vellum-ai 0.13.0__py3-none-any.whl → 0.13.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (53) hide show
  1. vellum/client/core/client_wrapper.py +1 -1
  2. vellum/client/core/pydantic_utilities.py +5 -0
  3. vellum/client/resources/workflows/client.py +8 -0
  4. vellum/client/types/logical_operator.py +2 -0
  5. vellum/workflows/descriptors/base.py +1 -1
  6. vellum/workflows/descriptors/tests/test_utils.py +3 -0
  7. vellum/workflows/expressions/accessor.py +8 -2
  8. vellum/workflows/nodes/core/map_node/node.py +49 -24
  9. vellum/workflows/nodes/core/map_node/tests/test_node.py +4 -4
  10. vellum/workflows/nodes/displayable/bases/base_prompt_node/node.py +1 -1
  11. vellum/workflows/nodes/displayable/bases/inline_prompt_node/node.py +5 -3
  12. vellum/workflows/nodes/displayable/bases/prompt_deployment_node.py +3 -0
  13. vellum/workflows/nodes/displayable/bases/search_node.py +37 -2
  14. vellum/workflows/nodes/displayable/bases/tests/__init__.py +0 -0
  15. vellum/workflows/nodes/displayable/bases/tests/test_utils.py +61 -0
  16. vellum/workflows/nodes/displayable/bases/types.py +42 -0
  17. vellum/workflows/nodes/displayable/bases/utils.py +112 -0
  18. vellum/workflows/nodes/displayable/inline_prompt_node/tests/test_node.py +0 -1
  19. vellum/workflows/nodes/displayable/search_node/tests/__init__.py +0 -0
  20. vellum/workflows/nodes/displayable/search_node/tests/test_node.py +164 -0
  21. vellum/workflows/nodes/displayable/tests/test_inline_text_prompt_node.py +2 -3
  22. vellum/workflows/nodes/displayable/tests/test_text_prompt_deployment_node.py +0 -1
  23. vellum/workflows/runner/runner.py +37 -4
  24. vellum/workflows/types/tests/test_utils.py +5 -2
  25. vellum/workflows/types/utils.py +4 -0
  26. vellum/workflows/workflows/base.py +14 -0
  27. {vellum_ai-0.13.0.dist-info → vellum_ai-0.13.2.dist-info}/METADATA +1 -1
  28. {vellum_ai-0.13.0.dist-info → vellum_ai-0.13.2.dist-info}/RECORD +53 -42
  29. vellum_cli/__init__.py +24 -0
  30. vellum_cli/ping.py +28 -0
  31. vellum_cli/push.py +62 -12
  32. vellum_cli/tests/test_ping.py +47 -0
  33. vellum_cli/tests/test_push.py +76 -0
  34. vellum_ee/workflows/display/nodes/vellum/base_node.py +59 -11
  35. vellum_ee/workflows/display/nodes/vellum/inline_prompt_node.py +3 -0
  36. vellum_ee/workflows/display/nodes/vellum/map_node.py +1 -1
  37. vellum_ee/workflows/display/nodes/vellum/prompt_deployment_node.py +14 -10
  38. vellum_ee/workflows/display/nodes/vellum/tests/test_utils.py +2 -2
  39. vellum_ee/workflows/display/nodes/vellum/utils.py +8 -1
  40. vellum_ee/workflows/display/tests/test_vellum_workflow_display.py +48 -0
  41. vellum_ee/workflows/display/tests/workflow_serialization/generic_nodes/test_adornments_serialization.py +67 -0
  42. vellum_ee/workflows/display/tests/workflow_serialization/generic_nodes/test_attributes_serialization.py +286 -0
  43. vellum_ee/workflows/display/tests/workflow_serialization/generic_nodes/test_outputs_serialization.py +177 -0
  44. vellum_ee/workflows/display/tests/workflow_serialization/generic_nodes/test_ports_serialization.py +666 -14
  45. vellum_ee/workflows/display/tests/workflow_serialization/generic_nodes/test_trigger_serialization.py +7 -8
  46. vellum_ee/workflows/display/tests/workflow_serialization/test_basic_inline_subworkflow_serialization.py +35 -2
  47. vellum_ee/workflows/display/tests/workflow_serialization/test_basic_map_node_serialization.py +29 -2
  48. vellum_ee/workflows/display/utils/vellum.py +4 -42
  49. vellum_ee/workflows/display/vellum.py +7 -36
  50. vellum_ee/workflows/display/workflows/vellum_workflow_display.py +5 -2
  51. {vellum_ai-0.13.0.dist-info → vellum_ai-0.13.2.dist-info}/LICENSE +0 -0
  52. {vellum_ai-0.13.0.dist-info → vellum_ai-0.13.2.dist-info}/WHEEL +0 -0
  53. {vellum_ai-0.13.0.dist-info → vellum_ai-0.13.2.dist-info}/entry_points.txt +0 -0
@@ -0,0 +1,112 @@
1
+ import enum
2
+ import json
3
+ from typing import Any, List, Union, cast
4
+
5
+ from vellum.client.types.array_vellum_value import ArrayVellumValue
6
+ from vellum.client.types.array_vellum_value_request import ArrayVellumValueRequest
7
+ from vellum.client.types.audio_vellum_value import AudioVellumValue
8
+ from vellum.client.types.audio_vellum_value_request import AudioVellumValueRequest
9
+ from vellum.client.types.chat_history_vellum_value import ChatHistoryVellumValue
10
+ from vellum.client.types.chat_history_vellum_value_request import ChatHistoryVellumValueRequest
11
+ from vellum.client.types.chat_message import ChatMessage
12
+ from vellum.client.types.error_vellum_value import ErrorVellumValue
13
+ from vellum.client.types.error_vellum_value_request import ErrorVellumValueRequest
14
+ from vellum.client.types.function_call_vellum_value import FunctionCallVellumValue
15
+ from vellum.client.types.function_call_vellum_value_request import FunctionCallVellumValueRequest
16
+ from vellum.client.types.image_vellum_value import ImageVellumValue
17
+ from vellum.client.types.image_vellum_value_request import ImageVellumValueRequest
18
+ from vellum.client.types.json_vellum_value import JsonVellumValue
19
+ from vellum.client.types.json_vellum_value_request import JsonVellumValueRequest
20
+ from vellum.client.types.number_vellum_value import NumberVellumValue
21
+ from vellum.client.types.number_vellum_value_request import NumberVellumValueRequest
22
+ from vellum.client.types.search_result import SearchResult
23
+ from vellum.client.types.search_result_request import SearchResultRequest
24
+ from vellum.client.types.search_results_vellum_value import SearchResultsVellumValue
25
+ from vellum.client.types.search_results_vellum_value_request import SearchResultsVellumValueRequest
26
+ from vellum.client.types.string_vellum_value import StringVellumValue
27
+ from vellum.client.types.string_vellum_value_request import StringVellumValueRequest
28
+ from vellum.client.types.vellum_value import VellumValue
29
+ from vellum.client.types.vellum_value_request import VellumValueRequest
30
+
31
+ VELLUM_VALUE_REQUEST_TUPLE = (
32
+ StringVellumValueRequest,
33
+ NumberVellumValueRequest,
34
+ JsonVellumValueRequest,
35
+ ImageVellumValueRequest,
36
+ AudioVellumValueRequest,
37
+ FunctionCallVellumValueRequest,
38
+ ErrorVellumValueRequest,
39
+ ArrayVellumValueRequest,
40
+ ChatHistoryVellumValueRequest,
41
+ SearchResultsVellumValueRequest,
42
+ )
43
+
44
+
45
+ def primitive_to_vellum_value(value: Any) -> VellumValue:
46
+ """Converts a python primitive to a VellumValue"""
47
+
48
+ if isinstance(value, str):
49
+ return StringVellumValue(value=value)
50
+ elif isinstance(value, enum.Enum):
51
+ return StringVellumValue(value=value.value)
52
+ elif isinstance(value, (int, float)):
53
+ return NumberVellumValue(value=value)
54
+ elif isinstance(value, list) and (
55
+ all(isinstance(message, ChatMessage) for message in value)
56
+ or all(isinstance(message, ChatMessage) for message in value)
57
+ ):
58
+ chat_messages = cast(Union[List[ChatMessage], List[ChatMessage]], value)
59
+ return ChatHistoryVellumValue(value=chat_messages)
60
+ elif isinstance(value, list) and (
61
+ all(isinstance(search_result, SearchResultRequest) for search_result in value)
62
+ or all(isinstance(search_result, SearchResult) for search_result in value)
63
+ ):
64
+ search_results = cast(Union[List[SearchResultRequest], List[SearchResult]], value)
65
+ return SearchResultsVellumValue(value=search_results)
66
+ elif isinstance(
67
+ value,
68
+ (
69
+ StringVellumValue,
70
+ NumberVellumValue,
71
+ JsonVellumValue,
72
+ ImageVellumValue,
73
+ AudioVellumValue,
74
+ FunctionCallVellumValue,
75
+ ErrorVellumValue,
76
+ ArrayVellumValue,
77
+ ChatHistoryVellumValue,
78
+ SearchResultsVellumValue,
79
+ ),
80
+ ):
81
+ return value
82
+ elif isinstance(
83
+ value,
84
+ VELLUM_VALUE_REQUEST_TUPLE,
85
+ ):
86
+ # This type ignore is safe because consumers of this function won't care the difference between
87
+ # XVellumValue and XVellumValueRequest. Hopefully in the near future, neither will we
88
+ return value # type: ignore
89
+
90
+ try:
91
+ json_value = json.dumps(value)
92
+ except json.JSONDecodeError:
93
+ raise ValueError(f"Unsupported variable type: {value.__class__.__name__}")
94
+
95
+ return JsonVellumValue(value=json.loads(json_value))
96
+
97
+
98
+ def primitive_to_vellum_value_request(value: Any) -> VellumValueRequest:
99
+ vellum_value = primitive_to_vellum_value(value)
100
+ vellum_value_request_class = next(
101
+ (
102
+ vellum_value_request_class
103
+ for vellum_value_request_class in VELLUM_VALUE_REQUEST_TUPLE
104
+ if vellum_value_request_class.__name__.startswith(vellum_value.__class__.__name__)
105
+ ),
106
+ None,
107
+ )
108
+
109
+ if vellum_value_request_class is None:
110
+ raise ValueError(f"Unsupported variable type: {vellum_value.__class__.__name__}")
111
+
112
+ return vellum_value_request_class.model_validate(vellum_value.model_dump())
@@ -76,7 +76,6 @@ def test_inline_prompt_node__function_definitions(vellum_adhoc_prompt_client):
76
76
  class MyNode(InlinePromptNode):
77
77
  ml_model = "gpt-4o"
78
78
  functions = [my_function]
79
- prompt_inputs = {}
80
79
  blocks = []
81
80
 
82
81
  # AND a known response from invoking an inline prompt
@@ -0,0 +1,164 @@
1
+ from vellum import SearchResponse, SearchResult, SearchResultDocument
2
+ from vellum.client.types.search_filters_request import SearchFiltersRequest
3
+ from vellum.client.types.search_request_options_request import SearchRequestOptionsRequest
4
+ from vellum.client.types.search_result_merging_request import SearchResultMergingRequest
5
+ from vellum.client.types.search_weights_request import SearchWeightsRequest
6
+ from vellum.client.types.string_vellum_value_request import StringVellumValueRequest
7
+ from vellum.client.types.vellum_value_logical_condition_group_request import VellumValueLogicalConditionGroupRequest
8
+ from vellum.client.types.vellum_value_logical_condition_request import VellumValueLogicalConditionRequest
9
+ from vellum.workflows.nodes.displayable.bases.types import (
10
+ MetadataLogicalCondition,
11
+ MetadataLogicalConditionGroup,
12
+ SearchFilters,
13
+ )
14
+ from vellum.workflows.nodes.displayable.search_node.node import SearchNode
15
+
16
+
17
+ def test_run_workflow__happy_path(vellum_client):
18
+ """Confirm that we can successfully invoke a Workflow with the new option attributes"""
19
+
20
+ # GIVEN a workflow that's set up run a Search Node
21
+ class MySearchNode(SearchNode):
22
+ query = "Search query"
23
+ document_index = "document_index"
24
+ limit = 1
25
+ weights = SearchWeightsRequest(
26
+ semantic_similarity=0.8,
27
+ keywords=0.2,
28
+ )
29
+ result_merging = SearchResultMergingRequest(
30
+ enabled=True,
31
+ )
32
+ filters = SearchFilters(
33
+ external_ids=["external_id"],
34
+ metadata=MetadataLogicalConditionGroup(
35
+ combinator="AND",
36
+ negated=False,
37
+ conditions=[
38
+ MetadataLogicalCondition(
39
+ lhs_variable="TYPE",
40
+ operator="=",
41
+ rhs_variable="COMPANY",
42
+ )
43
+ ],
44
+ ),
45
+ )
46
+
47
+ # AND a Search request that will return a 200 ok resposne
48
+ search_response = SearchResponse(
49
+ results=[
50
+ SearchResult(
51
+ text="Search query", score="0.0", keywords=["keywords"], document=SearchResultDocument(label="label")
52
+ )
53
+ ]
54
+ )
55
+
56
+ vellum_client.search.return_value = search_response
57
+
58
+ # WHEN we run the workflow
59
+ outputs = MySearchNode().run()
60
+
61
+ # THEN the workflow should have completed successfully
62
+ assert outputs.text == "Search query"
63
+
64
+ # AND the options should be as expected
65
+ assert vellum_client.search.call_args.kwargs["options"] == SearchRequestOptionsRequest(
66
+ limit=1,
67
+ weights=SearchWeightsRequest(
68
+ semantic_similarity=0.8,
69
+ keywords=0.2,
70
+ ),
71
+ result_merging=SearchResultMergingRequest(
72
+ enabled=True,
73
+ ),
74
+ filters=SearchFiltersRequest(
75
+ external_ids=["external_id"],
76
+ metadata=VellumValueLogicalConditionGroupRequest(
77
+ combinator="AND",
78
+ negated=False,
79
+ conditions=[
80
+ VellumValueLogicalConditionRequest(
81
+ lhs_variable=StringVellumValueRequest(value="TYPE"),
82
+ operator="=",
83
+ rhs_variable=StringVellumValueRequest(value="COMPANY"),
84
+ )
85
+ ],
86
+ ),
87
+ ),
88
+ )
89
+
90
+
91
+ def test_run_workflow__happy_path__options_attribute(vellum_client):
92
+ """Confirm that we can successfully invoke a single Search node with the legacy options attribute"""
93
+
94
+ # GIVEN a workflow that's set up run a Search Node
95
+ class MySearchNode(SearchNode):
96
+ query = "Search query"
97
+ document_index = "document_index"
98
+ options = SearchRequestOptionsRequest(
99
+ limit=1,
100
+ weights=SearchWeightsRequest(
101
+ semantic_similarity=0.8,
102
+ keywords=0.2,
103
+ ),
104
+ result_merging=SearchResultMergingRequest(
105
+ enabled=True,
106
+ ),
107
+ filters=SearchFiltersRequest(
108
+ external_ids=["external_id"],
109
+ metadata=VellumValueLogicalConditionGroupRequest(
110
+ combinator="AND",
111
+ negated=False,
112
+ conditions=[
113
+ VellumValueLogicalConditionRequest(
114
+ lhs_variable=StringVellumValueRequest(value="TYPE"),
115
+ operator="=",
116
+ rhs_variable=StringVellumValueRequest(value="COMPANY"),
117
+ )
118
+ ],
119
+ ),
120
+ ),
121
+ )
122
+
123
+ # AND a Search request that will return a 200 ok resposne
124
+ search_response = SearchResponse(
125
+ results=[
126
+ SearchResult(
127
+ text="Search query", score="0.0", keywords=["keywords"], document=SearchResultDocument(label="label")
128
+ )
129
+ ]
130
+ )
131
+
132
+ vellum_client.search.return_value = search_response
133
+
134
+ # WHEN we run the workflow
135
+ outputs = MySearchNode().run()
136
+
137
+ # THEN the workflow should have completed successfully
138
+ assert outputs.text == "Search query"
139
+
140
+ # AND the options should be as expected
141
+ assert vellum_client.search.call_args.kwargs["options"] == SearchRequestOptionsRequest(
142
+ limit=1,
143
+ weights=SearchWeightsRequest(
144
+ semantic_similarity=0.8,
145
+ keywords=0.2,
146
+ ),
147
+ result_merging=SearchResultMergingRequest(
148
+ enabled=True,
149
+ ),
150
+ filters=SearchFiltersRequest(
151
+ external_ids=["external_id"],
152
+ metadata=VellumValueLogicalConditionGroupRequest(
153
+ combinator="AND",
154
+ negated=False,
155
+ conditions=[
156
+ VellumValueLogicalConditionRequest(
157
+ lhs_variable=StringVellumValueRequest(value="TYPE"),
158
+ operator="=",
159
+ rhs_variable=StringVellumValueRequest(value="COMPANY"),
160
+ )
161
+ ],
162
+ ),
163
+ ),
164
+ )
@@ -1,3 +1,4 @@
1
+ from unittest import mock
1
2
  from uuid import uuid4
2
3
  from typing import Any, Iterator, List
3
4
 
@@ -33,7 +34,6 @@ def test_inline_text_prompt_node__basic(vellum_adhoc_prompt_client):
33
34
 
34
35
  class MyInlinePromptNode(InlinePromptNode):
35
36
  ml_model = "gpt-4o"
36
- prompt_inputs = {}
37
37
  blocks = []
38
38
 
39
39
  # AND a known response from invoking an inline prompt
@@ -90,7 +90,7 @@ def test_inline_text_prompt_node__basic(vellum_adhoc_prompt_client):
90
90
  logit_bias=None,
91
91
  custom_parameters=None,
92
92
  ),
93
- request_options=None,
93
+ request_options=mock.ANY,
94
94
  )
95
95
 
96
96
 
@@ -107,7 +107,6 @@ def test_inline_text_prompt_node__catch_provider_error(vellum_adhoc_prompt_clien
107
107
  @TryNode.wrap(on_error_code=WorkflowErrorCode.PROVIDER_ERROR)
108
108
  class MyInlinePromptNode(InlinePromptNode):
109
109
  ml_model = "gpt-4o"
110
- prompt_inputs = {}
111
110
  blocks = []
112
111
 
113
112
  # AND a known response from invoking an inline prompt that fails
@@ -27,7 +27,6 @@ def test_text_prompt_deployment_node__basic(vellum_client):
27
27
 
28
28
  class MyPromptDeploymentNode(PromptDeploymentNode):
29
29
  deployment = "my-deployment"
30
- prompt_inputs = {}
31
30
 
32
31
  # AND a known response from invoking a deployed prompt
33
32
  expected_outputs: List[PromptOutput] = [
@@ -4,7 +4,21 @@ import logging
4
4
  from queue import Empty, Queue
5
5
  from threading import Event as ThreadingEvent, Thread
6
6
  from uuid import UUID
7
- from typing import TYPE_CHECKING, Any, Dict, Generic, Iterable, Iterator, List, Optional, Sequence, Set, Type, Union
7
+ from typing import (
8
+ TYPE_CHECKING,
9
+ Any,
10
+ Dict,
11
+ Generic,
12
+ Iterable,
13
+ Iterator,
14
+ List,
15
+ Optional,
16
+ Sequence,
17
+ Set,
18
+ Tuple,
19
+ Type,
20
+ Union,
21
+ )
8
22
 
9
23
  from vellum.workflows.constants import UNDEF
10
24
  from vellum.workflows.context import execution_context, get_parent_context
@@ -76,6 +90,7 @@ class WorkflowRunner(Generic[StateType]):
76
90
  cancel_signal: Optional[ThreadingEvent] = None,
77
91
  node_output_mocks: Optional[List[BaseOutputs]] = None,
78
92
  parent_context: Optional[ParentContext] = None,
93
+ max_concurrency: Optional[int] = None,
79
94
  ):
80
95
  if state and external_inputs:
81
96
  raise ValueError("Can only run a Workflow providing one of state or external inputs, not both")
@@ -120,6 +135,9 @@ class WorkflowRunner(Generic[StateType]):
120
135
  # This queue is responsible for sending events from the inner worker threads to WorkflowRunner
121
136
  self._workflow_event_inner_queue: Queue[WorkflowEvent] = Queue()
122
137
 
138
+ self._max_concurrency = max_concurrency
139
+ self._concurrency_queue: Queue[Tuple[StateType, Type[BaseNode], Optional[Edge]]] = Queue()
140
+
123
141
  # This queue is responsible for sending events from WorkflowRunner to the background thread
124
142
  # for user defined emitters
125
143
  self._background_thread_queue: Queue[BackgroundThreadItem] = Queue()
@@ -350,7 +368,19 @@ class WorkflowRunner(Generic[StateType]):
350
368
  else:
351
369
  next_state = state
352
370
 
353
- self._run_node_if_ready(next_state, edge.to_node, edge)
371
+ if self._max_concurrency:
372
+ self._concurrency_queue.put((next_state, edge.to_node, edge))
373
+ else:
374
+ self._run_node_if_ready(next_state, edge.to_node, edge)
375
+
376
+ if self._max_concurrency:
377
+ num_nodes_to_run = self._max_concurrency - len(self._active_nodes_by_execution_id)
378
+ for _ in range(num_nodes_to_run):
379
+ if self._concurrency_queue.empty():
380
+ break
381
+
382
+ next_state, node_class, invoked_edge = self._concurrency_queue.get()
383
+ self._run_node_if_ready(next_state, node_class, invoked_edge)
354
384
 
355
385
  def _run_node_if_ready(
356
386
  self,
@@ -513,8 +543,11 @@ class WorkflowRunner(Generic[StateType]):
513
543
  )
514
544
  for node_cls in self._entrypoints:
515
545
  try:
516
- with execution_context(parent_context=current_parent):
517
- self._run_node_if_ready(self._initial_state, node_cls)
546
+ if not self._max_concurrency or len(self._active_nodes_by_execution_id) < self._max_concurrency:
547
+ with execution_context(parent_context=current_parent):
548
+ self._run_node_if_ready(self._initial_state, node_cls)
549
+ else:
550
+ self._concurrency_queue.put((self._initial_state, node_cls, None))
518
551
  except NodeException as e:
519
552
  self._workflow_event_outer_queue.put(self._reject_workflow_event(e.error))
520
553
  return
@@ -21,6 +21,7 @@ class ExampleClass:
21
21
  zeta: ClassVar[str]
22
22
  eta: List[str]
23
23
  kappa: Any
24
+ mu: list[str]
24
25
 
25
26
 
26
27
  T = TypeVar("T")
@@ -56,6 +57,7 @@ class ExampleNode(BaseNode):
56
57
  (ExampleInheritedClass, "beta", (int,)),
57
58
  (ExampleNode.Outputs, "iota", (str,)),
58
59
  (ExampleClass, "kappa", (Any,)),
60
+ (ExampleClass, "mu", (list[str],)),
59
61
  ],
60
62
  ids=[
61
63
  "str",
@@ -71,6 +73,7 @@ class ExampleNode(BaseNode):
71
73
  "inherited_parent_class_var",
72
74
  "try_node_output",
73
75
  "any",
76
+ "list_str_generic",
74
77
  ],
75
78
  )
76
79
  def test_infer_types(cls, attr_name, expected_type):
@@ -80,9 +83,9 @@ def test_infer_types(cls, attr_name, expected_type):
80
83
  @pytest.mark.parametrize(
81
84
  "cls, expected_attr_names",
82
85
  [
83
- (ExampleClass, {"alpha", "beta", "gamma", "epsilon", "zeta", "eta", "kappa"}),
86
+ (ExampleClass, {"alpha", "beta", "gamma", "epsilon", "zeta", "eta", "kappa", "mu"}),
84
87
  (ExampleGenericClass, {"delta"}),
85
- (ExampleInheritedClass, {"alpha", "beta", "gamma", "epsilon", "zeta", "eta", "theta", "kappa"}),
88
+ (ExampleInheritedClass, {"alpha", "beta", "gamma", "epsilon", "zeta", "eta", "theta", "kappa", "mu"}),
86
89
  ],
87
90
  )
88
91
  def test_class_attr_names(cls, expected_attr_names):
@@ -1,6 +1,7 @@
1
1
  from copy import deepcopy
2
2
  from datetime import datetime
3
3
  import importlib
4
+ from types import GenericAlias
4
5
  from typing import (
5
6
  Any,
6
7
  ClassVar,
@@ -77,6 +78,9 @@ def infer_types(object_: Type, attr_name: str, localns: Optional[Dict[str, Any]]
77
78
  return (type_hint,)
78
79
  if isinstance(type_hint, SpecialGenericAlias):
79
80
  return (type_hint,)
81
+ if isinstance(type_hint, GenericAlias):
82
+ # In future versions of python, list[str] will be a `GenericAlias`
83
+ return (cast(Type, type_hint),)
80
84
  if isinstance(type_hint, TypeVar):
81
85
  if type_hint in type_var_mapping:
82
86
  return (type_var_mapping[type_hint],)
@@ -188,6 +188,7 @@ class BaseWorkflow(Generic[WorkflowInputsType, StateType], metaclass=_BaseWorkfl
188
188
  external_inputs: Optional[ExternalInputsArg] = None,
189
189
  cancel_signal: Optional[ThreadingEvent] = None,
190
190
  node_output_mocks: Optional[List[BaseOutputs]] = None,
191
+ max_concurrency: Optional[int] = None,
191
192
  ) -> TerminalWorkflowEvent:
192
193
  """
193
194
  Invoke a Workflow, returning the last event emitted, which should be one of:
@@ -215,6 +216,11 @@ class BaseWorkflow(Generic[WorkflowInputsType, StateType], metaclass=_BaseWorkfl
215
216
 
216
217
  node_output_mocks: Optional[List[Outputs]] = None
217
218
  A list of Outputs to mock for Nodes during Workflow Execution.
219
+
220
+ max_concurrency: Optional[int] = None
221
+ The max number of concurrent threads to run the Workflow with. If not provided, the Workflow will run
222
+ without limiting concurrency. This configuration only applies to the current Workflow and not to any
223
+ subworkflows or nodes that utilizes threads.
218
224
  """
219
225
 
220
226
  events = WorkflowRunner(
@@ -226,6 +232,7 @@ class BaseWorkflow(Generic[WorkflowInputsType, StateType], metaclass=_BaseWorkfl
226
232
  cancel_signal=cancel_signal,
227
233
  node_output_mocks=node_output_mocks,
228
234
  parent_context=self._context.parent_context,
235
+ max_concurrency=max_concurrency,
229
236
  ).stream()
230
237
  first_event: Optional[Union[WorkflowExecutionInitiatedEvent, WorkflowExecutionResumedEvent]] = None
231
238
  last_event = None
@@ -289,6 +296,7 @@ class BaseWorkflow(Generic[WorkflowInputsType, StateType], metaclass=_BaseWorkfl
289
296
  external_inputs: Optional[ExternalInputsArg] = None,
290
297
  cancel_signal: Optional[ThreadingEvent] = None,
291
298
  node_output_mocks: Optional[List[BaseOutputs]] = None,
299
+ max_concurrency: Optional[int] = None,
292
300
  ) -> WorkflowEventStream:
293
301
  """
294
302
  Invoke a Workflow, yielding events as they are emitted.
@@ -317,6 +325,11 @@ class BaseWorkflow(Generic[WorkflowInputsType, StateType], metaclass=_BaseWorkfl
317
325
 
318
326
  node_output_mocks: Optional[List[Outputs]] = None
319
327
  A list of Outputs to mock for Nodes during Workflow Execution.
328
+
329
+ max_concurrency: Optional[int] = None
330
+ The max number of concurrent threads to run the Workflow with. If not provided, the Workflow will run
331
+ without limiting concurrency. This configuration only applies to the current Workflow and not to any
332
+ subworkflows or nodes that utilizes threads.
320
333
  """
321
334
 
322
335
  should_yield = event_filter or workflow_event_filter
@@ -329,6 +342,7 @@ class BaseWorkflow(Generic[WorkflowInputsType, StateType], metaclass=_BaseWorkfl
329
342
  cancel_signal=cancel_signal,
330
343
  node_output_mocks=node_output_mocks,
331
344
  parent_context=self.context.parent_context,
345
+ max_concurrency=max_concurrency,
332
346
  ).stream():
333
347
  if should_yield(self.__class__, event):
334
348
  yield event
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: vellum-ai
3
- Version: 0.13.0
3
+ Version: 0.13.2
4
4
  Summary:
5
5
  License: MIT
6
6
  Requires-Python: >=3.9,<4.0