vellum-ai 0.3.12__py3-none-any.whl → 0.3.14__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (50) hide show
  1. vellum/__init__.py +86 -0
  2. vellum/client.py +3 -0
  3. vellum/core/client_wrapper.py +1 -1
  4. vellum/resources/__init__.py +2 -0
  5. vellum/resources/test_suite_runs/__init__.py +2 -0
  6. vellum/resources/test_suite_runs/client.py +223 -0
  7. vellum/types/__init__.py +98 -0
  8. vellum/types/paginated_test_suite_run_execution_list.py +32 -0
  9. vellum/types/test_suite_run_deployment_release_tag_exec_config.py +36 -0
  10. vellum/types/test_suite_run_deployment_release_tag_exec_config_data.py +31 -0
  11. vellum/types/test_suite_run_deployment_release_tag_exec_config_data_request.py +31 -0
  12. vellum/types/test_suite_run_deployment_release_tag_exec_config_request.py +38 -0
  13. vellum/types/test_suite_run_deployment_release_tag_exec_config_type_enum.py +5 -0
  14. vellum/types/test_suite_run_exec_config.py +33 -0
  15. vellum/types/test_suite_run_exec_config_request.py +33 -0
  16. vellum/types/test_suite_run_execution.py +33 -0
  17. vellum/types/test_suite_run_execution_chat_history_output.py +30 -0
  18. vellum/types/test_suite_run_execution_error_output.py +30 -0
  19. vellum/types/test_suite_run_execution_json_output.py +29 -0
  20. vellum/types/test_suite_run_execution_metric_result.py +30 -0
  21. vellum/types/test_suite_run_execution_number_output.py +29 -0
  22. vellum/types/test_suite_run_execution_output.py +78 -0
  23. vellum/types/test_suite_run_execution_search_results_output.py +30 -0
  24. vellum/types/test_suite_run_execution_string_output.py +29 -0
  25. vellum/types/test_suite_run_metric_error_output.py +34 -0
  26. vellum/types/test_suite_run_metric_error_output_type_enum.py +5 -0
  27. vellum/types/test_suite_run_metric_number_output.py +33 -0
  28. vellum/types/test_suite_run_metric_number_output_type_enum.py +5 -0
  29. vellum/types/test_suite_run_metric_output.py +31 -0
  30. vellum/types/test_suite_run_read.py +47 -0
  31. vellum/types/test_suite_run_state.py +41 -0
  32. vellum/types/test_suite_run_test_suite.py +30 -0
  33. vellum/types/test_suite_run_workflow_release_tag_exec_config.py +36 -0
  34. vellum/types/test_suite_run_workflow_release_tag_exec_config_data.py +33 -0
  35. vellum/types/test_suite_run_workflow_release_tag_exec_config_data_request.py +33 -0
  36. vellum/types/test_suite_run_workflow_release_tag_exec_config_request.py +38 -0
  37. vellum/types/test_suite_run_workflow_release_tag_exec_config_type_enum.py +5 -0
  38. vellum/types/workflow_output_array.py +1 -1
  39. vellum/types/workflow_output_chat_history.py +1 -1
  40. vellum/types/workflow_output_error.py +1 -1
  41. vellum/types/workflow_output_function_call.py +1 -1
  42. vellum/types/workflow_output_image.py +1 -1
  43. vellum/types/workflow_output_json.py +1 -1
  44. vellum/types/workflow_output_number.py +1 -1
  45. vellum/types/workflow_output_search_results.py +1 -1
  46. vellum/types/workflow_output_string.py +1 -1
  47. {vellum_ai-0.3.12.dist-info → vellum_ai-0.3.14.dist-info}/METADATA +1 -1
  48. {vellum_ai-0.3.12.dist-info → vellum_ai-0.3.14.dist-info}/RECORD +50 -18
  49. {vellum_ai-0.3.12.dist-info → vellum_ai-0.3.14.dist-info}/LICENSE +0 -0
  50. {vellum_ai-0.3.12.dist-info → vellum_ai-0.3.14.dist-info}/WHEEL +0 -0
@@ -0,0 +1,36 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from .test_suite_run_workflow_release_tag_exec_config_data import TestSuiteRunWorkflowReleaseTagExecConfigData
8
+
9
+ try:
10
+ import pydantic.v1 as pydantic # type: ignore
11
+ except ImportError:
12
+ import pydantic # type: ignore
13
+
14
+
15
+ class TestSuiteRunWorkflowReleaseTagExecConfig(pydantic.BaseModel):
16
+ """
17
+ Execution configuration for running a Test Suite against a Workflow Deployment
18
+ """
19
+
20
+ data: TestSuiteRunWorkflowReleaseTagExecConfigData
21
+ test_case_ids: typing.Optional[typing.List[str]] = pydantic.Field(
22
+ description="Optionally specify a subset of test case ids to run. If not provided, all test cases within the test suite will be run by default."
23
+ )
24
+
25
+ def json(self, **kwargs: typing.Any) -> str:
26
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
27
+ return super().json(**kwargs_with_defaults)
28
+
29
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
30
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
31
+ return super().dict(**kwargs_with_defaults)
32
+
33
+ class Config:
34
+ frozen = True
35
+ smart_union = True
36
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,33 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+
8
+ try:
9
+ import pydantic.v1 as pydantic # type: ignore
10
+ except ImportError:
11
+ import pydantic # type: ignore
12
+
13
+
14
+ class TestSuiteRunWorkflowReleaseTagExecConfigData(pydantic.BaseModel):
15
+ workflow_deployment_id: str = pydantic.Field(
16
+ description="The ID of the Workflow Deployment to run the Test Suite against."
17
+ )
18
+ tag: typing.Optional[str] = pydantic.Field(
19
+ description="A tag identifying which release of the Workflow Deployment to run the Test Suite against. Useful for testing past versions of the Workflow Deployment"
20
+ )
21
+
22
+ def json(self, **kwargs: typing.Any) -> str:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().json(**kwargs_with_defaults)
25
+
26
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
27
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
28
+ return super().dict(**kwargs_with_defaults)
29
+
30
+ class Config:
31
+ frozen = True
32
+ smart_union = True
33
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,33 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+
8
+ try:
9
+ import pydantic.v1 as pydantic # type: ignore
10
+ except ImportError:
11
+ import pydantic # type: ignore
12
+
13
+
14
+ class TestSuiteRunWorkflowReleaseTagExecConfigDataRequest(pydantic.BaseModel):
15
+ workflow_deployment_id: str = pydantic.Field(
16
+ description="The ID of the Workflow Deployment to run the Test Suite against."
17
+ )
18
+ tag: typing.Optional[str] = pydantic.Field(
19
+ description="A tag identifying which release of the Workflow Deployment to run the Test Suite against. Useful for testing past versions of the Workflow Deployment"
20
+ )
21
+
22
+ def json(self, **kwargs: typing.Any) -> str:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().json(**kwargs_with_defaults)
25
+
26
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
27
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
28
+ return super().dict(**kwargs_with_defaults)
29
+
30
+ class Config:
31
+ frozen = True
32
+ smart_union = True
33
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,38 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from .test_suite_run_workflow_release_tag_exec_config_data_request import (
8
+ TestSuiteRunWorkflowReleaseTagExecConfigDataRequest,
9
+ )
10
+
11
+ try:
12
+ import pydantic.v1 as pydantic # type: ignore
13
+ except ImportError:
14
+ import pydantic # type: ignore
15
+
16
+
17
+ class TestSuiteRunWorkflowReleaseTagExecConfigRequest(pydantic.BaseModel):
18
+ """
19
+ Execution configuration for running a Test Suite against a Workflow Deployment
20
+ """
21
+
22
+ data: TestSuiteRunWorkflowReleaseTagExecConfigDataRequest
23
+ test_case_ids: typing.Optional[typing.List[str]] = pydantic.Field(
24
+ description="Optionally specify a subset of test case ids to run. If not provided, all test cases within the test suite will be run by default."
25
+ )
26
+
27
+ def json(self, **kwargs: typing.Any) -> str:
28
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
29
+ return super().json(**kwargs_with_defaults)
30
+
31
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
32
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
33
+ return super().dict(**kwargs_with_defaults)
34
+
35
+ class Config:
36
+ frozen = True
37
+ smart_union = True
38
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,5 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import typing_extensions
4
+
5
+ TestSuiteRunWorkflowReleaseTagExecConfigTypeEnum = typing_extensions.Literal["WORKFLOW_RELEASE_TAG"]
@@ -19,7 +19,7 @@ class WorkflowOutputArray(pydantic.BaseModel):
19
19
 
20
20
  id: str
21
21
  name: str = pydantic.Field(description="The output's name, as defined in the workflow")
22
- value: typing.List[ArrayVariableValueItem]
22
+ value: typing.Optional[typing.List[ArrayVariableValueItem]]
23
23
 
24
24
  def json(self, **kwargs: typing.Any) -> str:
25
25
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -19,7 +19,7 @@ class WorkflowOutputChatHistory(pydantic.BaseModel):
19
19
 
20
20
  id: str
21
21
  name: str = pydantic.Field(description="The output's name, as defined in the workflow")
22
- value: typing.List[ChatMessage]
22
+ value: typing.Optional[typing.List[ChatMessage]]
23
23
 
24
24
  def json(self, **kwargs: typing.Any) -> str:
25
25
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -19,7 +19,7 @@ class WorkflowOutputError(pydantic.BaseModel):
19
19
 
20
20
  id: str
21
21
  name: str = pydantic.Field(description="The output's name, as defined in the workflow")
22
- value: VellumError
22
+ value: typing.Optional[VellumError]
23
23
 
24
24
  def json(self, **kwargs: typing.Any) -> str:
25
25
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -19,7 +19,7 @@ class WorkflowOutputFunctionCall(pydantic.BaseModel):
19
19
 
20
20
  id: str
21
21
  name: str = pydantic.Field(description="The output's name, as defined in the workflow")
22
- value: FunctionCall
22
+ value: typing.Optional[FunctionCall]
23
23
 
24
24
  def json(self, **kwargs: typing.Any) -> str:
25
25
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -19,7 +19,7 @@ class WorkflowOutputImage(pydantic.BaseModel):
19
19
 
20
20
  id: str
21
21
  name: str = pydantic.Field(description="The output's name, as defined in the workflow")
22
- value: VellumImage
22
+ value: typing.Optional[VellumImage]
23
23
 
24
24
  def json(self, **kwargs: typing.Any) -> str:
25
25
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -18,7 +18,7 @@ class WorkflowOutputJson(pydantic.BaseModel):
18
18
 
19
19
  id: str
20
20
  name: str = pydantic.Field(description="The output's name, as defined in the workflow")
21
- value: typing.Dict[str, typing.Any]
21
+ value: typing.Optional[typing.Dict[str, typing.Any]]
22
22
 
23
23
  def json(self, **kwargs: typing.Any) -> str:
24
24
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -18,7 +18,7 @@ class WorkflowOutputNumber(pydantic.BaseModel):
18
18
 
19
19
  id: str
20
20
  name: str = pydantic.Field(description="The output's name, as defined in the workflow")
21
- value: float
21
+ value: typing.Optional[float]
22
22
 
23
23
  def json(self, **kwargs: typing.Any) -> str:
24
24
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -19,7 +19,7 @@ class WorkflowOutputSearchResults(pydantic.BaseModel):
19
19
 
20
20
  id: str
21
21
  name: str = pydantic.Field(description="The output's name, as defined in the workflow")
22
- value: typing.List[SearchResult]
22
+ value: typing.Optional[typing.List[SearchResult]]
23
23
 
24
24
  def json(self, **kwargs: typing.Any) -> str:
25
25
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -18,7 +18,7 @@ class WorkflowOutputString(pydantic.BaseModel):
18
18
 
19
19
  id: str
20
20
  name: str = pydantic.Field(description="The output's name, as defined in the workflow")
21
- value: str
21
+ value: typing.Optional[str]
22
22
 
23
23
  def json(self, **kwargs: typing.Any) -> str:
24
24
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: vellum-ai
3
- Version: 0.3.12
3
+ Version: 0.3.14
4
4
  Summary:
5
5
  Requires-Python: >=3.7,<4.0
6
6
  Classifier: Programming Language :: Python :: 3
@@ -1,8 +1,8 @@
1
- vellum/__init__.py,sha256=zTwQHri6cl5qHzBUy2wPgPBCM7e15rlv_GQZs7EmGx4,29101
2
- vellum/client.py,sha256=dwO7KhE6C9Fyxbvq1C6xhxl1G5NsRoczvQKYhv1tV5A,61953
1
+ vellum/__init__.py,sha256=JfSMCddB8GiH1MSAFVV8_ZX1X0a1uB-4wW72-wmbByw,32755
2
+ vellum/client.py,sha256=9Mup32ly8X6AGX0WN7z-owbUgiDsnvRtbe4510Tuzz8,62226
3
3
  vellum/core/__init__.py,sha256=QJS3CJ2TYP2E1Tge0CS6Z7r8LTNzJHQVX1hD3558eP0,519
4
4
  vellum/core/api_error.py,sha256=RE8LELok2QCjABadECTvtDp7qejA1VmINCh6TbqPwSE,426
5
- vellum/core/client_wrapper.py,sha256=ElH_xC4Zo62H4hZneZCIwgB6ztFvMft6KUpdXJj1-bQ,1213
5
+ vellum/core/client_wrapper.py,sha256=0tFcykkLnkXvwyJQ3aRKayz92gqhRRfp3KKoSMZz39s,1213
6
6
  vellum/core/datetime_utils.py,sha256=nBys2IsYrhPdszxGKCNRPSOCwa-5DWOHG95FB8G9PKo,1047
7
7
  vellum/core/jsonable_encoder.py,sha256=MTYkDov2EryHgee4QM46uZiBOuOXK9KTHlBdBwU-CpU,3799
8
8
  vellum/core/remove_none_from_dict.py,sha256=8m91FC3YuVem0Gm9_sXhJ2tGvP33owJJdrqCLEdowGw,330
@@ -14,7 +14,7 @@ vellum/errors/forbidden_error.py,sha256=dgnatOGair3CvxljCE45_qwN_yefzcw2G0vw88wr
14
14
  vellum/errors/internal_server_error.py,sha256=E0rgqJC0-LcetLi1HmSi92KpvNkGSRCIdBeEqT_ln1s,252
15
15
  vellum/errors/not_found_error.py,sha256=P65k-Lm2RuefAVSNLER5hH-4P99SGohKy2cOPSrIxNk,246
16
16
  vellum/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
17
- vellum/resources/__init__.py,sha256=t7Yj0JcwbFrku2Yw_YmRsaz8R2SJftOyYW5jACThCmc,778
17
+ vellum/resources/__init__.py,sha256=oZf2_nhta_EWSHcf3p2j6kX6i3XZrXEzsTMUEimGWRA,822
18
18
  vellum/resources/deployments/__init__.py,sha256=AE0TcFwLrLBljM0ZDX-pPw4Kqt-1f5JDpIok2HS80QI,157
19
19
  vellum/resources/deployments/client.py,sha256=qBfKoPVgxvAgL5jFnfhA1QgAOILYR8Yuu53_eFvLvTs,12705
20
20
  vellum/resources/deployments/types/__init__.py,sha256=IhwnmoXJ0r_QEhh1b2tBcaAm_x3fWMVuIhYmAapp_ZA,183
@@ -33,13 +33,15 @@ vellum/resources/registered_prompts/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRY
33
33
  vellum/resources/registered_prompts/client.py,sha256=E4KonbEiHf4_9wRhTEo91xPKBR459JKEA8y_Kd31H_w,12451
34
34
  vellum/resources/sandboxes/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
35
35
  vellum/resources/sandboxes/client.py,sha256=qf7rJ72xWkfmA1ae2NY2yaGJ9It-Q-ha1oX6P0o-8dU,9182
36
+ vellum/resources/test_suite_runs/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
37
+ vellum/resources/test_suite_runs/client.py,sha256=Y31oCfMdde2NwYIL3f-O2_jBq1_3TnQuHwgWmC0JYQU,9095
36
38
  vellum/resources/test_suites/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
37
39
  vellum/resources/test_suites/client.py,sha256=3aySNI0qa-aD-NGZ_zOZOvHmV94i7h8BjBsxH096Ee8,8693
38
40
  vellum/resources/workflow_deployments/__init__.py,sha256=-5BCA0kSmW6WUh4gqLuQtHv4zFdt9lccuDwMU5YvEu4,173
39
41
  vellum/resources/workflow_deployments/client.py,sha256=9MTY1hrzOjy1n7uMD6PDHZ1rFvdKGI2YEQHGJeLbLiw,6711
40
42
  vellum/resources/workflow_deployments/types/__init__.py,sha256=rmS_4dtbgLHGNQJ_pOloygrjl4sNbKZjTEKBxbMyz6E,208
41
43
  vellum/resources/workflow_deployments/types/workflow_deployments_list_request_status.py,sha256=8-G1SalBR6-AfRnb6POOR9M3tvZa3CGwFIs1ArZb6uw,542
42
- vellum/types/__init__.py,sha256=tkWNUKSGa_QhsONxqydC_eSqTVN8YdPiLUoDLKFaQW8,38585
44
+ vellum/types/__init__.py,sha256=z4BRJoCbDLB3G-n2XxWBdQ-CUWOrNyJkwYAGcdi_FDU,43761
43
45
  vellum/types/api_node_result.py,sha256=ESEn5ydtAWsyEI1H3vYbhh1eiByPWNlNzsgQcUWPIfw,1003
44
46
  vellum/types/api_node_result_data.py,sha256=HvpZaAKYXsoBOnobACIYCmIdxbRc7Zp-ibIohiz_Nzc,1125
45
47
  vellum/types/array_chat_message_content.py,sha256=9aHCzT66f7zTX0oWEL-yvIL8L81joe2Qe5L_DaRDqnU,1050
@@ -175,6 +177,7 @@ vellum/types/paginated_document_index_read_list.py,sha256=3EfSx8BbAm2F1nzpTN78rN
175
177
  vellum/types/paginated_slim_deployment_read_list.py,sha256=MeOByJstYNcBpqfnsmZ7NIOMilo5DerIALc01FNrU0Q,1087
176
178
  vellum/types/paginated_slim_document_list.py,sha256=rfm_k539tWn6jVBjtgUG1M0AqtPvxtwPXwBJLPBiE6Q,1062
177
179
  vellum/types/paginated_slim_workflow_deployment_list.py,sha256=HSnI0CeB7-gJuCkjCvFZVE2Om00OYCTOs4I5Rzaudm8,1103
180
+ vellum/types/paginated_test_suite_run_execution_list.py,sha256=w23SRxnRaMjXN0-XZ9vgm2n3lgBrQV2YKb4VfyU0T_U,1100
178
181
  vellum/types/processing_failure_reason_enum.py,sha256=MDj2vNyO1Y-2WHuolkrGez8F1cZqS6ultfsqvGI4Fg8,752
179
182
  vellum/types/processing_state_enum.py,sha256=rMhw5oLZNfhR4QkIgFfLMWRSLXgHt9qhiguEqWQNz5k,962
180
183
  vellum/types/prompt_deployment_expand_meta_request_request.py,sha256=6pPGEk_dKi1FzHEFESvl7yOpM4fH3imOJ_U_03TTytI,1819
@@ -270,6 +273,35 @@ vellum/types/test_case_number_variable_value.py,sha256=l0Lfkdfqb1R5-pQE18p9GZHlc
270
273
  vellum/types/test_case_search_results_variable_value.py,sha256=TfPtS1XlfD6VW9vAALolBcu-fjwXxvS8OC5F7E1yJtQ,992
271
274
  vellum/types/test_case_string_variable_value.py,sha256=aryF3l_cDmVdm62Feq_XnDqOP7JFBzeSyKZs35ulhls,923
272
275
  vellum/types/test_case_variable_value.py,sha256=Bxd_4a5qFilAaF5ZV04ytX9-bDFlLsYBQN995S8O4ro,2246
276
+ vellum/types/test_suite_run_deployment_release_tag_exec_config.py,sha256=hvaFUk5nIYsr_2yoWAMQG0vYxPjt2xZbF6qBVUVeeSo,1385
277
+ vellum/types/test_suite_run_deployment_release_tag_exec_config_data.py,sha256=wTc7--pIYBjUOl-pio3FUTrPoPLcY_1mJxqc_kP1XbM,1229
278
+ vellum/types/test_suite_run_deployment_release_tag_exec_config_data_request.py,sha256=UDkzcM5hUApjc851sHRBOey1WYYcOUSNB64onz47VC8,1236
279
+ vellum/types/test_suite_run_deployment_release_tag_exec_config_request.py,sha256=dWcMQNoDX7OSPdvMgREuI5TgZkxFW6G5hOOB1LFClYM,1423
280
+ vellum/types/test_suite_run_deployment_release_tag_exec_config_type_enum.py,sha256=u-lS6DIPPJ7ksZeZgNWiljyFPVy8NA0R5n2Ck1H63Z0,196
281
+ vellum/types/test_suite_run_exec_config.py,sha256=mY7nrnLbxOe-K7pV3VNxFSX-HgR0XhKBFGyBhKrO0xo,1024
282
+ vellum/types/test_suite_run_exec_config_request.py,sha256=tfWqi310-fOKSFmQtzBZ9b00Avr_X4ILO05BGx73C4Q,1103
283
+ vellum/types/test_suite_run_execution.py,sha256=ZgorBKALxDold-AbgQy1lJf47NU3p_KXY2cCyOuB4jM,1178
284
+ vellum/types/test_suite_run_execution_chat_history_output.py,sha256=djY6y-4aCq0DhD9sQGcB_gAZUVfvnU2FNTW3Kdf3pV4,1000
285
+ vellum/types/test_suite_run_execution_error_output.py,sha256=_DBLwNKtao4DDOPJ9F6rEXH44Zh7ZUY2j0ueNwEYt_o,981
286
+ vellum/types/test_suite_run_execution_json_output.py,sha256=0qyIe5Jt2UMD2M-5uLRpO9dxcQkBQ8siFykkzWXGAQo,959
287
+ vellum/types/test_suite_run_execution_metric_result.py,sha256=ZwC4bN0p7Xr9Obr9e_fcKt0ZgiMbZqawBSxGTCECaCo,1013
288
+ vellum/types/test_suite_run_execution_number_output.py,sha256=bho9wlLsRWNZgGmXmzds3uWmX90tRDLUI8p3YcJhM5w,938
289
+ vellum/types/test_suite_run_execution_output.py,sha256=lT1Tp3iwEQSl6ILcnLJiFEq4HhTjPB9EhmU2i8oH29Q,2438
290
+ vellum/types/test_suite_run_execution_search_results_output.py,sha256=IEvB9HYaC0zvzMZeRcjQWQ8KgXrPL-q5euTzQdn7-Wo,1005
291
+ vellum/types/test_suite_run_execution_string_output.py,sha256=5fj60Hdk_JhDnWp8KXp2J2PzHfK413D54ylxTaAd8Mg,936
292
+ vellum/types/test_suite_run_metric_error_output.py,sha256=IBVbObTPYyjK3BsqmWshrNQUE-lRQPPSc3JuYyoYTAE,1025
293
+ vellum/types/test_suite_run_metric_error_output_type_enum.py,sha256=-DlDLos2k-5Q1OmS0vhTTRp6M_NsmBX0Pbg_0WgwDbc,166
294
+ vellum/types/test_suite_run_metric_number_output.py,sha256=hJlfm-1mu76DExtqckECzp9lDFQp2HeG-6072TZOKLc,983
295
+ vellum/types/test_suite_run_metric_number_output_type_enum.py,sha256=zB9VivHw413RoTVasLqnpaJCUSVWnWebPZFaO0SV6c4,168
296
+ vellum/types/test_suite_run_metric_output.py,sha256=VmGZCMouisM35_ax6mYs_V8HfP3B6LC_buixZGJLVEc,870
297
+ vellum/types/test_suite_run_read.py,sha256=gK_Tgcjk2axbgji7yHOOtp4sXp_m6mbpQ0aoq_HFuaU,1630
298
+ vellum/types/test_suite_run_state.py,sha256=myD2yLYpEiTUK4AyRZwl3MrXOKYkDA8k4fpqnDnALAY,1111
299
+ vellum/types/test_suite_run_test_suite.py,sha256=j-sEqBzgyjStplO5Ea9l7U8wLdOtfrz4ET3jsd0WU6k,916
300
+ vellum/types/test_suite_run_workflow_release_tag_exec_config.py,sha256=-F2rAgV82atxQVYhbtu2JCnjDk5T9auqUA3FXyNuwmo,1379
301
+ vellum/types/test_suite_run_workflow_release_tag_exec_config_data.py,sha256=HMXaPH3NlIls1BeuCl7nFFLEp0tMQqdb6ImnWSLkHds,1256
302
+ vellum/types/test_suite_run_workflow_release_tag_exec_config_data_request.py,sha256=MmY0IcNruzqG3AtBbPJjJ2tJ9QIR4ovOvHpToVS5TBs,1263
303
+ vellum/types/test_suite_run_workflow_release_tag_exec_config_request.py,sha256=MMgVm1qdvBWwKALjus_bbeTOA_Z2p4035ZhzBgRxmUc,1417
304
+ vellum/types/test_suite_run_workflow_release_tag_exec_config_type_enum.py,sha256=rH868m4qLYFzUf6U2FKedS4Zht2B_DNFyZNk9tsskTY,192
273
305
  vellum/types/test_suite_test_case.py,sha256=X0ofIlD4wL7zgybJFptuUqpCGjIyS916fch5PAmaF3U,1092
274
306
  vellum/types/upload_document_error_response.py,sha256=j2NahdS7jnklF9sGIaw7SbDEa3QhnzsDG3mG6prbGSQ,886
275
307
  vellum/types/upload_document_response.py,sha256=6SY4OqEHIg_EUgOwU2rSdWeNDQULUt2LZv6zN-QCJ7Y,956
@@ -293,15 +325,15 @@ vellum/types/workflow_node_result_data.py,sha256=XQ3gc1M5DM-NUWtoXtoR2mNJ_KuiHfW
293
325
  vellum/types/workflow_node_result_event.py,sha256=4HaS7LzSi0ThPc2xe0k7pjhvvfMB40wajk3zdSEuKJw,1632
294
326
  vellum/types/workflow_node_result_event_state.py,sha256=PwWxuO6cqCPQOoH1woYEahxr3za7yEr2YiS0zuICj4I,1035
295
327
  vellum/types/workflow_output.py,sha256=gmepOAlz9kE4p6wXoJSSpQLb9iURRGQ0JPXxZCiWZtQ,2934
296
- vellum/types/workflow_output_array.py,sha256=djkrZ-u8joFm0d2d0_8gYTjwqES-KizomcehVdbNG9Y,1139
297
- vellum/types/workflow_output_chat_history.py,sha256=--RXF39zD7Ywtk8GQ5zJWY5L6uLIaObZjswrrRTRX2A,1116
298
- vellum/types/workflow_output_error.py,sha256=hZEh0Xi2_MuHhfDsl6jRTAvH7-ptqtpTB_rtv2FzWBY,1091
299
- vellum/types/workflow_output_function_call.py,sha256=wFzWd38erYxy9f-bmVyQbSUNnxsOfAskLmtmYnf32FY,1108
300
- vellum/types/workflow_output_image.py,sha256=xxJhMJLwL9ZeBIqBpwxQyWEkJ5i8ZqiHQmC-4SwbAsw,1091
301
- vellum/types/workflow_output_json.py,sha256=3jqhAl2siI2UIWlNa_08Vd0joioJQ5JxikLRbfN_ARU,1067
302
- vellum/types/workflow_output_number.py,sha256=8zoGZLnmF1dmO48puGxJWw7T0XQp3EFHj8c5GWj4TXo,1048
303
- vellum/types/workflow_output_search_results.py,sha256=6F1iLjcNWbw50PrKnci-JygXYGPlTkGwhU6qqMKZGCs,1123
304
- vellum/types/workflow_output_string.py,sha256=WzualuRO4-P9Byg2YbX7icXNRkOirVNbJQ-VHY6M62w,1046
328
+ vellum/types/workflow_output_array.py,sha256=IprVj2vDJIQ15lazoOltBuruTiNHouFv9YK4ajQ6FDk,1156
329
+ vellum/types/workflow_output_chat_history.py,sha256=dDu93M5GbV9zQzL48OIVu9wibvE9hI_x35LBfZwJlfI,1133
330
+ vellum/types/workflow_output_error.py,sha256=zfHGIEINLqHrrpu4WvGGELM1zI_DyBYnNeBbujwWfvY,1108
331
+ vellum/types/workflow_output_function_call.py,sha256=zE5FvS6QP8_QNsoJvRe7NiOI0lDfsf2VLa9xNA313Ds,1125
332
+ vellum/types/workflow_output_image.py,sha256=y9BijjNRGmM98qwX6RABWhxfSINj5NXn2RdAvW2bY-8,1108
333
+ vellum/types/workflow_output_json.py,sha256=aPIbS1LkMIjwfavVOrTehlMMkcCbgnFv53zA17HNYHo,1084
334
+ vellum/types/workflow_output_number.py,sha256=RHEB--g0bYB7Mz_jR6DiQWaLQ9ky9AruXcDxafMxukE,1065
335
+ vellum/types/workflow_output_search_results.py,sha256=b9AUNO__088js9HBdrd7Sn02lQ-4XGQzvQYgGHKfa6g,1140
336
+ vellum/types/workflow_output_string.py,sha256=xa0DvWIyIh_5JBg1wzc54NjGxx0Bx7eEv8zOTcYP84g,1063
305
337
  vellum/types/workflow_request_chat_history_input_request.py,sha256=uN7LFgwBjoJSvUd2rID9fJriToK8JXFRk93D5wpQPnI,1146
306
338
  vellum/types/workflow_request_input_request.py,sha256=ZYmEH0-gRMGcMSSKDD2aBtfDjwMU_m4hmt17NPZ7uQA,1666
307
339
  vellum/types/workflow_request_json_input_request.py,sha256=cP-FDnuNjabM2gDm7XR8uWE_9ubIHwwN_a_FHDO1fZc,1075
@@ -318,7 +350,7 @@ vellum/types/workflow_result_event_output_data_number.py,sha256=5IG_4XZhUZjwCfX1
318
350
  vellum/types/workflow_result_event_output_data_search_results.py,sha256=FZeTLuHIBJp0AZUqBOzzMN4ntf_Q3hKP4m3vIzVq2cQ,1404
319
351
  vellum/types/workflow_result_event_output_data_string.py,sha256=XJ7ZFTS2eqIMwa-zXFPDowu3o3JnRUfxC1MJIk8nPDI,1478
320
352
  vellum/types/workflow_stream_event.py,sha256=OQUSzwoM-OCfWxNzeOVVLsjCue_WWqin3tGMtwvp_rc,873
321
- vellum_ai-0.3.12.dist-info/LICENSE,sha256=CcaljEIoOBaU-wItPH4PmM_mDCGpyuUY0Er1BGu5Ti8,1073
322
- vellum_ai-0.3.12.dist-info/METADATA,sha256=cyR7MfsEHtK3cooJEGMcvwSBr_2dlaYtSZMcIuYh48U,3487
323
- vellum_ai-0.3.12.dist-info/WHEEL,sha256=Zb28QaM1gQi8f4VCBhsUklF61CTlNYfs9YAZn-TOGFk,88
324
- vellum_ai-0.3.12.dist-info/RECORD,,
353
+ vellum_ai-0.3.14.dist-info/LICENSE,sha256=CcaljEIoOBaU-wItPH4PmM_mDCGpyuUY0Er1BGu5Ti8,1073
354
+ vellum_ai-0.3.14.dist-info/METADATA,sha256=NQrJzPvujJMTbeHOgAudSX5HvCp8n3WYjfYHCQwHFU8,3487
355
+ vellum_ai-0.3.14.dist-info/WHEEL,sha256=Zb28QaM1gQi8f4VCBhsUklF61CTlNYfs9YAZn-TOGFk,88
356
+ vellum_ai-0.3.14.dist-info/RECORD,,