M7DaFLszHIKqR51lvNQaT8M,4061
178
184
  vellum/types/indexing_state_enum.py,sha256=KWYMz5DwJnVhu3ZlSDdqiC5MtiTIdrxE4EvwFYiel1U,213
@@ -188,6 +194,7 @@ vellum/types/json_enum.py,sha256=0Se0lTWxLGQe-JdQ8E9KwFt5NWXuI7BkOdWQcFKJg-8,114
188
194
  vellum/types/json_input_request.py,sha256=fpBb3QS-E0a3hZU_mHZ5Yjkwr10-qqbQoMJbfhfGu_4,1048
189
195
  vellum/types/json_variable_value.py,sha256=VGDdFC41KDgEQzhCJJmU2FgaY85I_12w_rvBBl3EKh0,862
190
196
  vellum/types/json_vellum_value.py,sha256=9tRUBBqxEJ3dFbfpUyO9Dj9ik1zXZDRvjAdKGDJXsPw,917
197
+ vellum/types/json_vellum_value_request.py,sha256=WCc1jJDO0UyzDX9IaVYubsciU7lseC24VhP3BG6XJoc,924
191
198
  vellum/types/logical_operator.py,sha256=MuuMZ1-gOCDvy1WDQkMFfiBNHsRCqKgJei-b3727sKc,487
192
199
  vellum/types/logprobs_enum.py,sha256=D_458cZX2CAb6dX_ovrQ6HARlJkYcZRadKwsi1Cr-JM,151
193
200
  vellum/types/map_enum.py,sha256=ABInkGAOBdgmsKzcCcM0AKEPQt-iwim-GmHEkXEHEs0,112
@@ -205,6 +212,8 @@ vellum/types/ml_model_usage.py,sha256=NYnyJt7C3cG88REt2X2zsmRZMqx-RBJp07ld6eAc96
205
212
  vellum/types/named_scenario_input_chat_history_variable_value_request.py,sha256=swgyn_U0Mzz13GmRNUZ-V1190h---N1rNVuQYBOmiAE,1098
206
213
  vellum/types/named_scenario_input_request.py,sha256=v98mkxp2bZSWZur67dGxKM7UaIdk5H8b6mnK2myA4HE,1043
207
214
  vellum/types/named_scenario_input_string_variable_value_request.py,sha256=rWuHXH_iaV3mkhuBWPfvMIIVKeYS9ygAi4pYQKLX1iQ,1006
215
+ vellum/types/named_test_case_array_variable_value.py,sha256=QKLinBBEpSoVqML8As-Av33T9qPaacBzp5ET-yPn-Mk,1060
216
+ vellum/types/named_test_case_array_variable_value_request.py,sha256=OhUlhD5tRON5OmlR4Baw5cY5ZgzHNKuprAXr2HVW0zI,1089
208
217
  vellum/types/named_test_case_chat_history_variable_value.py,sha256=wLR-Vhb_XAevyG1miX1AoyOagNyZ-7ievYyMxv4wEVQ,1044
209
218
  vellum/types/named_test_case_chat_history_variable_value_request.py,sha256=OTCmtteEOw70ptFTubbfh_m5C4qE4-KfM8ABMQpW-DE,1073
210
219
  vellum/types/named_test_case_error_variable_value.py,sha256=HQI1CRF3K2fYxO_Gn5Y9KrrH4IEtzLN00rjt5wLJM0A,1018
@@ -219,8 +228,8 @@ vellum/types/named_test_case_search_results_variable_value.py,sha256=H-KyurHySPS
219
228
  vellum/types/named_test_case_search_results_variable_value_request.py,sha256=bKRFI9oSuHAO9gLscfof42d_slAT-EpFTUYaqMQ0OwY,1080
220
229
  vellum/types/named_test_case_string_variable_value.py,sha256=g0qeMyTNN4N_3Y0QjtDdaO9kJJOysDC-SSEBRr0lc1M,974
221
230
  vellum/types/named_test_case_string_variable_value_request.py,sha256=Jriilf5vooCSh2ReIt2ey1L-VsHZO8qHfGtfklSeRnM,981
222
- vellum/types/named_test_case_variable_value.py,sha256=UtV113Yp1gpJvtNwB4HOLrvBMYwaeB0v2EDAv-v5d5o,3021
223
- vellum/types/named_test_case_variable_value_request.py,sha256=qO-__UphDuhm6RjY7p_oYwO_IPNF1gS-vtJTHNxEs6I,3280
231
+ vellum/types/named_test_case_variable_value.py,sha256=xA7G5B437kKcY0Zg56seJylMB83JAXaof2aoap_K4mM,3406
232
+ vellum/types/named_test_case_variable_value_request.py,sha256=cBPky3OQiwzRMWNdjnQviSp3Sfg1ZK8fvVgSF9Ch3hk,3701
224
233
  vellum/types/node_input_compiled_array_value.py,sha256=EovfwRo5RP2-iSoOw62ZQ1TXFkgQIFk--710HQWVe6I,1019
225
234
  vellum/types/node_input_compiled_chat_history_value.py,sha256=PKEe2nu5ghEJXUWg_e9tRUhLwKHX0PmnQOf4VQp77nI,990
226
235
  vellum/types/node_input_compiled_error_value.py,sha256=sGAVC36JonLCG5wwLlc1ThNek4Ud3H31E1dYWJ0rtBg,971
@@ -244,6 +253,7 @@ vellum/types/normalized_token_log_probs.py,sha256=-PYJPYzykDfG9aeXqRselY8XHdIvr0
244
253
  vellum/types/number_enum.py,sha256=M_h5PmC5HxQYpQbfqqyw1DualhKu1QOCU-o1NYTQz_o,118
245
254
  vellum/types/number_variable_value.py,sha256=lZxdWVR_VwlAXpqHK6bgWXE32JcBkKkylnaJLi5iVy0,883
246
255
  vellum/types/number_vellum_value.py,sha256=ynO448qi8sVk15PSQBm_5aDcGL0gl7Sv_bTfA3KhumA,933
256
+ vellum/types/number_vellum_value_request.py,sha256=AfIsCQH-HLt6PJCdACpbBCCc3rSrKRLERmyqq4c-w30,940
247
257
  vellum/types/open_ai_vectorizer_config.py,sha256=sxtay8on0Gm_qOrFHDrMjxActxPMAu0jcm0hY2yR9VY,1037
248
258
  vellum/types/open_ai_vectorizer_config_request.py,sha256=9z3iSr3e82og59FH_U0pNbhTu4hIg0GGhBYEJOCiK4U,1044
249
259
  vellum/types/open_ai_vectorizer_text_embedding_3_large.py,sha256=fmopJSWa6oubljt2ljxvcjiB3Ic9CLnZn10oTW7-pTQ,1022
@@ -263,11 +273,12 @@ vellum/types/pdf_search_result_meta_source.py,sha256=qEwl2y_RN1XUShidjaH5zm8kp-4
263
273
  vellum/types/pdf_search_result_meta_source_request.py,sha256=ft-qjTtiSxvo3KVTdzF88QkOCc4sOq46gEyb7ICjBOI,1384
264
274
  vellum/types/processing_failure_reason_enum.py,sha256=R_KIW7TcQejhc-vLhtNf9SdkYADgoZCn4ch4_RRIvsI,195
265
275
  vellum/types/processing_state_enum.py,sha256=lIEunnCpgYQExm2bGyTb12KyjQ3O7XOx636aWXb_Iwo,190
266
- vellum/types/prompt_deployment_expand_meta_request_request.py,sha256=r7xmsEaFZWLXKE1Y7GGjUXbaYyMnIdpdgFy3QvMEl8M,2044
276
+ vellum/types/prompt_deployment_expand_meta_request_request.py,sha256=JrOzU5Pv2L_BkWenxuUBBcWP2PHOZM0m4_6I2TIBMDc,2033
267
277
  vellum/types/prompt_deployment_input_request.py,sha256=o8PCi7TsitddNxiAfDblxaXkJ1-WjuDTAW0LnKbMDY4,1233
268
- vellum/types/prompt_execution_meta.py,sha256=io92vwMO3qC7RsCIsyMPFEeY3Sizb2xv6X1TBwKu6eI,1370
278
+ vellum/types/prompt_execution_meta.py,sha256=L75Yhb4-t1aCYWokMfCtayZmN8R2ZuTOR5DbyxHOAeI,1370
279
+ vellum/types/prompt_node_execution_meta.py,sha256=fjNFSc7FTdR17NRHRhMhrtjU-VxSvoELU8bLWdiYRl0,1073
269
280
  vellum/types/prompt_node_result.py,sha256=BVRnp6zIKocaPquCln0UtqW2M18j8k_OnHLGWCB25hU,997
270
- vellum/types/prompt_node_result_data.py,sha256=yCyVhQSBkKE0V0Lw74aLRvYTv4j660Zc_lejui6znO4,1034
281
+ vellum/types/prompt_node_result_data.py,sha256=Vs546gbJii1gIa2lKShs6Ma8_aJabpqaZV8eXe-wwpQ,1166
271
282
  vellum/types/prompt_output.py,sha256=wO0lz1HmPctCMt9lGLTsJRkL20wMXfmya5CxRhakOxU,1418
272
283
  vellum/types/raw_prompt_execution_overrides_request.py,sha256=Hwfjk35PsGSqMfcRwBzwjfpaRiaixTVi8xsG9g9pV3E,1210
273
284
  vellum/types/reducto_chunker_config.py,sha256=x0LRCr3vMfn4Zu5KUKWbwaV3ab8SQ825NkmzLvbiojY,948
@@ -326,6 +337,7 @@ vellum/types/string_enum.py,sha256=8uLrjmZyaGRDEf7Y6DpJF1e4abJct69wIoq6ZQX6F-s,1
326
337
  vellum/types/string_input_request.py,sha256=2c7ZbrA2r_Au12O-LnfMwY-5rQKzAqQkLVu-jc-qjTI,1026
327
338
  vellum/types/string_variable_value.py,sha256=YGjpJpTVnxywk0mtXisQw8BkIfTS_amY4JPugLQ6dW0,881
328
339
  vellum/types/string_vellum_value.py,sha256=UCk0yx0DHUrANEp-rPsXO34dUNRWuzQPcSR2BsVPnlU,931
340
+ vellum/types/string_vellum_value_request.py,sha256=sB3MCsRMpjul20MLIqfhmR5ON3SaMc3gQp-jorGZXxI,938
329
341
  vellum/types/submit_completion_actual_request.py,sha256=52BcHB_G2aj5EZrzAXVcmkrFWD1a7UJSzZKifWmr8KQ,2010
330
342
  vellum/types/submit_completion_actuals_error_response.py,sha256=f2XlGM5NBdwZLy4oOJN9LrcaHwW31fGtTCmzcJVzUV4,875
331
343
  vellum/types/submit_workflow_execution_actual_request.py,sha256=zR5Di5a9GC2fchGC9qLEXGELitg3UxCoQUqeIyeyLDc,1487
@@ -354,6 +366,7 @@ vellum/types/terminal_node_result_data.py,sha256=0EavYhcD-aZi5QngHK-bAB2wtFNw0CJ
354
366
  vellum/types/terminal_node_result_output.py,sha256=lKXaYst9-JuY0rk0tjDV4mD2s_G-7gZm5FTKbW9xYo8,3164
355
367
  vellum/types/terminal_node_search_results_result.py,sha256=neeojsER6K17-Mw8pQ92qMELRa_7o140wXeuvUty99Y,1118
356
368
  vellum/types/terminal_node_string_result.py,sha256=AV-9qUXT0WJiftv_uv_qKSROXo8XEijEOMSshGU6JNA,1049
369
+ vellum/types/test_case_array_variable_value.py,sha256=XYHfiLkaBfW0JqzJyJeA8rAD1YSzoasYa2T5QXhHTAU,1078
357
370
  vellum/types/test_case_chat_history_variable_value.py,sha256=hi9BArWPk7im4X2091yGRfjpIgGPJSUBp9PqHA0ZH6w,1061
358
371
  vellum/types/test_case_error_variable_value.py,sha256=7WIe0DMvp8tBCcqyRHQpT76vTylwuW2YQ3jRPkfc-t0,1036
359
372
  vellum/types/test_case_function_call_variable_value.py,sha256=Auv--TyCGUOjs9z42ZB29tsGZ5khy7CmqSNWJe55Lzk,1053
@@ -361,7 +374,7 @@ vellum/types/test_case_json_variable_value.py,sha256=BsgNdPsgTh_Vxt3ZRkHy22foq2T
361
374
  vellum/types/test_case_number_variable_value.py,sha256=96vZuKZTm7AVa_r-xjTMTpQMRCCga-Pcfw0HLoAYkg8,996
362
375
  vellum/types/test_case_search_results_variable_value.py,sha256=lzExcnYAH8PWjWEfMj6rmhDnQG7YSLiU0bwH62N2dIk,1068
363
376
  vellum/types/test_case_string_variable_value.py,sha256=3-TIR-38VndZVe0fdPa0XPe-3PdUSCzYuffGQlH3WY4,991
364
- vellum/types/test_case_variable_value.py,sha256=2BMIxU6WOTBZ6UE0Q5w3nHUSpvh1bwJD7y2cbSJ222k,2834
377
+ vellum/types/test_case_variable_value.py,sha256=v54flEtZ_BgzYMuR0qmnuScrRYo27FxS8Tlxf5xJ85M,3193
365
378
  vellum/types/test_suite_run_deployment_release_tag_exec_config.py,sha256=DYsHB5DPs3Go5_oLu5_EaLtvtTLyoHQ0MWqmhmfLGS8,1373
366
379
  vellum/types/test_suite_run_deployment_release_tag_exec_config_data.py,sha256=4yR8eBKuOBxLm9eYlpQr03TH1FcvGtkN7B89BuQS_HE,1228
367
380
  vellum/types/test_suite_run_deployment_release_tag_exec_config_data_request.py,sha256=9x9e-oxKOrbPibl2bOtrEY74Jhnr5jCrkJnmhv19E9w,1235
@@ -444,6 +457,7 @@ vellum/types/workflow_execution_event_error_code.py,sha256=Vf-MTOx0KclZp35aajWDH
444
457
  vellum/types/workflow_execution_event_type.py,sha256=ESKqV3ItoAlqBooruf-i0AnmEh_GvCySZ0Co3r9Bvt0,170
445
458
  vellum/types/workflow_execution_node_result_event.py,sha256=qIjztqor0UcBTxbq7w7Is98Mqu0IgggUKY24qOHal4s,1139
446
459
  vellum/types/workflow_execution_workflow_result_event.py,sha256=PyMUdEwRMd8vjdimdcOXSvzPNd3PoacfDKuEmdrzpTU,1134
460
+ vellum/types/workflow_expand_meta_request.py,sha256=58J4L8hdpIeDBy3mMtEpiVVxsjueSQNxG3rdlm5DC3Y,1068
447
461
  vellum/types/workflow_node_result_data.py,sha256=OsGHVua3RRKrZvKZuWDcjyepXGGjmikrWosz7LNWKSY,3937
448
462
  vellum/types/workflow_node_result_event.py,sha256=0tSTva8wAxMKSGWrbSRADqGcbR_A6FMSR7xkYLP9rZg,1745
449
463
  vellum/types/workflow_node_result_event_state.py,sha256=cC3CdfmXR8bPzSG4W6vDnndA9HAnfF3v4UzmyeVwxog,209
@@ -476,7 +490,7 @@ vellum/types/workflow_result_event_output_data_search_results.py,sha256=gazaUrC5
476
490
  vellum/types/workflow_result_event_output_data_string.py,sha256=aVWIIGbLj4TJJhTTj6WzhbYXQkcZatKuhhNy8UYwXbw,1482
477
491
  vellum/types/workflow_stream_event.py,sha256=KA6Bkk_XA6AIPWR-1vKnwF1A8l_Bm5y0arQCWWWRpsk,911
478
492
  vellum/version.py,sha256=neLt8HBHHUtDF9M5fsyUzHT-pKooEPvceaLDqqIGb0s,77
479
- vellum_ai-0.7.1.dist-info/LICENSE,sha256=CcaljEIoOBaU-wItPH4PmM_mDCGpyuUY0Er1BGu5Ti8,1073
480
- vellum_ai-0.7.1.dist-info/METADATA,sha256=p4nfdDdtLea3le2LwfYMzgN_VXue2DwMgdpS12W-_fM,3872
481
- vellum_ai-0.7.1.dist-info/WHEEL,sha256=Zb28QaM1gQi8f4VCBhsUklF61CTlNYfs9YAZn-TOGFk,88
482
- vellum_ai-0.7.1.dist-info/RECORD,,
493
+ vellum_ai-0.7.3.dist-info/LICENSE,sha256=CcaljEIoOBaU-wItPH4PmM_mDCGpyuUY0Er1BGu5Ti8,1073
494
+ vellum_ai-0.7.3.dist-info/METADATA,sha256=1HTODOr4j6vufjMxOf6FzGVUXLeJfA-ipi4n_UupRUA,3872
495
+ vellum_ai-0.7.3.dist-info/WHEEL,sha256=Zb28QaM1gQi8f4VCBhsUklF61CTlNYfs9YAZn-TOGFk,88
496
+ vellum_ai-0.7.3.dist-info/RECORD,,