vellum-ai 0.7.1__py3-none-any.whl → 0.7.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (30) hide show
  1. vellum/__init__.py +46 -0
  2. vellum/client.py +45 -12
  3. vellum/core/client_wrapper.py +1 -1
  4. vellum/resources/deployments/client.py +11 -0
  5. vellum/types/__init__.py +48 -0
  6. vellum/types/array_vellum_value_item_request.py +82 -0
  7. vellum/types/compile_prompt_deployment_expand_meta_request.py +38 -0
  8. vellum/types/compile_prompt_meta.py +31 -0
  9. vellum/types/deployment_provider_payload_response.py +2 -0
  10. vellum/types/error_vellum_value_request.py +30 -0
  11. vellum/types/function_call_vellum_value_request.py +30 -0
  12. vellum/types/image_vellum_value_request.py +30 -0
  13. vellum/types/json_vellum_value_request.py +29 -0
  14. vellum/types/named_test_case_array_variable_value.py +31 -0
  15. vellum/types/named_test_case_array_variable_value_request.py +31 -0
  16. vellum/types/named_test_case_variable_value.py +12 -0
  17. vellum/types/named_test_case_variable_value_request.py +12 -0
  18. vellum/types/number_vellum_value_request.py +29 -0
  19. vellum/types/prompt_deployment_expand_meta_request_request.py +11 -11
  20. vellum/types/prompt_execution_meta.py +1 -1
  21. vellum/types/prompt_node_execution_meta.py +30 -0
  22. vellum/types/prompt_node_result_data.py +2 -0
  23. vellum/types/string_vellum_value_request.py +29 -0
  24. vellum/types/test_case_array_variable_value.py +32 -0
  25. vellum/types/test_case_variable_value.py +12 -0
  26. vellum/types/workflow_expand_meta_request.py +28 -0
  27. {vellum_ai-0.7.1.dist-info → vellum_ai-0.7.3.dist-info}/METADATA +1 -1
  28. {vellum_ai-0.7.1.dist-info → vellum_ai-0.7.3.dist-info}/RECORD +30 -16
  29. {vellum_ai-0.7.1.dist-info → vellum_ai-0.7.3.dist-info}/LICENSE +0 -0
  30. {vellum_ai-0.7.1.dist-info → vellum_ai-0.7.3.dist-info}/WHEEL +0 -0
@@ -0,0 +1,29 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+
9
+
10
+ class NumberVellumValueRequest(pydantic_v1.BaseModel):
11
+ """
12
+ A value representing a number.
13
+ """
14
+
15
+ value: typing.Optional[float] = None
16
+
17
+ def json(self, **kwargs: typing.Any) -> str:
18
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
19
+ return super().json(**kwargs_with_defaults)
20
+
21
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
22
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
23
+ return super().dict(**kwargs_with_defaults)
24
+
25
+ class Config:
26
+ frozen = True
27
+ smart_union = True
28
+ extra = pydantic_v1.Extra.allow
29
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -10,32 +10,32 @@ from ..core.pydantic_utilities import pydantic_v1
10
10
  class PromptDeploymentExpandMetaRequestRequest(pydantic_v1.BaseModel):
11
11
  model_name: typing.Optional[bool] = pydantic_v1.Field(default=None)
12
12
  """
13
- If enabled, the response will include the model identifier representing the ML Model invoked by the Prompt Deployment.
13
+ If enabled, the response will include the model identifier representing the ML Model invoked by the Prompt.
14
14
  """
15
15
 
16
- latency: typing.Optional[bool] = pydantic_v1.Field(default=None)
16
+ usage: typing.Optional[bool] = pydantic_v1.Field(default=None)
17
17
  """
18
- If enabled, the response will include the time in nanoseconds it took to execute the Prompt Deployment.
18
+ If enabled, the response will include model host usage tracking. This may increase latency for some model hosts.
19
19
  """
20
20
 
21
- deployment_release_tag: typing.Optional[bool] = pydantic_v1.Field(default=None)
21
+ finish_reason: typing.Optional[bool] = pydantic_v1.Field(default=None)
22
22
  """
23
- If enabled, the response will include the release tag of the Prompt Deployment.
23
+ If enabled, the response will include the reason provided by the model for why the execution finished.
24
24
  """
25
25
 
26
- prompt_version_id: typing.Optional[bool] = pydantic_v1.Field(default=None)
26
+ latency: typing.Optional[bool] = pydantic_v1.Field(default=None)
27
27
  """
28
- If enabled, the response will include the ID of the Prompt Version backing the deployment.
28
+ If enabled, the response will include the time in nanoseconds it took to execute the Prompt Deployment.
29
29
  """
30
30
 
31
- finish_reason: typing.Optional[bool] = pydantic_v1.Field(default=None)
31
+ deployment_release_tag: typing.Optional[bool] = pydantic_v1.Field(default=None)
32
32
  """
33
- If enabled, the response will include the reason provided by the model for why the execution finished.
33
+ If enabled, the response will include the release tag of the Prompt Deployment.
34
34
  """
35
35
 
36
- usage: typing.Optional[bool] = pydantic_v1.Field(default=None)
36
+ prompt_version_id: typing.Optional[bool] = pydantic_v1.Field(default=None)
37
37
  """
38
- If enabled, the response will include model host usage tracking. This may increase latency for some model hosts.
38
+ If enabled, the response will include the ID of the Prompt Version backing the deployment.
39
39
  """
40
40
 
41
41
  def json(self, **kwargs: typing.Any) -> str:
@@ -14,12 +14,12 @@ class PromptExecutionMeta(pydantic_v1.BaseModel):
14
14
  The subset of the metadata tracked by Vellum during prompt execution that the request opted into with `expand_meta`.
15
15
  """
16
16
 
17
- usage: typing.Optional[MlModelUsage] = None
18
17
  model_name: typing.Optional[str] = None
19
18
  latency: typing.Optional[int] = None
20
19
  deployment_release_tag: typing.Optional[str] = None
21
20
  prompt_version_id: typing.Optional[str] = None
22
21
  finish_reason: typing.Optional[FinishReasonEnum] = None
22
+ usage: typing.Optional[MlModelUsage] = None
23
23
 
24
24
  def json(self, **kwargs: typing.Any) -> str:
25
25
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -0,0 +1,30 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+ from .ml_model_usage import MlModelUsage
9
+
10
+
11
+ class PromptNodeExecutionMeta(pydantic_v1.BaseModel):
12
+ """
13
+ The subset of the metadata tracked by Vellum during prompt execution that the request opted into with `expand_meta`.
14
+ """
15
+
16
+ usage: typing.Optional[MlModelUsage] = None
17
+
18
+ def json(self, **kwargs: typing.Any) -> str:
19
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
+ return super().json(**kwargs_with_defaults)
21
+
22
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().dict(**kwargs_with_defaults)
25
+
26
+ class Config:
27
+ frozen = True
28
+ smart_union = True
29
+ extra = pydantic_v1.Extra.allow
30
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -5,9 +5,11 @@ import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
7
  from ..core.pydantic_utilities import pydantic_v1
8
+ from .prompt_node_execution_meta import PromptNodeExecutionMeta
8
9
 
9
10
 
10
11
  class PromptNodeResultData(pydantic_v1.BaseModel):
12
+ execution_meta: typing.Optional[PromptNodeExecutionMeta] = None
11
13
  output_id: str
12
14
  array_output_id: typing.Optional[str] = None
13
15
  execution_id: typing.Optional[str] = None
@@ -0,0 +1,29 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+
9
+
10
+ class StringVellumValueRequest(pydantic_v1.BaseModel):
11
+ """
12
+ A value representing a string.
13
+ """
14
+
15
+ value: typing.Optional[str] = None
16
+
17
+ def json(self, **kwargs: typing.Any) -> str:
18
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
19
+ return super().json(**kwargs_with_defaults)
20
+
21
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
22
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
23
+ return super().dict(**kwargs_with_defaults)
24
+
25
+ class Config:
26
+ frozen = True
27
+ smart_union = True
28
+ extra = pydantic_v1.Extra.allow
29
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,32 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+ from .array_vellum_value_item import ArrayVellumValueItem
9
+
10
+
11
+ class TestCaseArrayVariableValue(pydantic_v1.BaseModel):
12
+ """
13
+ An Array value for a variable in a Test Case.
14
+ """
15
+
16
+ variable_id: str
17
+ name: str
18
+ value: typing.Optional[typing.List[ArrayVellumValueItem]] = None
19
+
20
+ def json(self, **kwargs: typing.Any) -> str:
21
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
22
+ return super().json(**kwargs_with_defaults)
23
+
24
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
25
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
26
+ return super().dict(**kwargs_with_defaults)
27
+
28
+ class Config:
29
+ frozen = True
30
+ smart_union = True
31
+ extra = pydantic_v1.Extra.allow
32
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -4,6 +4,7 @@ from __future__ import annotations
4
4
 
5
5
  import typing
6
6
 
7
+ from .test_case_array_variable_value import TestCaseArrayVariableValue
7
8
  from .test_case_chat_history_variable_value import TestCaseChatHistoryVariableValue
8
9
  from .test_case_error_variable_value import TestCaseErrorVariableValue
9
10
  from .test_case_function_call_variable_value import TestCaseFunctionCallVariableValue
@@ -83,6 +84,16 @@ class TestCaseVariableValue_FunctionCall(TestCaseFunctionCallVariableValue):
83
84
  populate_by_name = True
84
85
 
85
86
 
87
+ class TestCaseVariableValue_Array(TestCaseArrayVariableValue):
88
+ type: typing.Literal["ARRAY"] = "ARRAY"
89
+
90
+ class Config:
91
+ frozen = True
92
+ smart_union = True
93
+ allow_population_by_field_name = True
94
+ populate_by_name = True
95
+
96
+
86
97
  TestCaseVariableValue = typing.Union[
87
98
  TestCaseVariableValue_String,
88
99
  TestCaseVariableValue_Number,
@@ -91,4 +102,5 @@ TestCaseVariableValue = typing.Union[
91
102
  TestCaseVariableValue_SearchResults,
92
103
  TestCaseVariableValue_Error,
93
104
  TestCaseVariableValue_FunctionCall,
105
+ TestCaseVariableValue_Array,
94
106
  ]
@@ -0,0 +1,28 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+
9
+
10
+ class WorkflowExpandMetaRequest(pydantic_v1.BaseModel):
11
+ usage: typing.Optional[bool] = pydantic_v1.Field(default=None)
12
+ """
13
+ If enabled, the Prompt Node FULFILLED events will include model host usage tracking. This may increase latency for some model hosts.
14
+ """
15
+
16
+ def json(self, **kwargs: typing.Any) -> str:
17
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
18
+ return super().json(**kwargs_with_defaults)
19
+
20
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
21
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
22
+ return super().dict(**kwargs_with_defaults)
23
+
24
+ class Config:
25
+ frozen = True
26
+ smart_union = True
27
+ extra = pydantic_v1.Extra.allow
28
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: vellum-ai
3
- Version: 0.7.1
3
+ Version: 0.7.3
4
4
  Summary:
5
5
  Requires-Python: >=3.8,<4.0
6
6
  Classifier: Programming Language :: Python :: 3
@@ -1,8 +1,8 @@
1
- vellum/__init__.py,sha256=HnKNRQlRrHR1mezmUxtJLVZLjLYpv_uTVOljprL3Z6Y,46221
2
- vellum/client.py,sha256=t01FNNiiRqLAiY9uri-seWPoRLGMHmMLZg7IiyAUgCE,99763
1
+ vellum/__init__.py,sha256=rIWJOrL92yjgdD7LvFC2j2WhlCe0IeWFyRkNUyv-IO8,47897
2
+ vellum/client.py,sha256=Go36j4cYimrlAZ_k_jZe9pE56pJZKJukwuixq7lngso,102237
3
3
  vellum/core/__init__.py,sha256=1pNSKkwyQvMl_F0wohBqmoQAITptg3zlvCwsoSSzy7c,853
4
4
  vellum/core/api_error.py,sha256=RE8LELok2QCjABadECTvtDp7qejA1VmINCh6TbqPwSE,426
5
- vellum/core/client_wrapper.py,sha256=YQTlX78y7r1z5qEDpWeiBYhBwIrNtkBawAbjIacHTN8,1697
5
+ vellum/core/client_wrapper.py,sha256=psuDNoW8kHKhxBiyKsygUleQggJMYaK9CJlbk9eZjiY,1697
6
6
  vellum/core/datetime_utils.py,sha256=nBys2IsYrhPdszxGKCNRPSOCwa-5DWOHG95FB8G9PKo,1047
7
7
  vellum/core/file.py,sha256=sy1RUGZ3aJYuw998bZytxxo6QdgKmlnlgBaMvwEKCGg,1480
8
8
  vellum/core/http_client.py,sha256=5ok6hqgZDJhg57EHvMnr0BBaHdG50QxFPKaCZ9aVWTc,5059
@@ -28,7 +28,7 @@ vellum/lib/utils/paginator.py,sha256=yDvgehocYBDclLt5SewZH4hCIyq0yLHdBzkyPCoYPjs
28
28
  vellum/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
29
29
  vellum/resources/__init__.py,sha256=K9Pl_nZ5i7-cdT-rzttq8bZxustkIxPjDhcDEitCLoA,780
30
30
  vellum/resources/deployments/__init__.py,sha256=AE0TcFwLrLBljM0ZDX-pPw4Kqt-1f5JDpIok2HS80QI,157
31
- vellum/resources/deployments/client.py,sha256=p-n2k6RQIwNBDm9dU-wE6pI0kRhNjQiARBeQYWX9wuM,30612
31
+ vellum/resources/deployments/client.py,sha256=wsKy1SXcr1Lt-e0ms7IyA4SXAzqnmusM2LTBnrTeD1I,31240
32
32
  vellum/resources/deployments/types/__init__.py,sha256=IhwnmoXJ0r_QEhh1b2tBcaAm_x3fWMVuIhYmAapp_ZA,183
33
33
  vellum/resources/deployments/types/deployments_list_request_status.py,sha256=CxlQD16KZXme7x31YYCe_3aAgEueutDTeJo5A4Au-aU,174
34
34
  vellum/resources/document_indexes/__init__.py,sha256=YpOl_9IV7xOlH4OmusQxtAJB11kxQfCSMDyT1_UD0oM,165
@@ -60,7 +60,7 @@ vellum/terraform/document_index/__init__.py,sha256=qq2zENI22bUvqGk_a1lmsoTr5O_xC
60
60
  vellum/terraform/provider/__init__.py,sha256=K1yLlTZkYBxhD4bhUV1v23hxDGgbfsAIGsSyeB54dNQ,10298
61
61
  vellum/terraform/py.typed,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
62
62
  vellum/terraform/versions.json,sha256=STW6Mg3BKDacFmbWHXziHxE90GWncZf4AIzCLiXm_7o,56
63
- vellum/types/__init__.py,sha256=xjHl3jWaymMfVImGRZ3pRkVQ62pzF1uUvTbZvHvmSCI,62059
63
+ vellum/types/__init__.py,sha256=euLAWtWd419o4Aev3JfzcF36pl3FcPJisvj0A0joGJA,64294
64
64
  vellum/types/add_openai_api_key_enum.py,sha256=GB7sLK_Ou7-Xn73sKJHUo6Gx3TjyhU7uJvWZAg4UeaI,92
65
65
  vellum/types/api_node_result.py,sha256=SvYIi1T-N_P3FVjzv9I91PaCT0IN958A3easp5Q7jqE,983
66
66
  vellum/types/api_node_result_data.py,sha256=KFBmmizcEg73GwQMXUtEdJ4e9YGFpRLYAnalwxIcDug,1161
@@ -71,6 +71,7 @@ vellum/types/array_chat_message_content_request.py,sha256=RjOzVEKHKqOTLHCT0D1XkH
71
71
  vellum/types/array_enum.py,sha256=4p5fpx2piS8FhkPAEz6Xu3OIOKFuDZF-aokSW6-dV0E,116
72
72
  vellum/types/array_variable_value_item.py,sha256=MHfgHHXxVOPJRFk3oK4ORsOw8Q06VWcs2JIsGSP5v9I,2228
73
73
  vellum/types/array_vellum_value_item.py,sha256=KjXgZLvRL8WI5vT5nyn5mXFJjS9AkF3wKK3tng_NwuA,2166
74
+ vellum/types/array_vellum_value_item_request.py,sha256=UfOCdy1s8nbpyg5SwTuNL_X4GtztZD_gD5sc7rBwdZM,2389
74
75
  vellum/types/basic_vectorizer_intfloat_multilingual_e_5_large.py,sha256=P9B-Ofq4V1KV5lBiX4tZzV76L76Usy4RqVuKn5K8dzE,1004
75
76
  vellum/types/basic_vectorizer_intfloat_multilingual_e_5_large_request.py,sha256=DwIOSqUudFZygt84XPryCGCy3fyArDEa0eelSuGQDQs,1011
76
77
  vellum/types/basic_vectorizer_sentence_transformers_multi_qa_mpnet_base_cos_v_1.py,sha256=Rb8q5E5_MG3Ht7rR5BVxkFAcO83_iicc0Zim6rdkdiU,1036
@@ -95,6 +96,8 @@ vellum/types/code_execution_node_result_data.py,sha256=mQ3I1kKh7UeZjKfxlZ5W3Uhk3
95
96
  vellum/types/code_execution_node_result_output.py,sha256=JlqgCO5Og1fo_fHgrn5Dq-g8UfYBaamaHw_xdyDAhNQ,3377
96
97
  vellum/types/code_execution_node_search_results_result.py,sha256=sX2alyDbwH6M8X-LZLJZMgiS2otjJMFpv0KTItGli5I,972
97
98
  vellum/types/code_execution_node_string_result.py,sha256=w_FeNnHyjpc-bjXPKBxHywO6lLszNGqia9xgYInIs0w,903
99
+ vellum/types/compile_prompt_deployment_expand_meta_request.py,sha256=flkepAeBAEPRW6Z-Shr8A__zdhuHYSw2f7398WRnn3Y,1439
100
+ vellum/types/compile_prompt_meta.py,sha256=Xil3NW1lJuNdW7ha2d7FfzcMfxFLjnjd1vPCTpKVsqM,1142
98
101
  vellum/types/conditional_node_result.py,sha256=mR8FHOnTwLDO8U5uVNB2SkDrJSDRkcyLqXPSSL8Dil4,1022
99
102
  vellum/types/conditional_node_result_data.py,sha256=BoSK8B_qDx-CztZw5qwl2Gk0Ow56gifNu2Ahg-P15iE,898
100
103
  vellum/types/create_enum.py,sha256=38jp66mStym6pDxoXS4z6y7bfArh1jgjjV8xgf4KBBw,118
@@ -102,7 +105,7 @@ vellum/types/create_test_suite_test_case_request.py,sha256=10jAv5EDKNFcS42q_oggc
102
105
  vellum/types/created_enum.py,sha256=_dfKJhEenYcIUYY1uKQuq1uNS3k9HbPGCxXnW-Tu5uo,120
103
106
  vellum/types/delete_enum.py,sha256=g6Rnc2pbgXkEbqhG0Bx1z-ZGr4DMkb8QK8du9dQQcpQ,118
104
107
  vellum/types/deleted_enum.py,sha256=F7VTcnxIkXrwyQr5CjGikBbCnlo6To_rP0pibWm-ioo,120
105
- vellum/types/deployment_provider_payload_response.py,sha256=Y1gNhvAKlreRXchZZpX_5QHCu9Tbs887E6_Ghs3Dlbg,1009
108
+ vellum/types/deployment_provider_payload_response.py,sha256=Isu9eqW0ScdyMmuuK4Y15h_HGPccsIHqY_7K7ZLmBlo,1112
106
109
  vellum/types/deployment_provider_payload_response_payload.py,sha256=Jpu_z0WZ0Uu0Xu5h77GrNNAjP1R8pn4K-aHJPqk8c50,171
107
110
  vellum/types/deployment_read.py,sha256=Ob9ArdqKJb5vjRx26hX_iOnPF2MwtBYxB5xx2LVNbEk,2100
108
111
  vellum/types/deployment_release_tag_deployment_history_item.py,sha256=997C-J0NOEvOm7Y_dyyaqYvKMIEHCDj0JEpAcmOjOEQ,903
@@ -121,6 +124,7 @@ vellum/types/environment_enum.py,sha256=Wcewxp1cpGAMDIAZbTp4Y0GGfvy2Bq_Qu_67f_wB
121
124
  vellum/types/error_enum.py,sha256=HF_ubfzqmFQN3vVCDFZALADjHFRChuvkU_-zqjxa3ns,116
122
125
  vellum/types/error_variable_value.py,sha256=x5t2f3jk5zC6KyXYpk_ZgKv_lIRq_-P5hahou9Lohb0,926
123
126
  vellum/types/error_vellum_value.py,sha256=LhArYgM0L1o1BkCl_Oym9R1dwRP24lxa_5kEEmTes7w,976
127
+ vellum/types/error_vellum_value_request.py,sha256=_9GzKPZ1nZ8j5glqdHOVMLlxcJOWEmEoAN6t6AvfW9M,1005
124
128
  vellum/types/execute_prompt_api_error_response.py,sha256=-RA-JhnAyj8_L9zNOCy4RsmmNwsldmIhTo-_mjHX60s,948
125
129
  vellum/types/execute_prompt_event.py,sha256=WBKdWBRgtDYoxMbHC7FjCjCxxTuOgjINonDYQITD1-4,1636
126
130
  vellum/types/execute_prompt_response.py,sha256=HHD1EoPDz78OQA8XYcsopklbzk0fVYk-rXwjwW19n6M,914
@@ -155,6 +159,7 @@ vellum/types/function_call_enum.py,sha256=QK__nqbfcaPx1d6paBAoCFth7mWOStqgutY3MI
155
159
  vellum/types/function_call_request.py,sha256=gwhQfL0vKfDzSKR2Pt5Q2E8bkoQKcNQ2ItAAxT_dWlo,1088
156
160
  vellum/types/function_call_variable_value.py,sha256=3XFxR5zkeo4sc7fB_ot6x6fFT_QC4QKYC9c0cCQENlI,936
157
161
  vellum/types/function_call_vellum_value.py,sha256=Zn_tu4bfy569R9KJ9BiXx92N_AsB3KvMVv24DRbjvk8,993
162
+ vellum/types/function_call_vellum_value_request.py,sha256=aGaYczwL-Ie_rQ-CiK8x3a5B1wsiDbbuxdjsl-p335c,1022
158
163
  vellum/types/generate_error_response.py,sha256=Zrnq_Acm_2CfmZkZ60Axgw_uUISOjd6tbJBIkFuj2U0,940
159
164
  vellum/types/generate_options_request.py,sha256=SD-39FB3py_HAZzMTaFyNeDRG0QbPPnayKICo2p9fTk,1079
160
165
  vellum/types/generate_request.py,sha256=PdbtFLB-RfFJatIIB_b1prMWks-LSxChbXVszMIPIuw,1572
@@ -173,6 +178,7 @@ vellum/types/image_chat_message_content_request.py,sha256=FelTpTbRUP_Fs5JW4FjdzT
173
178
  vellum/types/image_enum.py,sha256=tCaNHfgdFi9F5MInvgaRq19i9lghWolWWmZpBH5uSJQ,116
174
179
  vellum/types/image_variable_value.py,sha256=sTEWJjSx7Hh7uoZnH2eNpdF1lJltSw-yWQrbKYA5PzQ,1000
175
180
  vellum/types/image_vellum_value.py,sha256=LBVZLsVItp_BSiDwxDVvbtOJyD0JJmzCNVzMsy3cWKI,998
181
+ vellum/types/image_vellum_value_request.py,sha256=YYR2eQRSSyqFGX5ZPo9DAr6JaFAcNKgH7yuC5VInKmA,1027
176
182
  vellum/types/indexing_config_vectorizer.py,sha256=zW4Fn0_gx4Ges-kXI0-rfOa6_2SwnCyxGQz4Ok18uYI,3802
177
183
  vellum/types/indexing_config_vectorizer_request.py,sha256=3rqeTX2055DI9cybFS29M7DaFLszHIKqR51lvNQaT8M,4061
178
184
  vellum/types/indexing_state_enum.py,sha256=KWYMz5DwJnVhu3ZlSDdqiC5MtiTIdrxE4EvwFYiel1U,213
@@ -188,6 +194,7 @@ vellum/types/json_enum.py,sha256=0Se0lTWxLGQe-JdQ8E9KwFt5NWXuI7BkOdWQcFKJg-8,114
188
194
  vellum/types/json_input_request.py,sha256=fpBb3QS-E0a3hZU_mHZ5Yjkwr10-qqbQoMJbfhfGu_4,1048
189
195
  vellum/types/json_variable_value.py,sha256=VGDdFC41KDgEQzhCJJmU2FgaY85I_12w_rvBBl3EKh0,862
190
196
  vellum/types/json_vellum_value.py,sha256=9tRUBBqxEJ3dFbfpUyO9Dj9ik1zXZDRvjAdKGDJXsPw,917
197
+ vellum/types/json_vellum_value_request.py,sha256=WCc1jJDO0UyzDX9IaVYubsciU7lseC24VhP3BG6XJoc,924
191
198
  vellum/types/logical_operator.py,sha256=MuuMZ1-gOCDvy1WDQkMFfiBNHsRCqKgJei-b3727sKc,487
192
199
  vellum/types/logprobs_enum.py,sha256=D_458cZX2CAb6dX_ovrQ6HARlJkYcZRadKwsi1Cr-JM,151
193
200
  vellum/types/map_enum.py,sha256=ABInkGAOBdgmsKzcCcM0AKEPQt-iwim-GmHEkXEHEs0,112
@@ -205,6 +212,8 @@ vellum/types/ml_model_usage.py,sha256=NYnyJt7C3cG88REt2X2zsmRZMqx-RBJp07ld6eAc96
205
212
  vellum/types/named_scenario_input_chat_history_variable_value_request.py,sha256=swgyn_U0Mzz13GmRNUZ-V1190h---N1rNVuQYBOmiAE,1098
206
213
  vellum/types/named_scenario_input_request.py,sha256=v98mkxp2bZSWZur67dGxKM7UaIdk5H8b6mnK2myA4HE,1043
207
214
  vellum/types/named_scenario_input_string_variable_value_request.py,sha256=rWuHXH_iaV3mkhuBWPfvMIIVKeYS9ygAi4pYQKLX1iQ,1006
215
+ vellum/types/named_test_case_array_variable_value.py,sha256=QKLinBBEpSoVqML8As-Av33T9qPaacBzp5ET-yPn-Mk,1060
216
+ vellum/types/named_test_case_array_variable_value_request.py,sha256=OhUlhD5tRON5OmlR4Baw5cY5ZgzHNKuprAXr2HVW0zI,1089
208
217
  vellum/types/named_test_case_chat_history_variable_value.py,sha256=wLR-Vhb_XAevyG1miX1AoyOagNyZ-7ievYyMxv4wEVQ,1044
209
218
  vellum/types/named_test_case_chat_history_variable_value_request.py,sha256=OTCmtteEOw70ptFTubbfh_m5C4qE4-KfM8ABMQpW-DE,1073
210
219
  vellum/types/named_test_case_error_variable_value.py,sha256=HQI1CRF3K2fYxO_Gn5Y9KrrH4IEtzLN00rjt5wLJM0A,1018
@@ -219,8 +228,8 @@ vellum/types/named_test_case_search_results_variable_value.py,sha256=H-KyurHySPS
219
228
  vellum/types/named_test_case_search_results_variable_value_request.py,sha256=bKRFI9oSuHAO9gLscfof42d_slAT-EpFTUYaqMQ0OwY,1080
220
229
  vellum/types/named_test_case_string_variable_value.py,sha256=g0qeMyTNN4N_3Y0QjtDdaO9kJJOysDC-SSEBRr0lc1M,974
221
230
  vellum/types/named_test_case_string_variable_value_request.py,sha256=Jriilf5vooCSh2ReIt2ey1L-VsHZO8qHfGtfklSeRnM,981
222
- vellum/types/named_test_case_variable_value.py,sha256=UtV113Yp1gpJvtNwB4HOLrvBMYwaeB0v2EDAv-v5d5o,3021
223
- vellum/types/named_test_case_variable_value_request.py,sha256=qO-__UphDuhm6RjY7p_oYwO_IPNF1gS-vtJTHNxEs6I,3280
231
+ vellum/types/named_test_case_variable_value.py,sha256=xA7G5B437kKcY0Zg56seJylMB83JAXaof2aoap_K4mM,3406
232
+ vellum/types/named_test_case_variable_value_request.py,sha256=cBPky3OQiwzRMWNdjnQviSp3Sfg1ZK8fvVgSF9Ch3hk,3701
224
233
  vellum/types/node_input_compiled_array_value.py,sha256=EovfwRo5RP2-iSoOw62ZQ1TXFkgQIFk--710HQWVe6I,1019
225
234
  vellum/types/node_input_compiled_chat_history_value.py,sha256=PKEe2nu5ghEJXUWg_e9tRUhLwKHX0PmnQOf4VQp77nI,990
226
235
  vellum/types/node_input_compiled_error_value.py,sha256=sGAVC36JonLCG5wwLlc1ThNek4Ud3H31E1dYWJ0rtBg,971
@@ -244,6 +253,7 @@ vellum/types/normalized_token_log_probs.py,sha256=-PYJPYzykDfG9aeXqRselY8XHdIvr0
244
253
  vellum/types/number_enum.py,sha256=M_h5PmC5HxQYpQbfqqyw1DualhKu1QOCU-o1NYTQz_o,118
245
254
  vellum/types/number_variable_value.py,sha256=lZxdWVR_VwlAXpqHK6bgWXE32JcBkKkylnaJLi5iVy0,883
246
255
  vellum/types/number_vellum_value.py,sha256=ynO448qi8sVk15PSQBm_5aDcGL0gl7Sv_bTfA3KhumA,933
256
+ vellum/types/number_vellum_value_request.py,sha256=AfIsCQH-HLt6PJCdACpbBCCc3rSrKRLERmyqq4c-w30,940
247
257
  vellum/types/open_ai_vectorizer_config.py,sha256=sxtay8on0Gm_qOrFHDrMjxActxPMAu0jcm0hY2yR9VY,1037
248
258
  vellum/types/open_ai_vectorizer_config_request.py,sha256=9z3iSr3e82og59FH_U0pNbhTu4hIg0GGhBYEJOCiK4U,1044
249
259
  vellum/types/open_ai_vectorizer_text_embedding_3_large.py,sha256=fmopJSWa6oubljt2ljxvcjiB3Ic9CLnZn10oTW7-pTQ,1022
@@ -263,11 +273,12 @@ vellum/types/pdf_search_result_meta_source.py,sha256=qEwl2y_RN1XUShidjaH5zm8kp-4
263
273
  vellum/types/pdf_search_result_meta_source_request.py,sha256=ft-qjTtiSxvo3KVTdzF88QkOCc4sOq46gEyb7ICjBOI,1384
264
274
  vellum/types/processing_failure_reason_enum.py,sha256=R_KIW7TcQejhc-vLhtNf9SdkYADgoZCn4ch4_RRIvsI,195
265
275
  vellum/types/processing_state_enum.py,sha256=lIEunnCpgYQExm2bGyTb12KyjQ3O7XOx636aWXb_Iwo,190
266
- vellum/types/prompt_deployment_expand_meta_request_request.py,sha256=r7xmsEaFZWLXKE1Y7GGjUXbaYyMnIdpdgFy3QvMEl8M,2044
276
+ vellum/types/prompt_deployment_expand_meta_request_request.py,sha256=JrOzU5Pv2L_BkWenxuUBBcWP2PHOZM0m4_6I2TIBMDc,2033
267
277
  vellum/types/prompt_deployment_input_request.py,sha256=o8PCi7TsitddNxiAfDblxaXkJ1-WjuDTAW0LnKbMDY4,1233
268
- vellum/types/prompt_execution_meta.py,sha256=io92vwMO3qC7RsCIsyMPFEeY3Sizb2xv6X1TBwKu6eI,1370
278
+ vellum/types/prompt_execution_meta.py,sha256=L75Yhb4-t1aCYWokMfCtayZmN8R2ZuTOR5DbyxHOAeI,1370
279
+ vellum/types/prompt_node_execution_meta.py,sha256=fjNFSc7FTdR17NRHRhMhrtjU-VxSvoELU8bLWdiYRl0,1073
269
280
  vellum/types/prompt_node_result.py,sha256=BVRnp6zIKocaPquCln0UtqW2M18j8k_OnHLGWCB25hU,997
270
- vellum/types/prompt_node_result_data.py,sha256=yCyVhQSBkKE0V0Lw74aLRvYTv4j660Zc_lejui6znO4,1034
281
+ vellum/types/prompt_node_result_data.py,sha256=Vs546gbJii1gIa2lKShs6Ma8_aJabpqaZV8eXe-wwpQ,1166
271
282
  vellum/types/prompt_output.py,sha256=wO0lz1HmPctCMt9lGLTsJRkL20wMXfmya5CxRhakOxU,1418
272
283
  vellum/types/raw_prompt_execution_overrides_request.py,sha256=Hwfjk35PsGSqMfcRwBzwjfpaRiaixTVi8xsG9g9pV3E,1210
273
284
  vellum/types/reducto_chunker_config.py,sha256=x0LRCr3vMfn4Zu5KUKWbwaV3ab8SQ825NkmzLvbiojY,948
@@ -326,6 +337,7 @@ vellum/types/string_enum.py,sha256=8uLrjmZyaGRDEf7Y6DpJF1e4abJct69wIoq6ZQX6F-s,1
326
337
  vellum/types/string_input_request.py,sha256=2c7ZbrA2r_Au12O-LnfMwY-5rQKzAqQkLVu-jc-qjTI,1026
327
338
  vellum/types/string_variable_value.py,sha256=YGjpJpTVnxywk0mtXisQw8BkIfTS_amY4JPugLQ6dW0,881
328
339
  vellum/types/string_vellum_value.py,sha256=UCk0yx0DHUrANEp-rPsXO34dUNRWuzQPcSR2BsVPnlU,931
340
+ vellum/types/string_vellum_value_request.py,sha256=sB3MCsRMpjul20MLIqfhmR5ON3SaMc3gQp-jorGZXxI,938
329
341
  vellum/types/submit_completion_actual_request.py,sha256=52BcHB_G2aj5EZrzAXVcmkrFWD1a7UJSzZKifWmr8KQ,2010
330
342
  vellum/types/submit_completion_actuals_error_response.py,sha256=f2XlGM5NBdwZLy4oOJN9LrcaHwW31fGtTCmzcJVzUV4,875
331
343
  vellum/types/submit_workflow_execution_actual_request.py,sha256=zR5Di5a9GC2fchGC9qLEXGELitg3UxCoQUqeIyeyLDc,1487
@@ -354,6 +366,7 @@ vellum/types/terminal_node_result_data.py,sha256=0EavYhcD-aZi5QngHK-bAB2wtFNw0CJ
354
366
  vellum/types/terminal_node_result_output.py,sha256=lKXaYst9-JuY0rk0tjDV4mD2s_G-7gZm5FTKbW9xYo8,3164
355
367
  vellum/types/terminal_node_search_results_result.py,sha256=neeojsER6K17-Mw8pQ92qMELRa_7o140wXeuvUty99Y,1118
356
368
  vellum/types/terminal_node_string_result.py,sha256=AV-9qUXT0WJiftv_uv_qKSROXo8XEijEOMSshGU6JNA,1049
369
+ vellum/types/test_case_array_variable_value.py,sha256=XYHfiLkaBfW0JqzJyJeA8rAD1YSzoasYa2T5QXhHTAU,1078
357
370
  vellum/types/test_case_chat_history_variable_value.py,sha256=hi9BArWPk7im4X2091yGRfjpIgGPJSUBp9PqHA0ZH6w,1061
358
371
  vellum/types/test_case_error_variable_value.py,sha256=7WIe0DMvp8tBCcqyRHQpT76vTylwuW2YQ3jRPkfc-t0,1036
359
372
  vellum/types/test_case_function_call_variable_value.py,sha256=Auv--TyCGUOjs9z42ZB29tsGZ5khy7CmqSNWJe55Lzk,1053
@@ -361,7 +374,7 @@ vellum/types/test_case_json_variable_value.py,sha256=BsgNdPsgTh_Vxt3ZRkHy22foq2T
361
374
  vellum/types/test_case_number_variable_value.py,sha256=96vZuKZTm7AVa_r-xjTMTpQMRCCga-Pcfw0HLoAYkg8,996
362
375
  vellum/types/test_case_search_results_variable_value.py,sha256=lzExcnYAH8PWjWEfMj6rmhDnQG7YSLiU0bwH62N2dIk,1068
363
376
  vellum/types/test_case_string_variable_value.py,sha256=3-TIR-38VndZVe0fdPa0XPe-3PdUSCzYuffGQlH3WY4,991
364
- vellum/types/test_case_variable_value.py,sha256=2BMIxU6WOTBZ6UE0Q5w3nHUSpvh1bwJD7y2cbSJ222k,2834
377
+ vellum/types/test_case_variable_value.py,sha256=v54flEtZ_BgzYMuR0qmnuScrRYo27FxS8Tlxf5xJ85M,3193
365
378
  vellum/types/test_suite_run_deployment_release_tag_exec_config.py,sha256=DYsHB5DPs3Go5_oLu5_EaLtvtTLyoHQ0MWqmhmfLGS8,1373
366
379
  vellum/types/test_suite_run_deployment_release_tag_exec_config_data.py,sha256=4yR8eBKuOBxLm9eYlpQr03TH1FcvGtkN7B89BuQS_HE,1228
367
380
  vellum/types/test_suite_run_deployment_release_tag_exec_config_data_request.py,sha256=9x9e-oxKOrbPibl2bOtrEY74Jhnr5jCrkJnmhv19E9w,1235
@@ -444,6 +457,7 @@ vellum/types/workflow_execution_event_error_code.py,sha256=Vf-MTOx0KclZp35aajWDH
444
457
  vellum/types/workflow_execution_event_type.py,sha256=ESKqV3ItoAlqBooruf-i0AnmEh_GvCySZ0Co3r9Bvt0,170
445
458
  vellum/types/workflow_execution_node_result_event.py,sha256=qIjztqor0UcBTxbq7w7Is98Mqu0IgggUKY24qOHal4s,1139
446
459
  vellum/types/workflow_execution_workflow_result_event.py,sha256=PyMUdEwRMd8vjdimdcOXSvzPNd3PoacfDKuEmdrzpTU,1134
460
+ vellum/types/workflow_expand_meta_request.py,sha256=58J4L8hdpIeDBy3mMtEpiVVxsjueSQNxG3rdlm5DC3Y,1068
447
461
  vellum/types/workflow_node_result_data.py,sha256=OsGHVua3RRKrZvKZuWDcjyepXGGjmikrWosz7LNWKSY,3937
448
462
  vellum/types/workflow_node_result_event.py,sha256=0tSTva8wAxMKSGWrbSRADqGcbR_A6FMSR7xkYLP9rZg,1745
449
463
  vellum/types/workflow_node_result_event_state.py,sha256=cC3CdfmXR8bPzSG4W6vDnndA9HAnfF3v4UzmyeVwxog,209
@@ -476,7 +490,7 @@ vellum/types/workflow_result_event_output_data_search_results.py,sha256=gazaUrC5
476
490
  vellum/types/workflow_result_event_output_data_string.py,sha256=aVWIIGbLj4TJJhTTj6WzhbYXQkcZatKuhhNy8UYwXbw,1482
477
491
  vellum/types/workflow_stream_event.py,sha256=KA6Bkk_XA6AIPWR-1vKnwF1A8l_Bm5y0arQCWWWRpsk,911
478
492
  vellum/version.py,sha256=neLt8HBHHUtDF9M5fsyUzHT-pKooEPvceaLDqqIGb0s,77
479
- vellum_ai-0.7.1.dist-info/LICENSE,sha256=CcaljEIoOBaU-wItPH4PmM_mDCGpyuUY0Er1BGu5Ti8,1073
480
- vellum_ai-0.7.1.dist-info/METADATA,sha256=p4nfdDdtLea3le2LwfYMzgN_VXue2DwMgdpS12W-_fM,3872
481
- vellum_ai-0.7.1.dist-info/WHEEL,sha256=Zb28QaM1gQi8f4VCBhsUklF61CTlNYfs9YAZn-TOGFk,88
482
- vellum_ai-0.7.1.dist-info/RECORD,,
493
+ vellum_ai-0.7.3.dist-info/LICENSE,sha256=CcaljEIoOBaU-wItPH4PmM_mDCGpyuUY0Er1BGu5Ti8,1073
494
+ vellum_ai-0.7.3.dist-info/METADATA,sha256=1HTODOr4j6vufjMxOf6FzGVUXLeJfA-ipi4n_UupRUA,3872
495
+ vellum_ai-0.7.3.dist-info/WHEEL,sha256=Zb28QaM1gQi8f4VCBhsUklF61CTlNYfs9YAZn-TOGFk,88
496
+ vellum_ai-0.7.3.dist-info/RECORD,,