vellum-ai 0.12.7__py3-none-any.whl → 0.12.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (50) hide show
  1. vellum/client/core/client_wrapper.py +1 -1
  2. vellum/evaluations/resources.py +2 -2
  3. vellum/prompts/__init__.py +0 -0
  4. vellum/prompts/blocks/__init__.py +0 -0
  5. vellum/prompts/blocks/compilation.py +190 -0
  6. vellum/prompts/blocks/exceptions.py +2 -0
  7. vellum/prompts/blocks/tests/__init__.py +0 -0
  8. vellum/prompts/blocks/tests/test_compilation.py +110 -0
  9. vellum/prompts/blocks/types.py +36 -0
  10. vellum/utils/__init__.py +0 -0
  11. vellum/utils/templating/__init__.py +0 -0
  12. vellum/utils/templating/constants.py +28 -0
  13. vellum/{workflows/nodes/core/templating_node → utils/templating}/render.py +1 -1
  14. vellum/workflows/nodes/bases/__init__.py +0 -2
  15. vellum/workflows/nodes/bases/base.py +2 -6
  16. vellum/workflows/nodes/core/inline_subworkflow_node/node.py +13 -7
  17. vellum/workflows/nodes/core/inline_subworkflow_node/tests/__init__.py +0 -0
  18. vellum/workflows/nodes/core/inline_subworkflow_node/tests/test_node.py +41 -0
  19. vellum/workflows/nodes/core/map_node/node.py +1 -1
  20. vellum/workflows/nodes/core/templating_node/node.py +12 -31
  21. vellum/workflows/nodes/core/templating_node/tests/test_templating_node.py +66 -0
  22. vellum/workflows/nodes/core/try_node/node.py +1 -3
  23. vellum/workflows/nodes/core/try_node/tests/test_node.py +1 -1
  24. vellum/workflows/nodes/displayable/bases/api_node/node.py +2 -2
  25. vellum/workflows/nodes/displayable/bases/search_node.py +5 -2
  26. vellum/workflows/nodes/displayable/subworkflow_deployment_node/node.py +4 -2
  27. vellum/workflows/nodes/experimental/README.md +6 -0
  28. vellum/workflows/nodes/experimental/__init__.py +0 -0
  29. vellum/workflows/nodes/experimental/openai_chat_completion_node/__init__.py +5 -0
  30. vellum/workflows/nodes/experimental/openai_chat_completion_node/node.py +260 -0
  31. vellum/workflows/sandbox.py +7 -5
  32. vellum/workflows/state/context.py +5 -4
  33. vellum/workflows/tests/test_sandbox.py +2 -2
  34. vellum/workflows/utils/tests/test_vellum_variables.py +3 -0
  35. vellum/workflows/utils/vellum_variables.py +5 -4
  36. vellum/workflows/workflows/base.py +5 -2
  37. {vellum_ai-0.12.7.dist-info → vellum_ai-0.12.9.dist-info}/METADATA +2 -1
  38. {vellum_ai-0.12.7.dist-info → vellum_ai-0.12.9.dist-info}/RECORD +48 -33
  39. vellum_cli/tests/test_push.py +1 -1
  40. vellum_ee/workflows/display/nodes/vellum/inline_subworkflow_node.py +6 -1
  41. vellum_ee/workflows/display/tests/workflow_serialization/test_basic_templating_node_serialization.py +207 -0
  42. vellum/workflows/nodes/bases/base_subworkflow_node/__init__.py +0 -5
  43. vellum/workflows/nodes/bases/base_subworkflow_node/node.py +0 -10
  44. /vellum/{workflows/nodes/core/templating_node → utils/templating}/custom_filters.py +0 -0
  45. /vellum/{workflows/nodes/core/templating_node → utils/templating}/exceptions.py +0 -0
  46. /vellum/{evaluations/utils → utils}/typing.py +0 -0
  47. /vellum/{evaluations/utils → utils}/uuid.py +0 -0
  48. {vellum_ai-0.12.7.dist-info → vellum_ai-0.12.9.dist-info}/LICENSE +0 -0
  49. {vellum_ai-0.12.7.dist-info → vellum_ai-0.12.9.dist-info}/WHEEL +0 -0
  50. {vellum_ai-0.12.7.dist-info → vellum_ai-0.12.9.dist-info}/entry_points.txt +0 -0
@@ -2,6 +2,8 @@ import json
2
2
 
3
3
  from vellum.workflows.nodes.bases.base import BaseNode
4
4
  from vellum.workflows.nodes.core.templating_node.node import TemplatingNode
5
+ from vellum.workflows.state import BaseState
6
+ from vellum.workflows.types.core import Json
5
7
 
6
8
 
7
9
  def test_templating_node__dict_output():
@@ -22,6 +24,70 @@ def test_templating_node__dict_output():
22
24
  assert json.loads(outputs.result) == {"key": "value"}
23
25
 
24
26
 
27
+ def test_templating_node__int_output():
28
+ # GIVEN a templating node that outputs an integer
29
+ class IntTemplateNode(TemplatingNode[BaseState, int]):
30
+ template = "{{ data }}"
31
+ inputs = {
32
+ "data": 42,
33
+ }
34
+
35
+ # WHEN the node is run
36
+ node = IntTemplateNode()
37
+ outputs = node.run()
38
+
39
+ # THEN the output is the expected integer
40
+ assert outputs.result == 42
41
+
42
+
43
+ def test_templating_node__float_output():
44
+ # GIVEN a templating node that outputs a float
45
+ class FloatTemplateNode(TemplatingNode[BaseState, float]):
46
+ template = "{{ data }}"
47
+ inputs = {
48
+ "data": 42.5,
49
+ }
50
+
51
+ # WHEN the node is run
52
+ node = FloatTemplateNode()
53
+ outputs = node.run()
54
+
55
+ # THEN the output is the expected float
56
+ assert outputs.result == 42.5
57
+
58
+
59
+ def test_templating_node__bool_output():
60
+ # GIVEN a templating node that outputs a bool
61
+ class BoolTemplateNode(TemplatingNode[BaseState, bool]):
62
+ template = "{{ data }}"
63
+ inputs = {
64
+ "data": True,
65
+ }
66
+
67
+ # WHEN the node is run
68
+ node = BoolTemplateNode()
69
+ outputs = node.run()
70
+
71
+ # THEN the output is the expected bool
72
+ assert outputs.result is True
73
+
74
+
75
+ def test_templating_node__json_output():
76
+ # GIVEN a templating node that outputs JSON
77
+ class JSONTemplateNode(TemplatingNode[BaseState, Json]):
78
+ template = "{{ data }}"
79
+ inputs = {
80
+ "data": {"key": "value"},
81
+ }
82
+
83
+ # WHEN the node is run
84
+ node = JSONTemplateNode()
85
+ outputs = node.run()
86
+
87
+ # THEN the output is the expected JSON
88
+ assert outputs.result == {"key": "value"}
89
+
90
+
25
91
  def test_templating_node__execution_count_reference():
26
92
  # GIVEN a random node
27
93
  class OtherNode(BaseNode):
@@ -73,9 +73,7 @@ class TryNode(BaseNode[StateType], Generic[StateType], metaclass=_TryNodeMeta):
73
73
  def run(self) -> Iterator[BaseOutput]:
74
74
  subworkflow = self.subworkflow(
75
75
  parent_state=self.state,
76
- context=WorkflowContext(
77
- _vellum_client=self._context._vellum_client,
78
- ),
76
+ context=WorkflowContext(vellum_client=self._context.vellum_client),
79
77
  )
80
78
  subworkflow_stream = subworkflow.stream(
81
79
  event_filter=all_workflow_event_filter,
@@ -103,7 +103,7 @@ def test_try_node__use_parent_execution_context():
103
103
  # WHEN the node is run with a custom vellum client
104
104
  node = TestNode(
105
105
  context=WorkflowContext(
106
- _vellum_client=Vellum(api_key="test-key"),
106
+ vellum_client=Vellum(api_key="test-key"),
107
107
  )
108
108
  )
109
109
  outputs = list(node.run())
@@ -26,11 +26,11 @@ class BaseAPINode(BaseNode, Generic[StateType]):
26
26
  url: str
27
27
  method: APIRequestMethod
28
28
  data: Optional[str] = None
29
- json: Optional["Json"] = None
29
+ json: Optional[Json] = None
30
30
  headers: Optional[Dict[str, Union[str, VellumSecret]]] = None
31
31
 
32
32
  class Outputs(BaseOutputs):
33
- json: Optional["Json"]
33
+ json: Optional[Json]
34
34
  headers: Dict[str, str]
35
35
  status_code: int
36
36
  text: str
@@ -12,6 +12,7 @@ from vellum import (
12
12
  SearchWeightsRequest,
13
13
  )
14
14
  from vellum.core import ApiError, RequestOptions
15
+ from vellum.utils.uuid import is_valid_uuid
15
16
  from vellum.workflows.errors import WorkflowErrorCode
16
17
  from vellum.workflows.exceptions import NodeException
17
18
  from vellum.workflows.nodes.bases import BaseNode
@@ -73,11 +74,13 @@ class BaseSearchNode(BaseNode[StateType], Generic[StateType]):
73
74
  results: List[SearchResult]
74
75
 
75
76
  def _perform_search(self) -> SearchResponse:
77
+ index_is_uuid = True if isinstance(self.document_index, UUID) else is_valid_uuid(self.document_index)
78
+
76
79
  try:
77
80
  return self._context.vellum_client.search(
78
81
  query=self.query,
79
- index_id=str(self.document_index) if isinstance(self.document_index, UUID) else None,
80
- index_name=self.document_index if isinstance(self.document_index, str) else None,
82
+ index_id=str(self.document_index) if index_is_uuid else None,
83
+ index_name=str(self.document_index) if not index_is_uuid else None,
81
84
  options=self.options,
82
85
  )
83
86
  except NotFoundError:
@@ -17,12 +17,13 @@ from vellum.workflows.context import get_parent_context
17
17
  from vellum.workflows.errors import WorkflowErrorCode
18
18
  from vellum.workflows.errors.types import workflow_event_error_to_workflow_error
19
19
  from vellum.workflows.exceptions import NodeException
20
- from vellum.workflows.nodes.bases.base_subworkflow_node.node import BaseSubworkflowNode
20
+ from vellum.workflows.nodes.bases.base import BaseNode
21
21
  from vellum.workflows.outputs.base import BaseOutput
22
+ from vellum.workflows.types.core import EntityInputsInterface
22
23
  from vellum.workflows.types.generics import StateType
23
24
 
24
25
 
25
- class SubworkflowDeploymentNode(BaseSubworkflowNode[StateType], Generic[StateType]):
26
+ class SubworkflowDeploymentNode(BaseNode[StateType], Generic[StateType]):
26
27
  """
27
28
  Used to execute a Workflow Deployment.
28
29
 
@@ -38,6 +39,7 @@ class SubworkflowDeploymentNode(BaseSubworkflowNode[StateType], Generic[StateTyp
38
39
 
39
40
  # Either the Workflow Deployment's UUID or its name.
40
41
  deployment: ClassVar[Union[UUID, str]]
42
+ subworkflow_inputs: ClassVar[EntityInputsInterface] = {}
41
43
 
42
44
  release_tag: str = LATEST_RELEASE_TAG
43
45
  external_id: Optional[str] = OMIT
@@ -0,0 +1,6 @@
1
+ # 🧪 Experimental
2
+
3
+ This section is a proofing ground for new ideas and concepts. It's not meant to be used in production and is
4
+ subject to breaking changes at any time.
5
+
6
+ If a concept within is sufficiently interesting and validated, then it may be introduced as a first-class node.
File without changes
@@ -0,0 +1,5 @@
1
+ from .node import OpenAIChatCompletionNode
2
+
3
+ __all__ = [
4
+ "OpenAIChatCompletionNode",
5
+ ]
@@ -0,0 +1,260 @@
1
+ import json
2
+ import logging
3
+ import os
4
+ from uuid import uuid4
5
+ from typing import Any, Iterable, Iterator, List, Literal, Union, cast
6
+
7
+ from openai import OpenAI
8
+ from openai.types.chat import (
9
+ ChatCompletionAssistantMessageParam,
10
+ ChatCompletionContentPartImageParam,
11
+ ChatCompletionContentPartInputAudioParam,
12
+ ChatCompletionContentPartParam,
13
+ ChatCompletionContentPartRefusalParam,
14
+ ChatCompletionContentPartTextParam,
15
+ ChatCompletionMessageParam,
16
+ ChatCompletionSystemMessageParam,
17
+ ChatCompletionUserMessageParam,
18
+ )
19
+ from openai.types.chat.chat_completion_chunk import Choice
20
+
21
+ from vellum import (
22
+ AdHocExecutePromptEvent,
23
+ FulfilledAdHocExecutePromptEvent,
24
+ InitiatedAdHocExecutePromptEvent,
25
+ RejectedAdHocExecutePromptEvent,
26
+ StreamingAdHocExecutePromptEvent,
27
+ StringVellumValue,
28
+ VellumAudio,
29
+ VellumError,
30
+ )
31
+ from vellum.prompts.blocks.compilation import compile_prompt_blocks
32
+ from vellum.prompts.blocks.types import CompiledChatMessagePromptBlock
33
+ from vellum.workflows.errors import WorkflowErrorCode
34
+ from vellum.workflows.exceptions import NodeException
35
+ from vellum.workflows.nodes import InlinePromptNode
36
+ from vellum.workflows.types.generics import StateType
37
+
38
+ logger = logging.getLogger(__name__)
39
+
40
+
41
+ class OpenAIChatCompletionNode(InlinePromptNode[StateType]):
42
+ """
43
+ Used to execute a Prompt using the OpenAI API.
44
+ """
45
+
46
+ # Override
47
+ def _get_prompt_event_stream(self) -> Iterator[AdHocExecutePromptEvent]:
48
+ client = self._get_client()
49
+
50
+ execution_id = str(uuid4())
51
+
52
+ yield InitiatedAdHocExecutePromptEvent(
53
+ execution_id=execution_id,
54
+ )
55
+
56
+ try:
57
+ stream = client.chat.completions.create(
58
+ messages=self._get_messages(),
59
+ model=self.ml_model,
60
+ # TODO: Add support for additional parameters
61
+ stream=True,
62
+ )
63
+ except Exception as exc:
64
+ yield RejectedAdHocExecutePromptEvent(
65
+ error=VellumError(
66
+ code=WorkflowErrorCode.PROVIDER_ERROR,
67
+ message=exc.args[0],
68
+ ),
69
+ execution_id=execution_id,
70
+ )
71
+ return
72
+
73
+ combined_delta_content = ""
74
+ for chunk in stream:
75
+ choices: List[Choice] = chunk.choices
76
+ if len(choices) != 1:
77
+ yield RejectedAdHocExecutePromptEvent(
78
+ error=VellumError(
79
+ code=WorkflowErrorCode.PROVIDER_ERROR,
80
+ message="Expected one choice per chunk, but found more than one.",
81
+ ),
82
+ execution_id=execution_id,
83
+ )
84
+ return
85
+
86
+ choice = choices[0]
87
+ delta = choice.delta
88
+
89
+ if delta.tool_calls:
90
+ # TODO: Add support for tool calls
91
+ raise NotImplementedError("This node hasn't been extended to support tool calling yet.")
92
+
93
+ if delta.content:
94
+ combined_delta_content += delta.content
95
+
96
+ StreamingAdHocExecutePromptEvent(
97
+ output=StringVellumValue(value=delta.content),
98
+ # TODO: Add support for multiple outputs
99
+ output_index=1,
100
+ execution_id=execution_id,
101
+ )
102
+
103
+ yield FulfilledAdHocExecutePromptEvent(
104
+ # TODO: Add support for multiple outputs
105
+ outputs=[
106
+ StringVellumValue(value=combined_delta_content),
107
+ ],
108
+ execution_id=execution_id,
109
+ )
110
+
111
+ def _get_client(self) -> OpenAI:
112
+ """Used to retrieve an API client for interacting with the OpenAI API.
113
+
114
+ Note: This method can be overridden if you'd like to use your own API client that conforms to the same
115
+ interfaces as that of OpenAI.
116
+ """
117
+
118
+ openai_api_key = os.environ.get("OPENAI_API_KEY")
119
+
120
+ if not openai_api_key:
121
+ raise NodeException(
122
+ code=WorkflowErrorCode.INTERNAL_ERROR,
123
+ message="Unable to determine an OpenAI API key.",
124
+ )
125
+
126
+ client = OpenAI(api_key=openai_api_key)
127
+ return client
128
+
129
+ def _get_messages(self) -> Iterable[ChatCompletionMessageParam]:
130
+ input_variables, input_values = self._compile_prompt_inputs()
131
+
132
+ compiled_blocks = compile_prompt_blocks(
133
+ blocks=self.blocks, inputs=input_values, input_variables=input_variables
134
+ )
135
+
136
+ chat_message_blocks: list[CompiledChatMessagePromptBlock] = [
137
+ block for block in compiled_blocks if block.block_type == "CHAT_MESSAGE"
138
+ ]
139
+ messages = [self._create_message(block) for block in chat_message_blocks]
140
+
141
+ return messages
142
+
143
+ @classmethod
144
+ def _create_message(cls, chat_message_block: CompiledChatMessagePromptBlock) -> ChatCompletionMessageParam:
145
+ name = chat_message_block.source
146
+ content = cls._create_message_content(chat_message_block)
147
+
148
+ if chat_message_block.role == "SYSTEM":
149
+ relevant_system_content = [
150
+ cast(ChatCompletionContentPartTextParam, c) for c in content if c["type"] == "text"
151
+ ]
152
+ system_message: ChatCompletionSystemMessageParam = {
153
+ "content": relevant_system_content,
154
+ "role": "system",
155
+ }
156
+ if name:
157
+ system_message["name"] = name
158
+
159
+ return system_message
160
+ elif chat_message_block.role == "USER":
161
+ user_message: ChatCompletionUserMessageParam = {
162
+ "content": content,
163
+ "role": "user",
164
+ }
165
+ if name:
166
+ user_message["name"] = name
167
+
168
+ return user_message
169
+ elif chat_message_block.role == "ASSISTANT":
170
+ relevant_assistant_content = [
171
+ cast(Union[ChatCompletionContentPartTextParam, ChatCompletionContentPartRefusalParam], c)
172
+ for c in content
173
+ if c["type"] in ["text", "refusal"]
174
+ ]
175
+ assistant_message: ChatCompletionAssistantMessageParam = {
176
+ "content": relevant_assistant_content,
177
+ "role": "assistant",
178
+ }
179
+ if name:
180
+ assistant_message["name"] = name
181
+
182
+ return assistant_message
183
+ else:
184
+ logger.error(f"Unexpected role: {chat_message_block.role}")
185
+ raise NodeException(
186
+ code=WorkflowErrorCode.INTERNAL_ERROR, message="Unexpected role found when compiling prompt blocks"
187
+ )
188
+
189
+ @classmethod
190
+ def _create_message_content(
191
+ cls,
192
+ chat_message_block: CompiledChatMessagePromptBlock,
193
+ ) -> List[ChatCompletionContentPartParam]:
194
+ content: List[ChatCompletionContentPartParam] = []
195
+ for block in chat_message_block.blocks:
196
+ if block.content.type == "STRING":
197
+ string_value = cast(str, block.content.value)
198
+ string_content_item: ChatCompletionContentPartTextParam = {"type": "text", "text": string_value}
199
+ content.append(string_content_item)
200
+ elif block.content.type == "JSON":
201
+ json_value = cast(Any, block.content.value)
202
+ json_content_item: ChatCompletionContentPartTextParam = {"type": "text", "text": json.dumps(json_value)}
203
+ content.append(json_content_item)
204
+ elif block.content.type == "IMAGE":
205
+ image_value = cast(VellumAudio, block.content.value)
206
+ image_content_item: ChatCompletionContentPartImageParam = {
207
+ "type": "image_url",
208
+ "image_url": {"url": image_value.src},
209
+ }
210
+ if image_value.metadata and image_value.metadata.get("detail"):
211
+ detail = image_value.metadata["detail"]
212
+
213
+ if detail not in ["auto", "low", "high"]:
214
+ raise NodeException(
215
+ code=WorkflowErrorCode.INTERNAL_ERROR,
216
+ message="Image detail must be one of 'auto', 'low', or 'high.",
217
+ )
218
+
219
+ image_content_item["image_url"]["detail"] = cast(Literal["auto", "low", "high"], detail)
220
+
221
+ content.append(image_content_item)
222
+ elif block.content.type == "AUDIO":
223
+ audio_value = cast(VellumAudio, block.content.value)
224
+ audio_value_src_parts = audio_value.src.split(",")
225
+ if len(audio_value_src_parts) != 2:
226
+ raise NodeException(
227
+ code=WorkflowErrorCode.INTERNAL_ERROR, message="Audio data is not properly encoded."
228
+ )
229
+ _, cleaned_audio_value = audio_value_src_parts
230
+ if not audio_value.metadata:
231
+ raise NodeException(
232
+ code=WorkflowErrorCode.INTERNAL_ERROR, message="Audio metadata is required for audio input."
233
+ )
234
+ audio_format = audio_value.metadata.get("format")
235
+ if not audio_format:
236
+ raise NodeException(
237
+ code=WorkflowErrorCode.INTERNAL_ERROR, message="Audio format is required for audio input."
238
+ )
239
+ if audio_format not in {"wav", "mp3"}:
240
+ raise NodeException(
241
+ code=WorkflowErrorCode.INTERNAL_ERROR,
242
+ message="Audio format must be one of 'wav' or 'mp3'.",
243
+ )
244
+
245
+ audio_content_item: ChatCompletionContentPartInputAudioParam = {
246
+ "type": "input_audio",
247
+ "input_audio": {
248
+ "data": cleaned_audio_value,
249
+ "format": cast(Literal["wav", "mp3"], audio_format),
250
+ },
251
+ }
252
+
253
+ content.append(audio_content_item)
254
+ else:
255
+ raise NodeException(
256
+ code=WorkflowErrorCode.INTERNAL_ERROR,
257
+ message=f"Failed to parse chat message block {block.content.type}",
258
+ )
259
+
260
+ return content
@@ -1,4 +1,4 @@
1
- from typing import Generic, Sequence, Type
1
+ from typing import Generic, Sequence
2
2
 
3
3
  import dotenv
4
4
 
@@ -9,8 +9,8 @@ from vellum.workflows.types.generics import WorkflowType
9
9
  from vellum.workflows.workflows.event_filters import root_workflow_event_filter
10
10
 
11
11
 
12
- class SandboxRunner(Generic[WorkflowType]):
13
- def __init__(self, workflow: Type[WorkflowType], inputs: Sequence[BaseInputs]):
12
+ class WorkflowSandboxRunner(Generic[WorkflowType]):
13
+ def __init__(self, workflow: WorkflowType, inputs: Sequence[BaseInputs]):
14
14
  if not inputs:
15
15
  raise ValueError("Inputs are required to have at least one defined inputs")
16
16
 
@@ -30,8 +30,7 @@ class SandboxRunner(Generic[WorkflowType]):
30
30
 
31
31
  selected_inputs = self._inputs[index]
32
32
 
33
- workflow = self._workflow()
34
- events = workflow.stream(
33
+ events = self._workflow.stream(
35
34
  inputs=selected_inputs,
36
35
  event_filter=root_workflow_event_filter,
37
36
  )
@@ -49,3 +48,6 @@ class SandboxRunner(Generic[WorkflowType]):
49
48
  self._logger.info(f"Just started Node: {event.node_definition.__name__}")
50
49
  elif event.name == "node.execution.fulfilled":
51
50
  self._logger.info(f"Just finished Node: {event.node_definition.__name__}")
51
+ elif event.name == "node.execution.rejected":
52
+ self._logger.debug(f"Error: {event.error}")
53
+ self._logger.error(f"Failed to run Node: {event.node_definition.__name__}")
@@ -13,11 +13,12 @@ if TYPE_CHECKING:
13
13
  class WorkflowContext:
14
14
  def __init__(
15
15
  self,
16
- _vellum_client: Optional[Vellum] = None,
17
- _parent_context: Optional[ParentContext] = None,
16
+ *,
17
+ vellum_client: Optional[Vellum] = None,
18
+ parent_context: Optional[ParentContext] = None,
18
19
  ):
19
- self._vellum_client = _vellum_client
20
- self._parent_context = _parent_context
20
+ self._vellum_client = vellum_client
21
+ self._parent_context = parent_context
21
22
  self._event_queue: Optional[Queue["WorkflowEvent"]] = None
22
23
 
23
24
  @cached_property
@@ -3,7 +3,7 @@ from typing import List
3
3
 
4
4
  from vellum.workflows.inputs.base import BaseInputs
5
5
  from vellum.workflows.nodes.bases.base import BaseNode
6
- from vellum.workflows.sandbox import SandboxRunner
6
+ from vellum.workflows.sandbox import WorkflowSandboxRunner
7
7
  from vellum.workflows.state.base import BaseState
8
8
  from vellum.workflows.workflows.base import BaseWorkflow
9
9
 
@@ -49,7 +49,7 @@ def test_sandbox_runner__happy_path(mock_logger, run_kwargs, expected_last_log):
49
49
  ]
50
50
 
51
51
  # WHEN we run the sandbox
52
- runner = SandboxRunner(workflow=Workflow, inputs=inputs)
52
+ runner = WorkflowSandboxRunner(workflow=Workflow(), inputs=inputs)
53
53
  runner.run(**run_kwargs)
54
54
 
55
55
  # THEN we see the logs
@@ -2,6 +2,7 @@ import pytest
2
2
  from typing import List, Optional
3
3
 
4
4
  from vellum import ChatMessage, SearchResult
5
+ from vellum.workflows.types.core import Json
5
6
  from vellum.workflows.utils.vellum_variables import primitive_type_to_vellum_variable_type
6
7
 
7
8
 
@@ -18,6 +19,8 @@ from vellum.workflows.utils.vellum_variables import primitive_type_to_vellum_var
18
19
  (Optional[List[ChatMessage]], "CHAT_HISTORY"),
19
20
  (List[SearchResult], "SEARCH_RESULTS"),
20
21
  (Optional[List[SearchResult]], "SEARCH_RESULTS"),
22
+ (Json, "JSON"),
23
+ (Optional[Json], "JSON"),
21
24
  ],
22
25
  )
23
26
  def test_primitive_type_to_vellum_variable_type(type_, expected):
@@ -35,14 +35,15 @@ def primitive_type_to_vellum_variable_type(type_: Union[Type, BaseDescriptor]) -
35
35
  if len(types) != 1:
36
36
  # Check explicitly for our internal JSON type.
37
37
  # Matches the type found at vellum.workflows.utils.vellum_variables.Json
38
- if types == [
38
+ actual_types_with_explicit_ref = [
39
39
  bool,
40
40
  int,
41
41
  float,
42
42
  str,
43
- typing.List[typing.ForwardRef("Json")], # type: ignore [misc]
44
- typing.Dict[str, typing.ForwardRef("Json")], # type: ignore [misc]
45
- ]:
43
+ typing.List[Json],
44
+ typing.Dict[str, Json],
45
+ ]
46
+ if types == actual_types_with_explicit_ref:
46
47
  return "JSON"
47
48
  raise ValueError(f"Expected Descriptor to only have one type, got {types}")
48
49
 
@@ -121,10 +121,11 @@ class BaseWorkflow(Generic[WorkflowInputsType, StateType], metaclass=_BaseWorkfl
121
121
 
122
122
  def __init__(
123
123
  self,
124
+ *,
125
+ context: Optional[WorkflowContext] = None,
124
126
  parent_state: Optional[BaseState] = None,
125
127
  emitters: Optional[List[BaseWorkflowEmitter]] = None,
126
128
  resolvers: Optional[List[BaseWorkflowResolver]] = None,
127
- context: Optional[WorkflowContext] = None,
128
129
  ):
129
130
  self._parent_state = parent_state
130
131
  self.emitters = emitters or (self.emitters if hasattr(self, "emitters") else [])
@@ -188,6 +189,7 @@ class BaseWorkflow(Generic[WorkflowInputsType, StateType], metaclass=_BaseWorkfl
188
189
  def run(
189
190
  self,
190
191
  inputs: Optional[WorkflowInputsType] = None,
192
+ *,
191
193
  state: Optional[StateType] = None,
192
194
  entrypoint_nodes: Optional[RunFromNodeArg] = None,
193
195
  external_inputs: Optional[ExternalInputsArg] = None,
@@ -281,8 +283,9 @@ class BaseWorkflow(Generic[WorkflowInputsType, StateType], metaclass=_BaseWorkfl
281
283
 
282
284
  def stream(
283
285
  self,
284
- event_filter: Optional[Callable[[Type["BaseWorkflow"], WorkflowEvent], bool]] = None,
285
286
  inputs: Optional[WorkflowInputsType] = None,
287
+ *,
288
+ event_filter: Optional[Callable[[Type["BaseWorkflow"], WorkflowEvent], bool]] = None,
286
289
  state: Optional[StateType] = None,
287
290
  entrypoint_nodes: Optional[RunFromNodeArg] = None,
288
291
  external_inputs: Optional[ExternalInputsArg] = None,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: vellum-ai
3
- Version: 0.12.7
3
+ Version: 0.12.9
4
4
  Summary:
5
5
  License: MIT
6
6
  Requires-Python: >=3.9,<4.0
@@ -25,6 +25,7 @@ Requires-Dist: cdktf (>=0.20.5,<0.21.0)
25
25
  Requires-Dist: click (==8.1.7)
26
26
  Requires-Dist: docker (==7.1.0)
27
27
  Requires-Dist: httpx (>=0.21.2)
28
+ Requires-Dist: openai (>=1.0.0)
28
29
  Requires-Dist: orderly-set (>=5.2.2,<6.0.0)
29
30
  Requires-Dist: publication (==0.0.3)
30
31
  Requires-Dist: pydantic (>=1.9.2)