vellum-ai 0.5.2__py3-none-any.whl → 0.6.1__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- vellum/__init__.py +166 -18
- vellum/core/client_wrapper.py +1 -1
- vellum/resources/document_indexes/client.py +61 -52
- vellum/resources/documents/client.py +8 -4
- vellum/types/__init__.py +185 -17
- vellum/types/add_openai_api_key_enum.py +3 -0
- vellum/types/array_variable_value_item.py +0 -24
- vellum/types/array_vellum_value_item.py +82 -0
- vellum/types/{rejected_function_call.py → basic_vectorizer_intfloat_multilingual_e_5_large.py} +3 -6
- vellum/types/basic_vectorizer_intfloat_multilingual_e_5_large_request.py +29 -0
- vellum/types/basic_vectorizer_sentence_transformers_multi_qa_mpnet_base_cos_v_1.py +29 -0
- vellum/types/basic_vectorizer_sentence_transformers_multi_qa_mpnet_base_cos_v_1_request.py +29 -0
- vellum/types/basic_vectorizer_sentence_transformers_multi_qa_mpnet_base_dot_v_1.py +29 -0
- vellum/types/basic_vectorizer_sentence_transformers_multi_qa_mpnet_base_dot_v_1_request.py +29 -0
- vellum/types/document_index_chunking.py +46 -0
- vellum/types/document_index_chunking_request.py +46 -0
- vellum/types/document_index_indexing_config.py +28 -0
- vellum/types/document_index_indexing_config_request.py +28 -0
- vellum/types/document_index_read.py +2 -4
- vellum/types/function_call.py +20 -18
- vellum/types/{fulfilled_function_call_request.py → function_call_request.py} +2 -2
- vellum/types/function_call_vellum_value.py +1 -1
- vellum/types/hkunlp_instructor_xl_enum.py +5 -0
- vellum/types/hkunlp_instructor_xl_vectorizer.py +30 -0
- vellum/types/hkunlp_instructor_xl_vectorizer_request.py +30 -0
- vellum/types/{fulfilled_function_call.py → image_vellum_value.py} +4 -5
- vellum/types/indexing_config_vectorizer.py +106 -0
- vellum/types/indexing_config_vectorizer_request.py +106 -0
- vellum/types/instructor_vectorizer_config.py +31 -0
- vellum/types/instructor_vectorizer_config_request.py +31 -0
- vellum/types/intfloat_multilingual_e_5_large_enum.py +5 -0
- vellum/types/merge_enum.py +5 -0
- vellum/types/{chat_history_variable_value.py → merge_node_result.py} +4 -3
- vellum/types/metric_enum.py +5 -0
- vellum/types/{search_results_variable_value.py → metric_node_result.py} +4 -3
- vellum/types/named_test_case_function_call_variable_value.py +2 -2
- vellum/types/named_test_case_function_call_variable_value_request.py +2 -2
- vellum/types/node_output_compiled_array_value.py +2 -2
- vellum/types/number_vellum_value.py +29 -0
- vellum/types/open_ai_vectorizer_config.py +30 -0
- vellum/types/open_ai_vectorizer_config_request.py +30 -0
- vellum/types/open_ai_vectorizer_text_embedding_3_large.py +30 -0
- vellum/types/open_ai_vectorizer_text_embedding_3_large_request.py +30 -0
- vellum/types/open_ai_vectorizer_text_embedding_3_small.py +30 -0
- vellum/types/open_ai_vectorizer_text_embedding_3_small_request.py +30 -0
- vellum/types/open_ai_vectorizer_text_embedding_ada_002.py +30 -0
- vellum/types/open_ai_vectorizer_text_embedding_ada_002_request.py +30 -0
- vellum/types/reducto_chunker_config.py +29 -0
- vellum/types/reducto_chunker_config_request.py +29 -0
- vellum/types/reducto_chunker_enum.py +5 -0
- vellum/types/reducto_chunking.py +30 -0
- vellum/types/reducto_chunking_request.py +30 -0
- vellum/types/search_result_document.py +1 -1
- vellum/types/search_result_document_request.py +5 -0
- vellum/types/sentence_chunker_config.py +30 -0
- vellum/types/sentence_chunker_config_request.py +30 -0
- vellum/types/sentence_chunker_enum.py +5 -0
- vellum/types/sentence_chunking.py +30 -0
- vellum/types/sentence_chunking_request.py +30 -0
- vellum/types/sentence_transformers_multi_qa_mpnet_base_cos_v_1_enum.py +5 -0
- vellum/types/sentence_transformers_multi_qa_mpnet_base_dot_v_1_enum.py +5 -0
- vellum/types/submit_completion_actual_request.py +5 -0
- vellum/types/test_case_function_call_variable_value.py +2 -2
- vellum/types/test_suite_run_execution_function_call_output.py +2 -2
- vellum/types/text_embedding_3_large_enum.py +5 -0
- vellum/types/text_embedding_3_small_enum.py +5 -0
- vellum/types/text_embedding_ada_002_enum.py +5 -0
- vellum/types/token_overlapping_window_chunker_config.py +30 -0
- vellum/types/token_overlapping_window_chunker_config_request.py +30 -0
- vellum/types/token_overlapping_window_chunker_enum.py +5 -0
- vellum/types/token_overlapping_window_chunking.py +30 -0
- vellum/types/token_overlapping_window_chunking_request.py +30 -0
- vellum/types/workflow_execution_actual_chat_history_request.py +5 -0
- vellum/types/workflow_execution_actual_json_request.py +5 -0
- vellum/types/workflow_execution_actual_string_request.py +5 -0
- vellum/types/workflow_node_result_data.py +24 -0
- vellum/types/workflow_output_array.py +2 -2
- {vellum_ai-0.5.2.dist-info → vellum_ai-0.6.1.dist-info}/METADATA +2 -3
- {vellum_ai-0.5.2.dist-info → vellum_ai-0.6.1.dist-info}/RECORD +81 -31
- {vellum_ai-0.5.2.dist-info → vellum_ai-0.6.1.dist-info}/LICENSE +0 -0
- {vellum_ai-0.5.2.dist-info → vellum_ai-0.6.1.dist-info}/WHEEL +0 -0
@@ -0,0 +1,106 @@
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
2
|
+
|
3
|
+
from __future__ import annotations
|
4
|
+
|
5
|
+
import typing
|
6
|
+
|
7
|
+
from .basic_vectorizer_intfloat_multilingual_e_5_large_request import BasicVectorizerIntfloatMultilingualE5LargeRequest
|
8
|
+
from .basic_vectorizer_sentence_transformers_multi_qa_mpnet_base_cos_v_1_request import (
|
9
|
+
BasicVectorizerSentenceTransformersMultiQaMpnetBaseCosV1Request,
|
10
|
+
)
|
11
|
+
from .basic_vectorizer_sentence_transformers_multi_qa_mpnet_base_dot_v_1_request import (
|
12
|
+
BasicVectorizerSentenceTransformersMultiQaMpnetBaseDotV1Request,
|
13
|
+
)
|
14
|
+
from .hkunlp_instructor_xl_vectorizer_request import HkunlpInstructorXlVectorizerRequest
|
15
|
+
from .open_ai_vectorizer_text_embedding_3_large_request import OpenAiVectorizerTextEmbedding3LargeRequest
|
16
|
+
from .open_ai_vectorizer_text_embedding_3_small_request import OpenAiVectorizerTextEmbedding3SmallRequest
|
17
|
+
from .open_ai_vectorizer_text_embedding_ada_002_request import OpenAiVectorizerTextEmbeddingAda002Request
|
18
|
+
|
19
|
+
|
20
|
+
class IndexingConfigVectorizerRequest_TextEmbedding3Small(OpenAiVectorizerTextEmbedding3SmallRequest):
|
21
|
+
model_name: typing.Literal["text-embedding-3-small"] = "text-embedding-3-small"
|
22
|
+
|
23
|
+
class Config:
|
24
|
+
frozen = True
|
25
|
+
smart_union = True
|
26
|
+
allow_population_by_field_name = True
|
27
|
+
populate_by_name = True
|
28
|
+
|
29
|
+
|
30
|
+
class IndexingConfigVectorizerRequest_TextEmbedding3Large(OpenAiVectorizerTextEmbedding3LargeRequest):
|
31
|
+
model_name: typing.Literal["text-embedding-3-large"] = "text-embedding-3-large"
|
32
|
+
|
33
|
+
class Config:
|
34
|
+
frozen = True
|
35
|
+
smart_union = True
|
36
|
+
allow_population_by_field_name = True
|
37
|
+
populate_by_name = True
|
38
|
+
|
39
|
+
|
40
|
+
class IndexingConfigVectorizerRequest_TextEmbeddingAda002(OpenAiVectorizerTextEmbeddingAda002Request):
|
41
|
+
model_name: typing.Literal["text-embedding-ada-002"] = "text-embedding-ada-002"
|
42
|
+
|
43
|
+
class Config:
|
44
|
+
frozen = True
|
45
|
+
smart_union = True
|
46
|
+
allow_population_by_field_name = True
|
47
|
+
populate_by_name = True
|
48
|
+
|
49
|
+
|
50
|
+
class IndexingConfigVectorizerRequest_IntfloatMultilingualE5Large(BasicVectorizerIntfloatMultilingualE5LargeRequest):
|
51
|
+
model_name: typing.Literal["intfloat/multilingual-e5-large"] = "intfloat/multilingual-e5-large"
|
52
|
+
|
53
|
+
class Config:
|
54
|
+
frozen = True
|
55
|
+
smart_union = True
|
56
|
+
allow_population_by_field_name = True
|
57
|
+
populate_by_name = True
|
58
|
+
|
59
|
+
|
60
|
+
class IndexingConfigVectorizerRequest_SentenceTransformersMultiQaMpnetBaseCosV1(
|
61
|
+
BasicVectorizerSentenceTransformersMultiQaMpnetBaseCosV1Request
|
62
|
+
):
|
63
|
+
model_name: typing.Literal[
|
64
|
+
"sentence-transformers/multi-qa-mpnet-base-cos-v1"
|
65
|
+
] = "sentence-transformers/multi-qa-mpnet-base-cos-v1"
|
66
|
+
|
67
|
+
class Config:
|
68
|
+
frozen = True
|
69
|
+
smart_union = True
|
70
|
+
allow_population_by_field_name = True
|
71
|
+
populate_by_name = True
|
72
|
+
|
73
|
+
|
74
|
+
class IndexingConfigVectorizerRequest_SentenceTransformersMultiQaMpnetBaseDotV1(
|
75
|
+
BasicVectorizerSentenceTransformersMultiQaMpnetBaseDotV1Request
|
76
|
+
):
|
77
|
+
model_name: typing.Literal[
|
78
|
+
"sentence-transformers/multi-qa-mpnet-base-dot-v1"
|
79
|
+
] = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
|
80
|
+
|
81
|
+
class Config:
|
82
|
+
frozen = True
|
83
|
+
smart_union = True
|
84
|
+
allow_population_by_field_name = True
|
85
|
+
populate_by_name = True
|
86
|
+
|
87
|
+
|
88
|
+
class IndexingConfigVectorizerRequest_HkunlpInstructorXl(HkunlpInstructorXlVectorizerRequest):
|
89
|
+
model_name: typing.Literal["hkunlp/instructor-xl"] = "hkunlp/instructor-xl"
|
90
|
+
|
91
|
+
class Config:
|
92
|
+
frozen = True
|
93
|
+
smart_union = True
|
94
|
+
allow_population_by_field_name = True
|
95
|
+
populate_by_name = True
|
96
|
+
|
97
|
+
|
98
|
+
IndexingConfigVectorizerRequest = typing.Union[
|
99
|
+
IndexingConfigVectorizerRequest_TextEmbedding3Small,
|
100
|
+
IndexingConfigVectorizerRequest_TextEmbedding3Large,
|
101
|
+
IndexingConfigVectorizerRequest_TextEmbeddingAda002,
|
102
|
+
IndexingConfigVectorizerRequest_IntfloatMultilingualE5Large,
|
103
|
+
IndexingConfigVectorizerRequest_SentenceTransformersMultiQaMpnetBaseCosV1,
|
104
|
+
IndexingConfigVectorizerRequest_SentenceTransformersMultiQaMpnetBaseDotV1,
|
105
|
+
IndexingConfigVectorizerRequest_HkunlpInstructorXl,
|
106
|
+
]
|
@@ -0,0 +1,31 @@
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
2
|
+
|
3
|
+
import datetime as dt
|
4
|
+
import typing
|
5
|
+
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
7
|
+
from ..core.pydantic_utilities import pydantic_v1
|
8
|
+
|
9
|
+
|
10
|
+
class InstructorVectorizerConfig(pydantic_v1.BaseModel):
|
11
|
+
"""
|
12
|
+
Configuration for using an Instructor vectorizer.
|
13
|
+
"""
|
14
|
+
|
15
|
+
instruction_domain: str
|
16
|
+
instruction_query_text_type: str
|
17
|
+
instruction_document_text_type: str
|
18
|
+
|
19
|
+
def json(self, **kwargs: typing.Any) -> str:
|
20
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
21
|
+
return super().json(**kwargs_with_defaults)
|
22
|
+
|
23
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
24
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
25
|
+
return super().dict(**kwargs_with_defaults)
|
26
|
+
|
27
|
+
class Config:
|
28
|
+
frozen = True
|
29
|
+
smart_union = True
|
30
|
+
extra = pydantic_v1.Extra.allow
|
31
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
@@ -0,0 +1,31 @@
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
2
|
+
|
3
|
+
import datetime as dt
|
4
|
+
import typing
|
5
|
+
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
7
|
+
from ..core.pydantic_utilities import pydantic_v1
|
8
|
+
|
9
|
+
|
10
|
+
class InstructorVectorizerConfigRequest(pydantic_v1.BaseModel):
|
11
|
+
"""
|
12
|
+
Configuration for using an Instructor vectorizer.
|
13
|
+
"""
|
14
|
+
|
15
|
+
instruction_domain: str
|
16
|
+
instruction_query_text_type: str
|
17
|
+
instruction_document_text_type: str
|
18
|
+
|
19
|
+
def json(self, **kwargs: typing.Any) -> str:
|
20
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
21
|
+
return super().json(**kwargs_with_defaults)
|
22
|
+
|
23
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
24
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
25
|
+
return super().dict(**kwargs_with_defaults)
|
26
|
+
|
27
|
+
class Config:
|
28
|
+
frozen = True
|
29
|
+
smart_union = True
|
30
|
+
extra = pydantic_v1.Extra.allow
|
31
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
@@ -5,11 +5,12 @@ import typing
|
|
5
5
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
7
7
|
from ..core.pydantic_utilities import pydantic_v1
|
8
|
-
from .chat_message import ChatMessage
|
9
8
|
|
10
9
|
|
11
|
-
class
|
12
|
-
|
10
|
+
class MergeNodeResult(pydantic_v1.BaseModel):
|
11
|
+
"""
|
12
|
+
A Node Result Event emitted from a Merge Node.
|
13
|
+
"""
|
13
14
|
|
14
15
|
def json(self, **kwargs: typing.Any) -> str:
|
15
16
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
@@ -5,11 +5,12 @@ import typing
|
|
5
5
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
7
7
|
from ..core.pydantic_utilities import pydantic_v1
|
8
|
-
from .search_result import SearchResult
|
9
8
|
|
10
9
|
|
11
|
-
class
|
12
|
-
|
10
|
+
class MetricNodeResult(pydantic_v1.BaseModel):
|
11
|
+
"""
|
12
|
+
A Node Result Event emitted from a Metric Node.
|
13
|
+
"""
|
13
14
|
|
14
15
|
def json(self, **kwargs: typing.Any) -> str:
|
15
16
|
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
@@ -5,7 +5,7 @@ import typing
|
|
5
5
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
7
7
|
from ..core.pydantic_utilities import pydantic_v1
|
8
|
-
from .
|
8
|
+
from .function_call import FunctionCall
|
9
9
|
|
10
10
|
|
11
11
|
class NamedTestCaseFunctionCallVariableValue(pydantic_v1.BaseModel):
|
@@ -13,7 +13,7 @@ class NamedTestCaseFunctionCallVariableValue(pydantic_v1.BaseModel):
|
|
13
13
|
Named Test Case value that is of type FUNCTION_CALL
|
14
14
|
"""
|
15
15
|
|
16
|
-
value: typing.Optional[
|
16
|
+
value: typing.Optional[FunctionCall] = None
|
17
17
|
name: str
|
18
18
|
|
19
19
|
def json(self, **kwargs: typing.Any) -> str:
|
@@ -5,7 +5,7 @@ import typing
|
|
5
5
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
7
7
|
from ..core.pydantic_utilities import pydantic_v1
|
8
|
-
from .
|
8
|
+
from .function_call_request import FunctionCallRequest
|
9
9
|
|
10
10
|
|
11
11
|
class NamedTestCaseFunctionCallVariableValueRequest(pydantic_v1.BaseModel):
|
@@ -13,7 +13,7 @@ class NamedTestCaseFunctionCallVariableValueRequest(pydantic_v1.BaseModel):
|
|
13
13
|
Named Test Case value that is of type FUNCTION_CALL
|
14
14
|
"""
|
15
15
|
|
16
|
-
value: typing.Optional[
|
16
|
+
value: typing.Optional[FunctionCallRequest] = None
|
17
17
|
name: str
|
18
18
|
|
19
19
|
def json(self, **kwargs: typing.Any) -> str:
|
@@ -5,7 +5,7 @@ import typing
|
|
5
5
|
|
6
6
|
from ..core.datetime_utils import serialize_datetime
|
7
7
|
from ..core.pydantic_utilities import pydantic_v1
|
8
|
-
from .
|
8
|
+
from .array_vellum_value_item import ArrayVellumValueItem
|
9
9
|
from .workflow_node_result_event_state import WorkflowNodeResultEventState
|
10
10
|
|
11
11
|
|
@@ -14,7 +14,7 @@ class NodeOutputCompiledArrayValue(pydantic_v1.BaseModel):
|
|
14
14
|
An output returned by a node that is of type ARRAY.
|
15
15
|
"""
|
16
16
|
|
17
|
-
value: typing.Optional[typing.List[
|
17
|
+
value: typing.Optional[typing.List[ArrayVellumValueItem]] = None
|
18
18
|
node_output_id: str
|
19
19
|
state: typing.Optional[WorkflowNodeResultEventState] = None
|
20
20
|
|
@@ -0,0 +1,29 @@
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
2
|
+
|
3
|
+
import datetime as dt
|
4
|
+
import typing
|
5
|
+
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
7
|
+
from ..core.pydantic_utilities import pydantic_v1
|
8
|
+
|
9
|
+
|
10
|
+
class NumberVellumValue(pydantic_v1.BaseModel):
|
11
|
+
"""
|
12
|
+
A value representing a number.
|
13
|
+
"""
|
14
|
+
|
15
|
+
value: typing.Optional[float] = None
|
16
|
+
|
17
|
+
def json(self, **kwargs: typing.Any) -> str:
|
18
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
19
|
+
return super().json(**kwargs_with_defaults)
|
20
|
+
|
21
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
22
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
23
|
+
return super().dict(**kwargs_with_defaults)
|
24
|
+
|
25
|
+
class Config:
|
26
|
+
frozen = True
|
27
|
+
smart_union = True
|
28
|
+
extra = pydantic_v1.Extra.allow
|
29
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
@@ -0,0 +1,30 @@
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
2
|
+
|
3
|
+
import datetime as dt
|
4
|
+
import typing
|
5
|
+
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
7
|
+
from ..core.pydantic_utilities import pydantic_v1
|
8
|
+
from .add_openai_api_key_enum import AddOpenaiApiKeyEnum
|
9
|
+
|
10
|
+
|
11
|
+
class OpenAiVectorizerConfig(pydantic_v1.BaseModel):
|
12
|
+
"""
|
13
|
+
Configuration for using an OpenAI vectorizer.
|
14
|
+
"""
|
15
|
+
|
16
|
+
add_openai_api_key: typing.Optional[AddOpenaiApiKeyEnum] = None
|
17
|
+
|
18
|
+
def json(self, **kwargs: typing.Any) -> str:
|
19
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
20
|
+
return super().json(**kwargs_with_defaults)
|
21
|
+
|
22
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
23
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
24
|
+
return super().dict(**kwargs_with_defaults)
|
25
|
+
|
26
|
+
class Config:
|
27
|
+
frozen = True
|
28
|
+
smart_union = True
|
29
|
+
extra = pydantic_v1.Extra.allow
|
30
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
@@ -0,0 +1,30 @@
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
2
|
+
|
3
|
+
import datetime as dt
|
4
|
+
import typing
|
5
|
+
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
7
|
+
from ..core.pydantic_utilities import pydantic_v1
|
8
|
+
from .add_openai_api_key_enum import AddOpenaiApiKeyEnum
|
9
|
+
|
10
|
+
|
11
|
+
class OpenAiVectorizerConfigRequest(pydantic_v1.BaseModel):
|
12
|
+
"""
|
13
|
+
Configuration for using an OpenAI vectorizer.
|
14
|
+
"""
|
15
|
+
|
16
|
+
add_openai_api_key: typing.Optional[AddOpenaiApiKeyEnum] = None
|
17
|
+
|
18
|
+
def json(self, **kwargs: typing.Any) -> str:
|
19
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
20
|
+
return super().json(**kwargs_with_defaults)
|
21
|
+
|
22
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
23
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
24
|
+
return super().dict(**kwargs_with_defaults)
|
25
|
+
|
26
|
+
class Config:
|
27
|
+
frozen = True
|
28
|
+
smart_union = True
|
29
|
+
extra = pydantic_v1.Extra.allow
|
30
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
@@ -0,0 +1,30 @@
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
2
|
+
|
3
|
+
import datetime as dt
|
4
|
+
import typing
|
5
|
+
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
7
|
+
from ..core.pydantic_utilities import pydantic_v1
|
8
|
+
from .open_ai_vectorizer_config import OpenAiVectorizerConfig
|
9
|
+
|
10
|
+
|
11
|
+
class OpenAiVectorizerTextEmbedding3Large(pydantic_v1.BaseModel):
|
12
|
+
"""
|
13
|
+
OpenAI vectorizer for text-embedding-3-large.
|
14
|
+
"""
|
15
|
+
|
16
|
+
config: OpenAiVectorizerConfig
|
17
|
+
|
18
|
+
def json(self, **kwargs: typing.Any) -> str:
|
19
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
20
|
+
return super().json(**kwargs_with_defaults)
|
21
|
+
|
22
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
23
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
24
|
+
return super().dict(**kwargs_with_defaults)
|
25
|
+
|
26
|
+
class Config:
|
27
|
+
frozen = True
|
28
|
+
smart_union = True
|
29
|
+
extra = pydantic_v1.Extra.allow
|
30
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
@@ -0,0 +1,30 @@
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
2
|
+
|
3
|
+
import datetime as dt
|
4
|
+
import typing
|
5
|
+
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
7
|
+
from ..core.pydantic_utilities import pydantic_v1
|
8
|
+
from .open_ai_vectorizer_config_request import OpenAiVectorizerConfigRequest
|
9
|
+
|
10
|
+
|
11
|
+
class OpenAiVectorizerTextEmbedding3LargeRequest(pydantic_v1.BaseModel):
|
12
|
+
"""
|
13
|
+
OpenAI vectorizer for text-embedding-3-large.
|
14
|
+
"""
|
15
|
+
|
16
|
+
config: OpenAiVectorizerConfigRequest
|
17
|
+
|
18
|
+
def json(self, **kwargs: typing.Any) -> str:
|
19
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
20
|
+
return super().json(**kwargs_with_defaults)
|
21
|
+
|
22
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
23
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
24
|
+
return super().dict(**kwargs_with_defaults)
|
25
|
+
|
26
|
+
class Config:
|
27
|
+
frozen = True
|
28
|
+
smart_union = True
|
29
|
+
extra = pydantic_v1.Extra.allow
|
30
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
@@ -0,0 +1,30 @@
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
2
|
+
|
3
|
+
import datetime as dt
|
4
|
+
import typing
|
5
|
+
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
7
|
+
from ..core.pydantic_utilities import pydantic_v1
|
8
|
+
from .open_ai_vectorizer_config import OpenAiVectorizerConfig
|
9
|
+
|
10
|
+
|
11
|
+
class OpenAiVectorizerTextEmbedding3Small(pydantic_v1.BaseModel):
|
12
|
+
"""
|
13
|
+
OpenAI vectorizer for text-embedding-3-small.
|
14
|
+
"""
|
15
|
+
|
16
|
+
config: OpenAiVectorizerConfig
|
17
|
+
|
18
|
+
def json(self, **kwargs: typing.Any) -> str:
|
19
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
20
|
+
return super().json(**kwargs_with_defaults)
|
21
|
+
|
22
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
23
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
24
|
+
return super().dict(**kwargs_with_defaults)
|
25
|
+
|
26
|
+
class Config:
|
27
|
+
frozen = True
|
28
|
+
smart_union = True
|
29
|
+
extra = pydantic_v1.Extra.allow
|
30
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
@@ -0,0 +1,30 @@
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
2
|
+
|
3
|
+
import datetime as dt
|
4
|
+
import typing
|
5
|
+
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
7
|
+
from ..core.pydantic_utilities import pydantic_v1
|
8
|
+
from .open_ai_vectorizer_config_request import OpenAiVectorizerConfigRequest
|
9
|
+
|
10
|
+
|
11
|
+
class OpenAiVectorizerTextEmbedding3SmallRequest(pydantic_v1.BaseModel):
|
12
|
+
"""
|
13
|
+
OpenAI vectorizer for text-embedding-3-small.
|
14
|
+
"""
|
15
|
+
|
16
|
+
config: OpenAiVectorizerConfigRequest
|
17
|
+
|
18
|
+
def json(self, **kwargs: typing.Any) -> str:
|
19
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
20
|
+
return super().json(**kwargs_with_defaults)
|
21
|
+
|
22
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
23
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
24
|
+
return super().dict(**kwargs_with_defaults)
|
25
|
+
|
26
|
+
class Config:
|
27
|
+
frozen = True
|
28
|
+
smart_union = True
|
29
|
+
extra = pydantic_v1.Extra.allow
|
30
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
@@ -0,0 +1,30 @@
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
2
|
+
|
3
|
+
import datetime as dt
|
4
|
+
import typing
|
5
|
+
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
7
|
+
from ..core.pydantic_utilities import pydantic_v1
|
8
|
+
from .open_ai_vectorizer_config import OpenAiVectorizerConfig
|
9
|
+
|
10
|
+
|
11
|
+
class OpenAiVectorizerTextEmbeddingAda002(pydantic_v1.BaseModel):
|
12
|
+
"""
|
13
|
+
OpenAI vectorizer for text-embedding-ada-002.
|
14
|
+
"""
|
15
|
+
|
16
|
+
config: OpenAiVectorizerConfig
|
17
|
+
|
18
|
+
def json(self, **kwargs: typing.Any) -> str:
|
19
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
20
|
+
return super().json(**kwargs_with_defaults)
|
21
|
+
|
22
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
23
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
24
|
+
return super().dict(**kwargs_with_defaults)
|
25
|
+
|
26
|
+
class Config:
|
27
|
+
frozen = True
|
28
|
+
smart_union = True
|
29
|
+
extra = pydantic_v1.Extra.allow
|
30
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
@@ -0,0 +1,30 @@
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
2
|
+
|
3
|
+
import datetime as dt
|
4
|
+
import typing
|
5
|
+
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
7
|
+
from ..core.pydantic_utilities import pydantic_v1
|
8
|
+
from .open_ai_vectorizer_config_request import OpenAiVectorizerConfigRequest
|
9
|
+
|
10
|
+
|
11
|
+
class OpenAiVectorizerTextEmbeddingAda002Request(pydantic_v1.BaseModel):
|
12
|
+
"""
|
13
|
+
OpenAI vectorizer for text-embedding-ada-002.
|
14
|
+
"""
|
15
|
+
|
16
|
+
config: OpenAiVectorizerConfigRequest
|
17
|
+
|
18
|
+
def json(self, **kwargs: typing.Any) -> str:
|
19
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
20
|
+
return super().json(**kwargs_with_defaults)
|
21
|
+
|
22
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
23
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
24
|
+
return super().dict(**kwargs_with_defaults)
|
25
|
+
|
26
|
+
class Config:
|
27
|
+
frozen = True
|
28
|
+
smart_union = True
|
29
|
+
extra = pydantic_v1.Extra.allow
|
30
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
@@ -0,0 +1,29 @@
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
2
|
+
|
3
|
+
import datetime as dt
|
4
|
+
import typing
|
5
|
+
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
7
|
+
from ..core.pydantic_utilities import pydantic_v1
|
8
|
+
|
9
|
+
|
10
|
+
class ReductoChunkerConfig(pydantic_v1.BaseModel):
|
11
|
+
"""
|
12
|
+
Configuration for Reducto chunking
|
13
|
+
"""
|
14
|
+
|
15
|
+
character_limit: typing.Optional[int] = None
|
16
|
+
|
17
|
+
def json(self, **kwargs: typing.Any) -> str:
|
18
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
19
|
+
return super().json(**kwargs_with_defaults)
|
20
|
+
|
21
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
22
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
23
|
+
return super().dict(**kwargs_with_defaults)
|
24
|
+
|
25
|
+
class Config:
|
26
|
+
frozen = True
|
27
|
+
smart_union = True
|
28
|
+
extra = pydantic_v1.Extra.allow
|
29
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
@@ -0,0 +1,29 @@
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
2
|
+
|
3
|
+
import datetime as dt
|
4
|
+
import typing
|
5
|
+
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
7
|
+
from ..core.pydantic_utilities import pydantic_v1
|
8
|
+
|
9
|
+
|
10
|
+
class ReductoChunkerConfigRequest(pydantic_v1.BaseModel):
|
11
|
+
"""
|
12
|
+
Configuration for Reducto chunking
|
13
|
+
"""
|
14
|
+
|
15
|
+
character_limit: typing.Optional[int] = None
|
16
|
+
|
17
|
+
def json(self, **kwargs: typing.Any) -> str:
|
18
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
19
|
+
return super().json(**kwargs_with_defaults)
|
20
|
+
|
21
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
22
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
23
|
+
return super().dict(**kwargs_with_defaults)
|
24
|
+
|
25
|
+
class Config:
|
26
|
+
frozen = True
|
27
|
+
smart_union = True
|
28
|
+
extra = pydantic_v1.Extra.allow
|
29
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
@@ -0,0 +1,30 @@
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
2
|
+
|
3
|
+
import datetime as dt
|
4
|
+
import typing
|
5
|
+
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
7
|
+
from ..core.pydantic_utilities import pydantic_v1
|
8
|
+
from .reducto_chunker_config import ReductoChunkerConfig
|
9
|
+
|
10
|
+
|
11
|
+
class ReductoChunking(pydantic_v1.BaseModel):
|
12
|
+
"""
|
13
|
+
Reducto chunking
|
14
|
+
"""
|
15
|
+
|
16
|
+
chunker_config: typing.Optional[ReductoChunkerConfig] = None
|
17
|
+
|
18
|
+
def json(self, **kwargs: typing.Any) -> str:
|
19
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
20
|
+
return super().json(**kwargs_with_defaults)
|
21
|
+
|
22
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
23
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
24
|
+
return super().dict(**kwargs_with_defaults)
|
25
|
+
|
26
|
+
class Config:
|
27
|
+
frozen = True
|
28
|
+
smart_union = True
|
29
|
+
extra = pydantic_v1.Extra.allow
|
30
|
+
json_encoders = {dt.datetime: serialize_datetime}
|