vellum-ai 0.6.4__py3-none-any.whl → 0.6.6__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
vellum/__init__.py CHANGED
@@ -295,6 +295,9 @@ from .types import (
295
295
  PaginatedSlimWorkflowDeploymentList,
296
296
  PaginatedTestSuiteRunExecutionList,
297
297
  PaginatedTestSuiteTestCaseList,
298
+ PdfEnum,
299
+ PdfSearchResultMetaSource,
300
+ PdfSearchResultMetaSourceRequest,
298
301
  ProcessingFailureReasonEnum,
299
302
  ProcessingStateEnum,
300
303
  PromptDeploymentExpandMetaRequestRequest,
@@ -341,6 +344,12 @@ from .types import (
341
344
  SearchResultDocument,
342
345
  SearchResultDocumentRequest,
343
346
  SearchResultMergingRequest,
347
+ SearchResultMeta,
348
+ SearchResultMetaRequest,
349
+ SearchResultMetaSource,
350
+ SearchResultMetaSourceRequest,
351
+ SearchResultMetaSourceRequest_Pdf,
352
+ SearchResultMetaSource_Pdf,
344
353
  SearchResultRequest,
345
354
  SearchResultsEnum,
346
355
  SearchWeightsRequest,
@@ -915,6 +924,9 @@ __all__ = [
915
924
  "PaginatedSlimWorkflowDeploymentList",
916
925
  "PaginatedTestSuiteRunExecutionList",
917
926
  "PaginatedTestSuiteTestCaseList",
927
+ "PdfEnum",
928
+ "PdfSearchResultMetaSource",
929
+ "PdfSearchResultMetaSourceRequest",
918
930
  "ProcessingFailureReasonEnum",
919
931
  "ProcessingStateEnum",
920
932
  "PromptDeploymentExpandMetaRequestRequest",
@@ -961,6 +973,12 @@ __all__ = [
961
973
  "SearchResultDocument",
962
974
  "SearchResultDocumentRequest",
963
975
  "SearchResultMergingRequest",
976
+ "SearchResultMeta",
977
+ "SearchResultMetaRequest",
978
+ "SearchResultMetaSource",
979
+ "SearchResultMetaSourceRequest",
980
+ "SearchResultMetaSourceRequest_Pdf",
981
+ "SearchResultMetaSource_Pdf",
964
982
  "SearchResultRequest",
965
983
  "SearchResultsEnum",
966
984
  "SearchWeightsRequest",
@@ -18,7 +18,7 @@ class BaseClientWrapper:
18
18
  headers: typing.Dict[str, str] = {
19
19
  "X-Fern-Language": "Python",
20
20
  "X-Fern-SDK-Name": "vellum-ai",
21
- "X-Fern-SDK-Version": "0.6.4",
21
+ "X-Fern-SDK-Version": "0.6.6",
22
22
  }
23
23
  headers["X_API_KEY"] = self.api_key
24
24
  return headers
vellum/types/__init__.py CHANGED
@@ -342,6 +342,9 @@ from .paginated_slim_document_list import PaginatedSlimDocumentList
342
342
  from .paginated_slim_workflow_deployment_list import PaginatedSlimWorkflowDeploymentList
343
343
  from .paginated_test_suite_run_execution_list import PaginatedTestSuiteRunExecutionList
344
344
  from .paginated_test_suite_test_case_list import PaginatedTestSuiteTestCaseList
345
+ from .pdf_enum import PdfEnum
346
+ from .pdf_search_result_meta_source import PdfSearchResultMetaSource
347
+ from .pdf_search_result_meta_source_request import PdfSearchResultMetaSourceRequest
345
348
  from .processing_failure_reason_enum import ProcessingFailureReasonEnum
346
349
  from .processing_state_enum import ProcessingStateEnum
347
350
  from .prompt_deployment_expand_meta_request_request import PromptDeploymentExpandMetaRequestRequest
@@ -390,6 +393,10 @@ from .search_result import SearchResult
390
393
  from .search_result_document import SearchResultDocument
391
394
  from .search_result_document_request import SearchResultDocumentRequest
392
395
  from .search_result_merging_request import SearchResultMergingRequest
396
+ from .search_result_meta import SearchResultMeta
397
+ from .search_result_meta_request import SearchResultMetaRequest
398
+ from .search_result_meta_source import SearchResultMetaSource, SearchResultMetaSource_Pdf
399
+ from .search_result_meta_source_request import SearchResultMetaSourceRequest, SearchResultMetaSourceRequest_Pdf
393
400
  from .search_result_request import SearchResultRequest
394
401
  from .search_results_enum import SearchResultsEnum
395
402
  from .search_weights_request import SearchWeightsRequest
@@ -974,6 +981,9 @@ __all__ = [
974
981
  "PaginatedSlimWorkflowDeploymentList",
975
982
  "PaginatedTestSuiteRunExecutionList",
976
983
  "PaginatedTestSuiteTestCaseList",
984
+ "PdfEnum",
985
+ "PdfSearchResultMetaSource",
986
+ "PdfSearchResultMetaSourceRequest",
977
987
  "ProcessingFailureReasonEnum",
978
988
  "ProcessingStateEnum",
979
989
  "PromptDeploymentExpandMetaRequestRequest",
@@ -1020,6 +1030,12 @@ __all__ = [
1020
1030
  "SearchResultDocument",
1021
1031
  "SearchResultDocumentRequest",
1022
1032
  "SearchResultMergingRequest",
1033
+ "SearchResultMeta",
1034
+ "SearchResultMetaRequest",
1035
+ "SearchResultMetaSource",
1036
+ "SearchResultMetaSourceRequest",
1037
+ "SearchResultMetaSourceRequest_Pdf",
1038
+ "SearchResultMetaSource_Pdf",
1023
1039
  "SearchResultRequest",
1024
1040
  "SearchResultsEnum",
1025
1041
  "SearchWeightsRequest",
@@ -47,6 +47,11 @@ class DeploymentRead(pydantic_v1.BaseModel):
47
47
  Deprecated. The Prompt execution endpoints return a `prompt_version_id` that could be used instead.
48
48
  """
49
49
 
50
+ last_deployed_history_item_id: str = pydantic_v1.Field()
51
+ """
52
+ The ID of the history item associated with this Deployment's LATEST Release Tag
53
+ """
54
+
50
55
  def json(self, **kwargs: typing.Any) -> str:
51
56
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
52
57
  return super().json(**kwargs_with_defaults)
@@ -0,0 +1,5 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import typing
4
+
5
+ PdfEnum = typing.Literal["PDF"]
@@ -0,0 +1,37 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+
9
+
10
+ class PdfSearchResultMetaSource(pydantic_v1.BaseModel):
11
+ """
12
+ The source of a search result from a PDF document.
13
+ """
14
+
15
+ start_page_num: typing.Optional[int] = pydantic_v1.Field(default=None)
16
+ """
17
+ The 1-indexed page number where the chunk starts in the document. Only available for supported chunking strategies and document types.
18
+ """
19
+
20
+ end_page_num: typing.Optional[int] = pydantic_v1.Field(default=None)
21
+ """
22
+ The 1-indexed page number where the chunk ends in the document. Only available for supported chunking strategies and document types.
23
+ """
24
+
25
+ def json(self, **kwargs: typing.Any) -> str:
26
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
27
+ return super().json(**kwargs_with_defaults)
28
+
29
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
30
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
31
+ return super().dict(**kwargs_with_defaults)
32
+
33
+ class Config:
34
+ frozen = True
35
+ smart_union = True
36
+ extra = pydantic_v1.Extra.allow
37
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,37 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+
9
+
10
+ class PdfSearchResultMetaSourceRequest(pydantic_v1.BaseModel):
11
+ """
12
+ The source of a search result from a PDF document.
13
+ """
14
+
15
+ start_page_num: typing.Optional[int] = pydantic_v1.Field(default=None)
16
+ """
17
+ The 1-indexed page number where the chunk starts in the document. Only available for supported chunking strategies and document types.
18
+ """
19
+
20
+ end_page_num: typing.Optional[int] = pydantic_v1.Field(default=None)
21
+ """
22
+ The 1-indexed page number where the chunk ends in the document. Only available for supported chunking strategies and document types.
23
+ """
24
+
25
+ def json(self, **kwargs: typing.Any) -> str:
26
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
27
+ return super().json(**kwargs_with_defaults)
28
+
29
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
30
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
31
+ return super().dict(**kwargs_with_defaults)
32
+
33
+ class Config:
34
+ frozen = True
35
+ smart_union = True
36
+ extra = pydantic_v1.Extra.allow
37
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -6,6 +6,7 @@ import typing
6
6
  from ..core.datetime_utils import serialize_datetime
7
7
  from ..core.pydantic_utilities import pydantic_v1
8
8
  from .search_result_document import SearchResultDocument
9
+ from .search_result_meta import SearchResultMeta
9
10
 
10
11
 
11
12
  class SearchResult(pydantic_v1.BaseModel):
@@ -25,6 +26,11 @@ class SearchResult(pydantic_v1.BaseModel):
25
26
  The document that contains the chunk that matched the search query.
26
27
  """
27
28
 
29
+ meta: typing.Optional[SearchResultMeta] = pydantic_v1.Field(default=None)
30
+ """
31
+ Additional information about the search result.
32
+ """
33
+
28
34
  def json(self, **kwargs: typing.Any) -> str:
29
35
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
30
36
  return super().json(**kwargs_with_defaults)
@@ -0,0 +1,26 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+ from .search_result_meta_source import SearchResultMetaSource
9
+
10
+
11
+ class SearchResultMeta(pydantic_v1.BaseModel):
12
+ source: SearchResultMetaSource
13
+
14
+ def json(self, **kwargs: typing.Any) -> str:
15
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
16
+ return super().json(**kwargs_with_defaults)
17
+
18
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
19
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
+ return super().dict(**kwargs_with_defaults)
21
+
22
+ class Config:
23
+ frozen = True
24
+ smart_union = True
25
+ extra = pydantic_v1.Extra.allow
26
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,26 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+ from .search_result_meta_source_request import SearchResultMetaSourceRequest
9
+
10
+
11
+ class SearchResultMetaRequest(pydantic_v1.BaseModel):
12
+ source: SearchResultMetaSourceRequest
13
+
14
+ def json(self, **kwargs: typing.Any) -> str:
15
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
16
+ return super().json(**kwargs_with_defaults)
17
+
18
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
19
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
+ return super().dict(**kwargs_with_defaults)
21
+
22
+ class Config:
23
+ frozen = True
24
+ smart_union = True
25
+ extra = pydantic_v1.Extra.allow
26
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,20 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ from __future__ import annotations
4
+
5
+ import typing
6
+
7
+ from .pdf_search_result_meta_source import PdfSearchResultMetaSource
8
+
9
+
10
+ class SearchResultMetaSource_Pdf(PdfSearchResultMetaSource):
11
+ document_type: typing.Literal["PDF"] = "PDF"
12
+
13
+ class Config:
14
+ frozen = True
15
+ smart_union = True
16
+ allow_population_by_field_name = True
17
+ populate_by_name = True
18
+
19
+
20
+ SearchResultMetaSource = typing.Union[SearchResultMetaSource_Pdf]
@@ -0,0 +1,20 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ from __future__ import annotations
4
+
5
+ import typing
6
+
7
+ from .pdf_search_result_meta_source_request import PdfSearchResultMetaSourceRequest
8
+
9
+
10
+ class SearchResultMetaSourceRequest_Pdf(PdfSearchResultMetaSourceRequest):
11
+ document_type: typing.Literal["PDF"] = "PDF"
12
+
13
+ class Config:
14
+ frozen = True
15
+ smart_union = True
16
+ allow_population_by_field_name = True
17
+ populate_by_name = True
18
+
19
+
20
+ SearchResultMetaSourceRequest = typing.Union[SearchResultMetaSourceRequest_Pdf]
@@ -6,6 +6,7 @@ import typing
6
6
  from ..core.datetime_utils import serialize_datetime
7
7
  from ..core.pydantic_utilities import pydantic_v1
8
8
  from .search_result_document_request import SearchResultDocumentRequest
9
+ from .search_result_meta_request import SearchResultMetaRequest
9
10
 
10
11
 
11
12
  class SearchResultRequest(pydantic_v1.BaseModel):
@@ -25,6 +26,11 @@ class SearchResultRequest(pydantic_v1.BaseModel):
25
26
  The document that contains the chunk that matched the search query.
26
27
  """
27
28
 
29
+ meta: typing.Optional[SearchResultMetaRequest] = pydantic_v1.Field(default=None)
30
+ """
31
+ Additional information about the search result.
32
+ """
33
+
28
34
  def json(self, **kwargs: typing.Any) -> str:
29
35
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
30
36
  return super().json(**kwargs_with_defaults)
@@ -41,6 +41,11 @@ class WorkflowDeploymentRead(pydantic_v1.BaseModel):
41
41
 
42
42
  created: dt.datetime
43
43
  last_deployed_on: dt.datetime
44
+ last_deployed_history_item_id: str = pydantic_v1.Field()
45
+ """
46
+ The ID of the history item associated with this Workflow Deployment's LATEST Release Tag
47
+ """
48
+
44
49
  input_variables: typing.List[VellumVariable] = pydantic_v1.Field()
45
50
  """
46
51
  The input variables this Workflow Deployment expects to receive values for when it is executed.
@@ -0,0 +1,126 @@
1
+ Metadata-Version: 2.1
2
+ Name: vellum-ai
3
+ Version: 0.6.6
4
+ Summary:
5
+ Requires-Python: >=3.8,<4.0
6
+ Classifier: Programming Language :: Python :: 3
7
+ Classifier: Programming Language :: Python :: 3.8
8
+ Classifier: Programming Language :: Python :: 3.9
9
+ Classifier: Programming Language :: Python :: 3.10
10
+ Classifier: Programming Language :: Python :: 3.11
11
+ Requires-Dist: cdktf (>=0.20.5,<0.21.0)
12
+ Requires-Dist: httpx (>=0.21.2)
13
+ Requires-Dist: publication (==0.0.3)
14
+ Requires-Dist: pydantic (>=1.9.2)
15
+ Requires-Dist: typing_extensions (>=4.0.0)
16
+ Description-Content-Type: text/markdown
17
+
18
+ # Vellum Python Library
19
+
20
+ [![pypi](https://img.shields.io/pypi/v/vellum-ai.svg)](https://pypi.python.org/pypi/vellum-ai)
21
+ ![license badge](https://img.shields.io/github/license/vellum-ai/vellum-client-python)
22
+ [![fern shield](https://img.shields.io/badge/%F0%9F%8C%BF-SDK%20generated%20by%20Fern-brightgreen)](https://buildwithfern.com/?utm_source=vellum-ai/vellum-client-python/readme)
23
+
24
+ The Vellum Python SDK provides access to the Vellum API from python.
25
+
26
+
27
+ ## API Docs
28
+ You can find Vellum's complete API docs at [docs.vellum.ai](https://docs.vellum.ai/api-reference/introduction/getting-started).
29
+
30
+ ## Installation
31
+
32
+ ```sh
33
+ pip install --upgrade vellum-ai
34
+ ```
35
+
36
+ ## Usage
37
+ Below is how you would invoke a deployed Prompt from the Vellum API. For a complete list of all APIs
38
+ that Vellum supports, check out our [API Reference](https://docs.vellum.ai/api-reference/introduction/getting-started).
39
+
40
+ ```python
41
+ from vellum import (
42
+ PromptDeploymentInputRequest_String,
43
+ )
44
+ from vellum.client import Vellum
45
+
46
+ client = Vellum(
47
+ api_key="YOUR_API_KEY",
48
+ )
49
+
50
+ def execute() -> str:
51
+ result = client.execute_prompt(
52
+ prompt_deployment_name="<example-deployment-name>>",
53
+ release_tag="LATEST",
54
+ inputs=[
55
+ PromptDeploymentInputRequest_String(
56
+ name="input_a",
57
+ type="STRING",
58
+ value="Hello, world!",
59
+ )
60
+ ],
61
+ )
62
+
63
+ if result.state == "REJECTED":
64
+ raise Exception(result.error.message)
65
+
66
+ return result.outputs[0].value
67
+
68
+ if __name__ == "__main__":
69
+ print(execute())
70
+ ```
71
+
72
+ > [!TIP]
73
+ > You can set a system environment variable `VELLUM_API_KEY` to avoid writing your api key within your code. To do so, add `export VELLUM_API_KEY=<your-api-token>`
74
+ > to your ~/.zshrc or ~/.bashrc, open a new terminal, and then any code calling `vellum.Vellum()` will read this key.
75
+
76
+ ## Async Client
77
+ This SDK has an async version. Here's how to use it:
78
+
79
+
80
+
81
+ ```python
82
+ import asyncio
83
+
84
+ import vellum
85
+ from vellum.client import AsyncVellum
86
+
87
+ client = AsyncVellum(api_key="YOUR_API_KEY")
88
+
89
+ async def execute() -> str:
90
+ result = await client.execute_prompt(
91
+ prompt_deployment_name="<example-deployment-name>>",
92
+ release_tag="LATEST",
93
+ inputs=[
94
+ vellum.PromptDeploymentInputRequest_String(
95
+ name="input_a",
96
+ value="Hello, world!",
97
+ )
98
+ ],
99
+ )
100
+
101
+ if result.state == "REJECTED":
102
+ raise Exception(result.error.message)
103
+
104
+ return result.outputs[0].value
105
+
106
+ if __name__ == "__main__":
107
+ print(asyncio.run(execute()))
108
+ ```
109
+
110
+ ## Contributing
111
+
112
+ While we value open-source contributions to this SDK, most of this library is generated programmatically.
113
+
114
+ Please feel free to make contributions to any of the directories or files below:
115
+ ```plaintext
116
+ examples/*
117
+ src/vellum/lib/*
118
+ tests/*
119
+ README.md
120
+ ```
121
+
122
+ Any additions made to files beyond those directories and files above would have to be moved over to our generation code
123
+ (found in the separate [vellum-client-generator](https://github.com/vellum-ai/vellum-client-generator) repo),
124
+ otherwise they would be overwritten upon the next generated release. Feel free to open a PR as a proof of concept,
125
+ but know that we will not be able to merge it as-is. We suggest opening an issue first to discuss with us!
126
+
@@ -1,8 +1,8 @@
1
- vellum/__init__.py,sha256=7aKsuZge9dDZncC299GYskQc1AJ1GUkJ64doEDqHmS4,44855
1
+ vellum/__init__.py,sha256=Gu91YntxNpNqfin3Nksl7cQnB-JxuOX65CVPClG-Wo4,45407
2
2
  vellum/client.py,sha256=FklbOzCaDTPP_EQn0HJXUq1_ZFOHuSePt6_nVQ_YLgY,97463
3
3
  vellum/core/__init__.py,sha256=1pNSKkwyQvMl_F0wohBqmoQAITptg3zlvCwsoSSzy7c,853
4
4
  vellum/core/api_error.py,sha256=RE8LELok2QCjABadECTvtDp7qejA1VmINCh6TbqPwSE,426
5
- vellum/core/client_wrapper.py,sha256=LAmDIndEooz_x9oVaUk8OCp9HJDoHlb9_mnFhDkh9bA,1697
5
+ vellum/core/client_wrapper.py,sha256=atwV8644mcBgTajVkL1azFJjenaU8WVxc0OOXZo459A,1697
6
6
  vellum/core/datetime_utils.py,sha256=nBys2IsYrhPdszxGKCNRPSOCwa-5DWOHG95FB8G9PKo,1047
7
7
  vellum/core/file.py,sha256=sy1RUGZ3aJYuw998bZytxxo6QdgKmlnlgBaMvwEKCGg,1480
8
8
  vellum/core/http_client.py,sha256=5ok6hqgZDJhg57EHvMnr0BBaHdG50QxFPKaCZ9aVWTc,5059
@@ -60,7 +60,7 @@ vellum/terraform/document_index/__init__.py,sha256=qq2zENI22bUvqGk_a1lmsoTr5O_xC
60
60
  vellum/terraform/provider/__init__.py,sha256=K1yLlTZkYBxhD4bhUV1v23hxDGgbfsAIGsSyeB54dNQ,10298
61
61
  vellum/terraform/py.typed,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
62
62
  vellum/terraform/versions.json,sha256=STW6Mg3BKDacFmbWHXziHxE90GWncZf4AIzCLiXm_7o,56
63
- vellum/types/__init__.py,sha256=m_bPT573NbzP7hGs8Ykc-qbN9XnIT3pSO0Mox1iwH_8,60130
63
+ vellum/types/__init__.py,sha256=-vziB5tUZm3fLSs-t0zN8mHg3oQVV7J6F5e6SkUg1Lo,60913
64
64
  vellum/types/add_openai_api_key_enum.py,sha256=GB7sLK_Ou7-Xn73sKJHUo6Gx3TjyhU7uJvWZAg4UeaI,92
65
65
  vellum/types/api_node_result.py,sha256=SvYIi1T-N_P3FVjzv9I91PaCT0IN958A3easp5Q7jqE,983
66
66
  vellum/types/api_node_result_data.py,sha256=KFBmmizcEg73GwQMXUtEdJ4e9YGFpRLYAnalwxIcDug,1161
@@ -104,7 +104,7 @@ vellum/types/created_enum.py,sha256=_dfKJhEenYcIUYY1uKQuq1uNS3k9HbPGCxXnW-Tu5uo,
104
104
  vellum/types/delete_enum.py,sha256=g6Rnc2pbgXkEbqhG0Bx1z-ZGr4DMkb8QK8du9dQQcpQ,118
105
105
  vellum/types/deleted_enum.py,sha256=F7VTcnxIkXrwyQr5CjGikBbCnlo6To_rP0pibWm-ioo,120
106
106
  vellum/types/deployment_provider_payload_response.py,sha256=nEw7v0EVo3NgKDVtsBMjd9XLWmFAGk59U1Z-qSs-Stc,898
107
- vellum/types/deployment_read.py,sha256=q3xfBEKQ8HsXc9en1c3oKSGQbyTc-xY54puIEe20okM,1938
107
+ vellum/types/deployment_read.py,sha256=Ob9ArdqKJb5vjRx26hX_iOnPF2MwtBYxB5xx2LVNbEk,2100
108
108
  vellum/types/deployment_release_tag_deployment_history_item.py,sha256=997C-J0NOEvOm7Y_dyyaqYvKMIEHCDj0JEpAcmOjOEQ,903
109
109
  vellum/types/deployment_release_tag_read.py,sha256=o0X8dMSqajT3-lEnLk9tRb8PRhs3l3M4iBM7CX9316c,1432
110
110
  vellum/types/document_document_to_document_index.py,sha256=kCPPJFnXu9HFZbk7PgRCtRDj5Cw2_0yEPjAStm-YC2E,1532
@@ -253,6 +253,9 @@ vellum/types/paginated_slim_document_list.py,sha256=L8RyvP1ADem7HUnNjDr4KyoQjIJt
253
253
  vellum/types/paginated_slim_workflow_deployment_list.py,sha256=1NfPIuU_NgWgJsXcUpCBtOPj7MqZlblbcCXCjzGXwWc,1111
254
254
  vellum/types/paginated_test_suite_run_execution_list.py,sha256=mVhD_un8RCqnJbH9yWliNQPf5E3C0jcH0ManhH6gxZc,1060
255
255
  vellum/types/paginated_test_suite_test_case_list.py,sha256=Ak_plmBTt72atM2uC1PWm8uVffi3tPAozolApJ7LYS4,1044
256
+ vellum/types/pdf_enum.py,sha256=pFnB6Uv7AbPbZPXlEtQ9O4qNNVeQX0kNLxz1sdkxvVM,112
257
+ vellum/types/pdf_search_result_meta_source.py,sha256=qEwl2y_RN1XUShidjaH5zm8kp-4PRKm9hNk2_Jf29RY,1377
258
+ vellum/types/pdf_search_result_meta_source_request.py,sha256=ft-qjTtiSxvo3KVTdzF88QkOCc4sOq46gEyb7ICjBOI,1384
256
259
  vellum/types/processing_failure_reason_enum.py,sha256=R_KIW7TcQejhc-vLhtNf9SdkYADgoZCn4ch4_RRIvsI,195
257
260
  vellum/types/processing_state_enum.py,sha256=lIEunnCpgYQExm2bGyTb12KyjQ3O7XOx636aWXb_Iwo,190
258
261
  vellum/types/prompt_deployment_expand_meta_request_request.py,sha256=r7xmsEaFZWLXKE1Y7GGjUXbaYyMnIdpdgFy3QvMEl8M,2044
@@ -286,11 +289,15 @@ vellum/types/search_node_result.py,sha256=ylJR6lICVahKvr4eGZxDxdLbHkxnu3zaHEV-GW
286
289
  vellum/types/search_node_result_data.py,sha256=bixMDjtlOKLFVkhUQHWkQcTffkbvYYfuob2hYkJWngg,1143
287
290
  vellum/types/search_request_options_request.py,sha256=WI_MYTsu4pjILsaJvkC-1A-Ghi8ib5qQZdz3kUq9iSY,1622
288
291
  vellum/types/search_response.py,sha256=tMnotqttu7YEYteBDuuriI2HYIJsstG1UFs-3GuNzPs,1047
289
- vellum/types/search_result.py,sha256=an56LL9iowhUCIO6np-lQNpPUt2SaYaSsPqLByU3ig4,1304
292
+ vellum/types/search_result.py,sha256=bsAjiXEpXdwnysiJ0rsR3_aEi5wQlXR9HCECQ23ecxE,1500
290
293
  vellum/types/search_result_document.py,sha256=MRzncZs2Ug9g0NLoFO5AwElFIpJ4Zs-wUMOuDqX9Yfk,1466
291
294
  vellum/types/search_result_document_request.py,sha256=GVIvgn0htJJojCMPep2p3P_bcxf1ffNZ0XHhNPNsy-w,1473
292
295
  vellum/types/search_result_merging_request.py,sha256=Yx1iv-58kFMCayP_ngjhD8O-m2nvlIAfAQUz1pRxwKI,972
293
- vellum/types/search_result_request.py,sha256=fqqTr-id9cLg5cVxGavZSLOCJSTMBKPNRdkGAjJrytM,1333
296
+ vellum/types/search_result_meta.py,sha256=6BIF2iDyBAlZMgJ4b0Hjw-6ZKgMicSXp09hvS1MHatY,936
297
+ vellum/types/search_result_meta_request.py,sha256=9NT29Gy-lcmoF5fcTV95ftB5bS9aZjW4YSzkIVidH6A,965
298
+ vellum/types/search_result_meta_source.py,sha256=8T7zgf4lKIoyVKN09dEME2bb3hi86ufG65z96kwYfDM,511
299
+ vellum/types/search_result_meta_source_request.py,sha256=iQi1DI-COoeqfO3zsECjZPlnn-fTJEFEj6CGPXYH61A,554
300
+ vellum/types/search_result_request.py,sha256=EYg4mDwbpGmQuMwQktn1LXOvn0XMVY0cKc3XPkCAjdw,1551
294
301
  vellum/types/search_results_enum.py,sha256=qiQWwPnGtlWgG6JVCOAV8KzJarrhOeZrOAeb569grgA,133
295
302
  vellum/types/search_weights_request.py,sha256=C6uvEWZSpmbslpU52qcVA-lEtKF_crRsafXsN_rDURc,1128
296
303
  vellum/types/sentence_chunker_config.py,sha256=DVag4hG9rvuhJWgzbcbsdU4Nz1mx_Ynb3DHUbeOViA4,1003
@@ -418,7 +425,7 @@ vellum/types/vellum_image.py,sha256=1QCMf26kEKRKP9DTxNI0qp7CNC1viWGFV9hmIxFyxoY,
418
425
  vellum/types/vellum_image_request.py,sha256=ADerbxbSJHzNYouJa1jaBIGvbHR2nSmqYAxE-cgS2Rg,921
419
426
  vellum/types/vellum_variable.py,sha256=MPxkKBtuxtg4HZud4xwsyT_sH6FG-YDGeFLpUa4NZDs,944
420
427
  vellum/types/vellum_variable_type.py,sha256=uHeBCGi7U_SksgKOxtvI4KxYffD4BD2TlddTPo_LUSM,281
421
- vellum/types/workflow_deployment_read.py,sha256=KsGJ4Ah4ybWbEsdnb0ixXHxCfwxRSQssBuQmlyZMpbc,2110
428
+ vellum/types/workflow_deployment_read.py,sha256=010Jqbj-XOXRm4evLM5yIg4RwDVFB5ayKopMIRPUH88,2281
422
429
  vellum/types/workflow_event_error.py,sha256=1f-xt3rNeCIpSm37KmAqVMc9IEbDD-3pNH4zwBYzXP0,981
423
430
  vellum/types/workflow_execution_actual_chat_history_request.py,sha256=ZBk37qbr-gXYeFLhgmkQQLKvrtlJCWVe9B6GYjq763o,2223
424
431
  vellum/types/workflow_execution_actual_json_request.py,sha256=XuiH6iE_NZiut9E3Y8VwiY5rOHx8u3sd2i_TxbfG8d8,2160
@@ -459,7 +466,7 @@ vellum/types/workflow_result_event_output_data_search_results.py,sha256=gazaUrC5
459
466
  vellum/types/workflow_result_event_output_data_string.py,sha256=aVWIIGbLj4TJJhTTj6WzhbYXQkcZatKuhhNy8UYwXbw,1482
460
467
  vellum/types/workflow_stream_event.py,sha256=KA6Bkk_XA6AIPWR-1vKnwF1A8l_Bm5y0arQCWWWRpsk,911
461
468
  vellum/version.py,sha256=neLt8HBHHUtDF9M5fsyUzHT-pKooEPvceaLDqqIGb0s,77
462
- vellum_ai-0.6.4.dist-info/LICENSE,sha256=CcaljEIoOBaU-wItPH4PmM_mDCGpyuUY0Er1BGu5Ti8,1073
463
- vellum_ai-0.6.4.dist-info/METADATA,sha256=Y5gS7YXyKOfHyJOHFZfDWmXeutOluhSu8wAo4V6F3K0,3591
464
- vellum_ai-0.6.4.dist-info/WHEEL,sha256=Zb28QaM1gQi8f4VCBhsUklF61CTlNYfs9YAZn-TOGFk,88
465
- vellum_ai-0.6.4.dist-info/RECORD,,
469
+ vellum_ai-0.6.6.dist-info/LICENSE,sha256=CcaljEIoOBaU-wItPH4PmM_mDCGpyuUY0Er1BGu5Ti8,1073
470
+ vellum_ai-0.6.6.dist-info/METADATA,sha256=GDu8VFYeIr-72DPo2M5V-BSnSiWrMyGCziUD7axX-3o,3872
471
+ vellum_ai-0.6.6.dist-info/WHEEL,sha256=Zb28QaM1gQi8f4VCBhsUklF61CTlNYfs9YAZn-TOGFk,88
472
+ vellum_ai-0.6.6.dist-info/RECORD,,
@@ -1,109 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: vellum-ai
3
- Version: 0.6.4
4
- Summary:
5
- Requires-Python: >=3.8,<4.0
6
- Classifier: Programming Language :: Python :: 3
7
- Classifier: Programming Language :: Python :: 3.8
8
- Classifier: Programming Language :: Python :: 3.9
9
- Classifier: Programming Language :: Python :: 3.10
10
- Classifier: Programming Language :: Python :: 3.11
11
- Requires-Dist: cdktf (>=0.20.5,<0.21.0)
12
- Requires-Dist: httpx (>=0.21.2)
13
- Requires-Dist: publication (==0.0.3)
14
- Requires-Dist: pydantic (>=1.9.2)
15
- Requires-Dist: typing_extensions (>=4.0.0)
16
- Description-Content-Type: text/markdown
17
-
18
- # Vellum Python Library
19
-
20
- [![pypi](https://img.shields.io/pypi/v/vellum-ai.svg)](https://pypi.python.org/pypi/vellum-ai)
21
- [![fern shield](https://img.shields.io/badge/%F0%9F%8C%BF-SDK%20generated%20by%20Fern-brightgreen)](https://buildwithfern.com/?utm_source=vellum-ai/vellum-client-python/readme)
22
-
23
- The Vellum Python Library provides access to the Vellum API from python.
24
-
25
-
26
- ## API Docs
27
- You can find Vellum's complete API docs at [docs.vellum.ai](https://docs.vellum.ai).
28
-
29
- ## Installation
30
-
31
- ```sh
32
- pip install --upgrade vellum-ai
33
- ```
34
-
35
- ## Usage
36
-
37
- ```python
38
- import vellum
39
- from vellum.client import Vellum
40
-
41
-
42
- client = Vellum(api_key="YOUR_API_KEY")
43
-
44
- result = client.generate(
45
- deployment_name="my-deployment",
46
- requests=[
47
- vellum.GenerateRequest(
48
- input_values={"question": "Can I get a refund?"})]
49
- )
50
-
51
- print(result.text)
52
- ```
53
-
54
- ## Async Client
55
-
56
- ```python
57
- import vellum
58
- from vellum.client import AsyncVellum
59
-
60
- raven = AsyncVellum(api_key="YOUR_API_KEY")
61
-
62
- async def generate() -> str:
63
- result = client.generate(
64
- deployment_name="my-deployment",
65
- requests=[
66
- vellum.GenerateRequest(
67
- input_values={"question": "Can I get a refund?"})]
68
- )
69
-
70
- return result.text
71
- ```
72
-
73
- ## Uploading documents
74
-
75
- Documents can be uploaded to Vellum via either the UI or this API. Once uploaded and indexed, Vellum's Search allows you to perform semantic searches against them.
76
-
77
- ```python
78
- from vellum.client import Vellum
79
-
80
- client = Vellum(api_key="YOUR_API_KEY")
81
-
82
- with open("/path/to/your/file.txt", "rb") as file:
83
- result = client.documents.upload(
84
- # File to upload
85
- contents=file,
86
- # Document label
87
- label="Human-friendly label for your document",
88
- # The names of indexes that you'd like this document to be added to.
89
- add_to_index_names=["<your-index-name>"],
90
- # Optionally include a unique ID from your system to this document later.
91
- # Useful if you want to perform updates later
92
- external_id="<your-index-name>",
93
- # Optionally include keywords to associate with the document that can be used in hybrid search
94
- keywords=[],
95
- )
96
-
97
- print(result)
98
- ```
99
-
100
- ## Beta status
101
-
102
- This SDK is in beta, and there may be breaking changes between versions without a major version update. Therefore, we recommend pinning the package version to a specific version in your pyproject.toml file. This way, you can install the same version each time without breaking changes unless you are intentionally looking for the latest version.
103
-
104
- ## Contributing
105
-
106
- While we value open-source contributions to this SDK, this library is generated programmatically. Additions made directly to this library would have to be moved over to our generation code, otherwise they would be overwritten upon the next generated release. Feel free to open a PR as a proof of concept, but know that we will not be able to merge it as-is. We suggest opening an issue first to discuss with us!
107
-
108
- On the other hand, contributions to the README are always very welcome!
109
-