vellum-ai 0.12.4__py3-none-any.whl → 0.12.6__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (30) hide show
  1. vellum/client/core/client_wrapper.py +1 -1
  2. vellum/client/resources/workflows/client.py +32 -0
  3. vellum/client/types/chat_message_prompt_block.py +1 -1
  4. vellum/client/types/function_definition.py +26 -7
  5. vellum/client/types/jinja_prompt_block.py +1 -1
  6. vellum/client/types/plain_text_prompt_block.py +1 -1
  7. vellum/client/types/rich_text_prompt_block.py +1 -1
  8. vellum/client/types/variable_prompt_block.py +1 -1
  9. vellum/workflows/nodes/displayable/bases/inline_prompt_node/node.py +13 -4
  10. vellum/workflows/nodes/displayable/inline_prompt_node/tests/test_node.py +55 -0
  11. vellum/workflows/nodes/displayable/tests/test_inline_text_prompt_node.py +1 -1
  12. vellum/workflows/sandbox.py +51 -0
  13. vellum/workflows/tests/__init__.py +0 -0
  14. vellum/workflows/tests/test_sandbox.py +62 -0
  15. vellum/workflows/utils/functions.py +41 -4
  16. vellum/workflows/utils/tests/test_functions.py +93 -0
  17. {vellum_ai-0.12.4.dist-info → vellum_ai-0.12.6.dist-info}/METADATA +1 -1
  18. {vellum_ai-0.12.4.dist-info → vellum_ai-0.12.6.dist-info}/RECORD +30 -27
  19. vellum_cli/__init__.py +14 -0
  20. vellum_cli/pull.py +16 -2
  21. vellum_cli/tests/test_pull.py +45 -0
  22. vellum_ee/workflows/display/nodes/base_node_vellum_display.py +2 -2
  23. vellum_ee/workflows/display/nodes/vellum/code_execution_node.py +1 -3
  24. vellum_ee/workflows/display/nodes/vellum/conditional_node.py +18 -18
  25. vellum_ee/workflows/display/nodes/vellum/search_node.py +19 -15
  26. vellum_ee/workflows/display/nodes/vellum/templating_node.py +1 -1
  27. vellum_ee/workflows/display/nodes/vellum/utils.py +4 -4
  28. {vellum_ai-0.12.4.dist-info → vellum_ai-0.12.6.dist-info}/LICENSE +0 -0
  29. {vellum_ai-0.12.4.dist-info → vellum_ai-0.12.6.dist-info}/WHEEL +0 -0
  30. {vellum_ai-0.12.4.dist-info → vellum_ai-0.12.6.dist-info}/entry_points.txt +0 -0
@@ -18,7 +18,7 @@ class BaseClientWrapper:
18
18
  headers: typing.Dict[str, str] = {
19
19
  "X-Fern-Language": "Python",
20
20
  "X-Fern-SDK-Name": "vellum-ai",
21
- "X-Fern-SDK-Version": "0.12.4",
21
+ "X-Fern-SDK-Version": "0.12.6",
22
22
  }
23
23
  headers["X_API_KEY"] = self.api_key
24
24
  return headers
@@ -27,7 +27,11 @@ class WorkflowsClient:
27
27
  self,
28
28
  id: str,
29
29
  *,
30
+ exclude_code: typing.Optional[bool] = None,
30
31
  format: typing.Optional[WorkflowsPullRequestFormat] = None,
32
+ include_json: typing.Optional[bool] = None,
33
+ include_sandbox: typing.Optional[bool] = None,
34
+ strict: typing.Optional[bool] = None,
31
35
  request_options: typing.Optional[RequestOptions] = None,
32
36
  ) -> typing.Iterator[bytes]:
33
37
  """
@@ -38,8 +42,16 @@ class WorkflowsClient:
38
42
  id : str
39
43
  The ID of the Workflow to pull from
40
44
 
45
+ exclude_code : typing.Optional[bool]
46
+
41
47
  format : typing.Optional[WorkflowsPullRequestFormat]
42
48
 
49
+ include_json : typing.Optional[bool]
50
+
51
+ include_sandbox : typing.Optional[bool]
52
+
53
+ strict : typing.Optional[bool]
54
+
43
55
  request_options : typing.Optional[RequestOptions]
44
56
  Request-specific configuration.
45
57
 
@@ -53,7 +65,11 @@ class WorkflowsClient:
53
65
  base_url=self._client_wrapper.get_environment().default,
54
66
  method="GET",
55
67
  params={
68
+ "exclude_code": exclude_code,
56
69
  "format": format,
70
+ "include_json": include_json,
71
+ "include_sandbox": include_sandbox,
72
+ "strict": strict,
57
73
  },
58
74
  request_options=request_options,
59
75
  ) as _response:
@@ -164,7 +180,11 @@ class AsyncWorkflowsClient:
164
180
  self,
165
181
  id: str,
166
182
  *,
183
+ exclude_code: typing.Optional[bool] = None,
167
184
  format: typing.Optional[WorkflowsPullRequestFormat] = None,
185
+ include_json: typing.Optional[bool] = None,
186
+ include_sandbox: typing.Optional[bool] = None,
187
+ strict: typing.Optional[bool] = None,
168
188
  request_options: typing.Optional[RequestOptions] = None,
169
189
  ) -> typing.AsyncIterator[bytes]:
170
190
  """
@@ -175,8 +195,16 @@ class AsyncWorkflowsClient:
175
195
  id : str
176
196
  The ID of the Workflow to pull from
177
197
 
198
+ exclude_code : typing.Optional[bool]
199
+
178
200
  format : typing.Optional[WorkflowsPullRequestFormat]
179
201
 
202
+ include_json : typing.Optional[bool]
203
+
204
+ include_sandbox : typing.Optional[bool]
205
+
206
+ strict : typing.Optional[bool]
207
+
180
208
  request_options : typing.Optional[RequestOptions]
181
209
  Request-specific configuration.
182
210
 
@@ -190,7 +218,11 @@ class AsyncWorkflowsClient:
190
218
  base_url=self._client_wrapper.get_environment().default,
191
219
  method="GET",
192
220
  params={
221
+ "exclude_code": exclude_code,
193
222
  "format": format,
223
+ "include_json": include_json,
224
+ "include_sandbox": include_sandbox,
225
+ "strict": strict,
194
226
  },
195
227
  request_options=request_options,
196
228
  ) as _response:
@@ -16,9 +16,9 @@ class ChatMessagePromptBlock(UniversalBaseModel):
16
16
  A block that represents a chat message in a prompt template.
17
17
  """
18
18
 
19
+ block_type: typing.Literal["CHAT_MESSAGE"] = "CHAT_MESSAGE"
19
20
  state: typing.Optional[PromptBlockState] = None
20
21
  cache_config: typing.Optional[EphemeralPromptCacheConfig] = None
21
- block_type: typing.Literal["CHAT_MESSAGE"] = "CHAT_MESSAGE"
22
22
  chat_role: ChatMessageRole
23
23
  chat_source: typing.Optional[str] = None
24
24
  chat_message_unterminated: typing.Optional[bool] = None
@@ -4,22 +4,41 @@ from ..core.pydantic_utilities import UniversalBaseModel
4
4
  import typing
5
5
  from .prompt_block_state import PromptBlockState
6
6
  from .ephemeral_prompt_cache_config import EphemeralPromptCacheConfig
7
- from ..core.pydantic_utilities import IS_PYDANTIC_V2
8
7
  import pydantic
8
+ from ..core.pydantic_utilities import IS_PYDANTIC_V2
9
9
 
10
10
 
11
11
  class FunctionDefinition(UniversalBaseModel):
12
12
  """
13
- A block that represents a function definition in a prompt template.
13
+ The definition of a Function (aka "Tool Call") that a Prompt/Model has access to.
14
14
  """
15
15
 
16
16
  state: typing.Optional[PromptBlockState] = None
17
17
  cache_config: typing.Optional[EphemeralPromptCacheConfig] = None
18
- name: typing.Optional[str] = None
19
- description: typing.Optional[str] = None
20
- parameters: typing.Optional[typing.Dict[str, typing.Optional[typing.Any]]] = None
21
- forced: typing.Optional[bool] = None
22
- strict: typing.Optional[bool] = None
18
+ name: typing.Optional[str] = pydantic.Field(default=None)
19
+ """
20
+ The name identifying the function.
21
+ """
22
+
23
+ description: typing.Optional[str] = pydantic.Field(default=None)
24
+ """
25
+ A description to help guide the model when to invoke this function.
26
+ """
27
+
28
+ parameters: typing.Optional[typing.Dict[str, typing.Optional[typing.Any]]] = pydantic.Field(default=None)
29
+ """
30
+ An OpenAPI specification of parameters that are supported by this function.
31
+ """
32
+
33
+ forced: typing.Optional[bool] = pydantic.Field(default=None)
34
+ """
35
+ Set this option to true to force the model to return a function call of this function.
36
+ """
37
+
38
+ strict: typing.Optional[bool] = pydantic.Field(default=None)
39
+ """
40
+ Set this option to use strict schema decoding when available.
41
+ """
23
42
 
24
43
  if IS_PYDANTIC_V2:
25
44
  model_config: typing.ClassVar[pydantic.ConfigDict] = pydantic.ConfigDict(extra="allow", frozen=True) # type: ignore # Pydantic v2
@@ -13,9 +13,9 @@ class JinjaPromptBlock(UniversalBaseModel):
13
13
  A block of Jinja template code that is used to generate a prompt
14
14
  """
15
15
 
16
+ block_type: typing.Literal["JINJA"] = "JINJA"
16
17
  state: typing.Optional[PromptBlockState] = None
17
18
  cache_config: typing.Optional[EphemeralPromptCacheConfig] = None
18
- block_type: typing.Literal["JINJA"] = "JINJA"
19
19
  template: str
20
20
 
21
21
  if IS_PYDANTIC_V2:
@@ -13,9 +13,9 @@ class PlainTextPromptBlock(UniversalBaseModel):
13
13
  A block that holds a plain text string value.
14
14
  """
15
15
 
16
+ block_type: typing.Literal["PLAIN_TEXT"] = "PLAIN_TEXT"
16
17
  state: typing.Optional[PromptBlockState] = None
17
18
  cache_config: typing.Optional[EphemeralPromptCacheConfig] = None
18
- block_type: typing.Literal["PLAIN_TEXT"] = "PLAIN_TEXT"
19
19
  text: str
20
20
 
21
21
  if IS_PYDANTIC_V2:
@@ -14,9 +14,9 @@ class RichTextPromptBlock(UniversalBaseModel):
14
14
  A block that includes a combination of plain text and variable blocks.
15
15
  """
16
16
 
17
+ block_type: typing.Literal["RICH_TEXT"] = "RICH_TEXT"
17
18
  state: typing.Optional[PromptBlockState] = None
18
19
  cache_config: typing.Optional[EphemeralPromptCacheConfig] = None
19
- block_type: typing.Literal["RICH_TEXT"] = "RICH_TEXT"
20
20
  blocks: typing.List[RichTextChildBlock]
21
21
 
22
22
  if IS_PYDANTIC_V2:
@@ -13,9 +13,9 @@ class VariablePromptBlock(UniversalBaseModel):
13
13
  A block that represents a variable in a prompt template.
14
14
  """
15
15
 
16
+ block_type: typing.Literal["VARIABLE"] = "VARIABLE"
16
17
  state: typing.Optional[PromptBlockState] = None
17
18
  cache_config: typing.Optional[EphemeralPromptCacheConfig] = None
18
- block_type: typing.Literal["VARIABLE"] = "VARIABLE"
19
19
  input_variable: str
20
20
 
21
21
  if IS_PYDANTIC_V2:
@@ -1,6 +1,6 @@
1
1
  import json
2
2
  from uuid import uuid4
3
- from typing import ClassVar, Generic, Iterator, List, Optional, Tuple, cast
3
+ from typing import Callable, ClassVar, Generic, Iterator, List, Optional, Tuple, Union, cast
4
4
 
5
5
  from vellum import (
6
6
  AdHocExecutePromptEvent,
@@ -24,9 +24,10 @@ from vellum.workflows.exceptions import NodeException
24
24
  from vellum.workflows.nodes.displayable.bases.base_prompt_node import BasePromptNode
25
25
  from vellum.workflows.nodes.displayable.bases.inline_prompt_node.constants import DEFAULT_PROMPT_PARAMETERS
26
26
  from vellum.workflows.types.generics import StateType
27
+ from vellum.workflows.utils.functions import compile_function_definition
27
28
 
28
29
 
29
- class BaseInlinePromptNode(BasePromptNode, Generic[StateType]):
30
+ class BaseInlinePromptNode(BasePromptNode[StateType], Generic[StateType]):
30
31
  """
31
32
  Used to execute a Prompt defined inline.
32
33
 
@@ -45,7 +46,7 @@ class BaseInlinePromptNode(BasePromptNode, Generic[StateType]):
45
46
  blocks: ClassVar[List[PromptBlock]]
46
47
 
47
48
  # The functions/tools that a Prompt has access to
48
- functions: Optional[List[FunctionDefinition]] = OMIT
49
+ functions: Optional[List[Union[FunctionDefinition, Callable]]] = None
49
50
 
50
51
  parameters: PromptParameters = DEFAULT_PROMPT_PARAMETERS
51
52
  expand_meta: Optional[AdHocExpandMeta] = OMIT
@@ -59,6 +60,14 @@ class BaseInlinePromptNode(BasePromptNode, Generic[StateType]):
59
60
  "execution_context": {"parent_context": parent_context},
60
61
  **request_options.get("additional_body_parameters", {}),
61
62
  }
63
+ normalized_functions = (
64
+ [
65
+ function if isinstance(function, FunctionDefinition) else compile_function_definition(function)
66
+ for function in self.functions
67
+ ]
68
+ if self.functions
69
+ else None
70
+ )
62
71
 
63
72
  return self._context.vellum_client.ad_hoc.adhoc_execute_prompt_stream(
64
73
  ml_model=self.ml_model,
@@ -66,7 +75,7 @@ class BaseInlinePromptNode(BasePromptNode, Generic[StateType]):
66
75
  input_variables=input_variables,
67
76
  parameters=self.parameters,
68
77
  blocks=self.blocks,
69
- functions=self.functions,
78
+ functions=normalized_functions,
70
79
  expand_meta=self.expand_meta,
71
80
  request_options=self.request_options,
72
81
  )
@@ -5,10 +5,14 @@ from typing import Any, Iterator, List
5
5
  from vellum.client.core.pydantic_utilities import UniversalBaseModel
6
6
  from vellum.client.types.execute_prompt_event import ExecutePromptEvent
7
7
  from vellum.client.types.fulfilled_execute_prompt_event import FulfilledExecutePromptEvent
8
+ from vellum.client.types.function_call import FunctionCall
9
+ from vellum.client.types.function_call_vellum_value import FunctionCallVellumValue
10
+ from vellum.client.types.function_definition import FunctionDefinition
8
11
  from vellum.client.types.initiated_execute_prompt_event import InitiatedExecutePromptEvent
9
12
  from vellum.client.types.prompt_output import PromptOutput
10
13
  from vellum.client.types.prompt_request_json_input import PromptRequestJsonInput
11
14
  from vellum.client.types.string_vellum_value import StringVellumValue
15
+ from vellum.workflows.nodes.displayable.bases.inline_prompt_node.node import BaseInlinePromptNode
12
16
  from vellum.workflows.nodes.displayable.inline_prompt_node.node import InlinePromptNode
13
17
 
14
18
 
@@ -62,3 +66,54 @@ def test_inline_prompt_node__json_inputs(vellum_adhoc_prompt_client):
62
66
  PromptRequestJsonInput(key="a_pydantic", type="JSON", value={"example": "example"}),
63
67
  ]
64
68
  assert len(mock_api.call_args.kwargs["input_variables"]) == 4
69
+
70
+
71
+ def test_inline_prompt_node__function_definitions(vellum_adhoc_prompt_client):
72
+ # GIVEN a function definition
73
+ def my_function(foo: str, bar: int) -> None:
74
+ pass
75
+
76
+ # AND a prompt node with a accepting that function definition
77
+ class MyNode(BaseInlinePromptNode):
78
+ ml_model = "gpt-4o"
79
+ functions = [my_function]
80
+ prompt_inputs = {}
81
+ blocks = []
82
+
83
+ # AND a known response from invoking an inline prompt
84
+ expected_outputs: List[PromptOutput] = [
85
+ FunctionCallVellumValue(value=FunctionCall(name="my_function", arguments={"foo": "hello", "bar": 1})),
86
+ ]
87
+
88
+ def generate_prompt_events(*args: Any, **kwargs: Any) -> Iterator[ExecutePromptEvent]:
89
+ execution_id = str(uuid4())
90
+ events: List[ExecutePromptEvent] = [
91
+ InitiatedExecutePromptEvent(execution_id=execution_id),
92
+ FulfilledExecutePromptEvent(
93
+ execution_id=execution_id,
94
+ outputs=expected_outputs,
95
+ ),
96
+ ]
97
+ yield from events
98
+
99
+ vellum_adhoc_prompt_client.adhoc_execute_prompt_stream.side_effect = generate_prompt_events
100
+
101
+ # WHEN the node is run
102
+ list(MyNode().run())
103
+
104
+ # THEN the prompt is executed with the correct inputs
105
+ mock_api = vellum_adhoc_prompt_client.adhoc_execute_prompt_stream
106
+ assert mock_api.call_count == 1
107
+ assert mock_api.call_args.kwargs["functions"] == [
108
+ FunctionDefinition(
109
+ name="my_function",
110
+ parameters={
111
+ "type": "object",
112
+ "properties": {
113
+ "foo": {"type": "string"},
114
+ "bar": {"type": "integer"},
115
+ },
116
+ "required": ["foo", "bar"],
117
+ },
118
+ ),
119
+ ]
@@ -75,7 +75,7 @@ def test_inline_text_prompt_node__basic(vellum_adhoc_prompt_client):
75
75
  vellum_adhoc_prompt_client.adhoc_execute_prompt_stream.assert_called_once_with(
76
76
  blocks=[],
77
77
  expand_meta=Ellipsis,
78
- functions=Ellipsis,
78
+ functions=None,
79
79
  input_values=[],
80
80
  input_variables=[],
81
81
  ml_model="gpt-4o",
@@ -0,0 +1,51 @@
1
+ from typing import Generic, Sequence, Type
2
+
3
+ import dotenv
4
+
5
+ from vellum.workflows.events.workflow import WorkflowEventStream
6
+ from vellum.workflows.inputs.base import BaseInputs
7
+ from vellum.workflows.logging import load_logger
8
+ from vellum.workflows.types.generics import WorkflowType
9
+ from vellum.workflows.workflows.event_filters import root_workflow_event_filter
10
+
11
+
12
+ class SandboxRunner(Generic[WorkflowType]):
13
+ def __init__(self, workflow: Type[WorkflowType], inputs: Sequence[BaseInputs]):
14
+ if not inputs:
15
+ raise ValueError("Inputs are required to have at least one defined inputs")
16
+
17
+ self._workflow = workflow
18
+ self._inputs = inputs
19
+
20
+ dotenv.load_dotenv()
21
+ self._logger = load_logger()
22
+
23
+ def run(self, index: int = 0):
24
+ if index < 0:
25
+ self._logger.warning("Index is less than 0, running first input")
26
+ index = 0
27
+ elif index >= len(self._inputs):
28
+ self._logger.warning("Index is greater than the number of provided inputs, running last input")
29
+ index = len(self._inputs) - 1
30
+
31
+ selected_inputs = self._inputs[index]
32
+
33
+ workflow = self._workflow()
34
+ events = workflow.stream(
35
+ inputs=selected_inputs,
36
+ event_filter=root_workflow_event_filter,
37
+ )
38
+
39
+ self._process_events(events)
40
+
41
+ def _process_events(self, events: WorkflowEventStream):
42
+ for event in events:
43
+ if event.name == "workflow.execution.fulfilled":
44
+ self._logger.info("Workflow fulfilled!")
45
+ for output_reference, value in event.outputs:
46
+ self._logger.info("----------------------------------")
47
+ self._logger.info(f"{output_reference.name}: {value}")
48
+ elif event.name == "node.execution.initiated":
49
+ self._logger.info(f"Just started Node: {event.node_definition.__name__}")
50
+ elif event.name == "node.execution.fulfilled":
51
+ self._logger.info(f"Just finished Node: {event.node_definition.__name__}")
File without changes
@@ -0,0 +1,62 @@
1
+ import pytest
2
+ from typing import List
3
+
4
+ from vellum.workflows.inputs.base import BaseInputs
5
+ from vellum.workflows.nodes.bases.base import BaseNode
6
+ from vellum.workflows.sandbox import SandboxRunner
7
+ from vellum.workflows.state.base import BaseState
8
+ from vellum.workflows.workflows.base import BaseWorkflow
9
+
10
+
11
+ @pytest.fixture
12
+ def mock_logger(mocker):
13
+ return mocker.patch("vellum.workflows.sandbox.load_logger")
14
+
15
+
16
+ @pytest.mark.parametrize(
17
+ ["run_kwargs", "expected_last_log"],
18
+ [
19
+ ({}, "final_results: first"),
20
+ ({"index": 1}, "final_results: second"),
21
+ ({"index": -4}, "final_results: first"),
22
+ ({"index": 100}, "final_results: second"),
23
+ ],
24
+ ids=["default", "specific", "negative", "out_of_bounds"],
25
+ )
26
+ def test_sandbox_runner__happy_path(mock_logger, run_kwargs, expected_last_log):
27
+ # GIVEN we capture the logs to stdout
28
+ logs = []
29
+ mock_logger.return_value.info.side_effect = lambda msg: logs.append(msg)
30
+
31
+ # AND an example workflow
32
+ class Inputs(BaseInputs):
33
+ foo: str
34
+
35
+ class StartNode(BaseNode):
36
+ class Outputs(BaseNode.Outputs):
37
+ bar = Inputs.foo
38
+
39
+ class Workflow(BaseWorkflow[Inputs, BaseState]):
40
+ graph = StartNode
41
+
42
+ class Outputs(BaseWorkflow.Outputs):
43
+ final_results = StartNode.Outputs.bar
44
+
45
+ # AND a dataset for this workflow
46
+ inputs: List[Inputs] = [
47
+ Inputs(foo="first"),
48
+ Inputs(foo="second"),
49
+ ]
50
+
51
+ # WHEN we run the sandbox
52
+ runner = SandboxRunner(workflow=Workflow, inputs=inputs)
53
+ runner.run(**run_kwargs)
54
+
55
+ # THEN we see the logs
56
+ assert logs == [
57
+ "Just started Node: StartNode",
58
+ "Just finished Node: StartNode",
59
+ "Workflow fulfilled!",
60
+ "----------------------------------",
61
+ expected_last_log,
62
+ ]
@@ -1,6 +1,9 @@
1
1
  import dataclasses
2
2
  import inspect
3
- from typing import Any, Callable, Union, get_args, get_origin
3
+ from typing import Any, Callable, Optional, Union, get_args, get_origin
4
+
5
+ from pydantic import BaseModel
6
+ from pydantic_core import PydanticUndefined
4
7
 
5
8
  from vellum.client.types.function_definition import FunctionDefinition
6
9
 
@@ -16,7 +19,10 @@ type_map = {
16
19
  }
17
20
 
18
21
 
19
- def _compile_annotation(annotation: Any, defs: dict[str, Any]) -> dict:
22
+ def _compile_annotation(annotation: Optional[Any], defs: dict[str, Any]) -> dict:
23
+ if annotation is None:
24
+ return {"type": "null"}
25
+
20
26
  if get_origin(annotation) is Union:
21
27
  return {"anyOf": [_compile_annotation(a, defs) for a in get_args(annotation)]}
22
28
 
@@ -37,13 +43,44 @@ def _compile_annotation(annotation: Any, defs: dict[str, Any]) -> dict:
37
43
  if field.default is dataclasses.MISSING:
38
44
  required.append(field.name)
39
45
  else:
40
- properties[field.name]["default"] = field.default
46
+ properties[field.name]["default"] = _compile_default_value(field.default)
47
+ defs[annotation.__name__] = {"type": "object", "properties": properties, "required": required}
48
+ return {"$ref": f"#/$defs/{annotation.__name__}"}
49
+
50
+ if issubclass(annotation, BaseModel):
51
+ if annotation.__name__ not in defs:
52
+ properties = {}
53
+ required = []
54
+ for field_name, field in annotation.model_fields.items():
55
+ # Mypy is incorrect here, the `annotation` attribute is defined on `FieldInfo`
56
+ field_annotation = field.annotation # type: ignore[attr-defined]
57
+ properties[field_name] = _compile_annotation(field_annotation, defs)
58
+ if field.default is PydanticUndefined:
59
+ required.append(field_name)
60
+ else:
61
+ properties[field_name]["default"] = _compile_default_value(field.default)
41
62
  defs[annotation.__name__] = {"type": "object", "properties": properties, "required": required}
63
+
42
64
  return {"$ref": f"#/$defs/{annotation.__name__}"}
43
65
 
44
66
  return {"type": type_map[annotation]}
45
67
 
46
68
 
69
+ def _compile_default_value(default: Any) -> Any:
70
+ if dataclasses.is_dataclass(default):
71
+ return {
72
+ field.name: _compile_default_value(getattr(default, field.name)) for field in dataclasses.fields(default)
73
+ }
74
+
75
+ if isinstance(default, BaseModel):
76
+ return {
77
+ field_name: _compile_default_value(getattr(default, field_name))
78
+ for field_name in default.model_fields.keys()
79
+ }
80
+
81
+ return default
82
+
83
+
47
84
  def compile_function_definition(function: Callable) -> FunctionDefinition:
48
85
  """
49
86
  Converts a Python function into our Vellum-native FunctionDefinition type.
@@ -62,7 +99,7 @@ def compile_function_definition(function: Callable) -> FunctionDefinition:
62
99
  if param.default is inspect.Parameter.empty:
63
100
  required.append(param.name)
64
101
  else:
65
- properties[param.name]["default"] = param.default
102
+ properties[param.name]["default"] = _compile_default_value(param.default)
66
103
 
67
104
  parameters = {"type": "object", "properties": properties, "required": required}
68
105
  if defs:
@@ -1,6 +1,8 @@
1
1
  from dataclasses import dataclass
2
2
  from typing import Dict, List, Optional, Union
3
3
 
4
+ from pydantic import BaseModel
5
+
4
6
  from vellum.client.types.function_definition import FunctionDefinition
5
7
  from vellum.workflows.utils.functions import compile_function_definition
6
8
 
@@ -169,3 +171,94 @@ def test_compile_function_definition__dataclasses():
169
171
  },
170
172
  },
171
173
  )
174
+
175
+
176
+ def test_compile_function_definition__pydantic():
177
+ # GIVEN a function with a pydantic model
178
+ class MyPydanticModel(BaseModel):
179
+ a: int
180
+ b: str
181
+
182
+ def my_function(c: MyPydanticModel):
183
+ pass
184
+
185
+ # WHEN compiling the function
186
+ compiled_function = compile_function_definition(my_function)
187
+
188
+ # THEN it should return the compiled function definition
189
+ assert compiled_function == FunctionDefinition(
190
+ name="my_function",
191
+ parameters={
192
+ "type": "object",
193
+ "properties": {"c": {"$ref": "#/$defs/MyPydanticModel"}},
194
+ "required": ["c"],
195
+ "$defs": {
196
+ "MyPydanticModel": {
197
+ "type": "object",
198
+ "properties": {"a": {"type": "integer"}, "b": {"type": "string"}},
199
+ "required": ["a", "b"],
200
+ }
201
+ },
202
+ },
203
+ )
204
+
205
+
206
+ def test_compile_function_definition__default_dataclass():
207
+ # GIVEN a function with a dataclass
208
+ @dataclass
209
+ class MyDataClass:
210
+ a: int
211
+ b: str
212
+
213
+ def my_function(c: MyDataClass = MyDataClass(a=1, b="hello")):
214
+ pass
215
+
216
+ # WHEN compiling the function
217
+ compiled_function = compile_function_definition(my_function)
218
+
219
+ # THEN it should return the compiled function definition
220
+ assert compiled_function == FunctionDefinition(
221
+ name="my_function",
222
+ parameters={
223
+ "type": "object",
224
+ "properties": {"c": {"$ref": "#/$defs/MyDataClass", "default": {"a": 1, "b": "hello"}}},
225
+ "required": [],
226
+ "$defs": {
227
+ "MyDataClass": {
228
+ "type": "object",
229
+ "properties": {"a": {"type": "integer"}, "b": {"type": "string"}},
230
+ "required": ["a", "b"],
231
+ }
232
+ },
233
+ },
234
+ )
235
+
236
+
237
+ def test_compile_function_definition__default_pydantic():
238
+ # GIVEN a function with a pydantic model as the default value
239
+ class MyPydanticModel(BaseModel):
240
+ a: int
241
+ b: str
242
+
243
+ def my_function(c: MyPydanticModel = MyPydanticModel(a=1, b="hello")):
244
+ pass
245
+
246
+ # WHEN compiling the function
247
+ compiled_function = compile_function_definition(my_function)
248
+
249
+ # THEN it should return the compiled function definition
250
+ assert compiled_function == FunctionDefinition(
251
+ name="my_function",
252
+ parameters={
253
+ "type": "object",
254
+ "properties": {"c": {"$ref": "#/$defs/MyPydanticModel", "default": {"a": 1, "b": "hello"}}},
255
+ "required": [],
256
+ "$defs": {
257
+ "MyPydanticModel": {
258
+ "type": "object",
259
+ "properties": {"a": {"type": "integer"}, "b": {"type": "string"}},
260
+ "required": ["a", "b"],
261
+ }
262
+ },
263
+ },
264
+ )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: vellum-ai
3
- Version: 0.12.4
3
+ Version: 0.12.6
4
4
  Summary:
5
5
  License: MIT
6
6
  Requires-Python: >=3.9,<4.0
@@ -1,17 +1,17 @@
1
1
  vellum_cli/CONTRIBUTING.md,sha256=FtDC7BGxSeMnwCXAUssFsAIElXtmJE-O5Z7BpolcgvI,2935
2
2
  vellum_cli/README.md,sha256=2NudRoLzWxNKqnuVy1JuQ7DerIaxWGYkrH8kMd-asIE,90
3
- vellum_cli/__init__.py,sha256=XG6aC1NSPfBjNFzqiy9Lbk4DnELCKO8lpIZ3jeJR0r0,6990
3
+ vellum_cli/__init__.py,sha256=A9uo9OE7xQACNEtX4k0c-rxypDqS5V8kA8u4BNN0azM,7402
4
4
  vellum_cli/aliased_group.py,sha256=ugW498j0yv4ALJ8vS9MsO7ctDW7Jlir9j6nE_uHAP8c,3363
5
5
  vellum_cli/config.py,sha256=wJQnv3tCgu1BOugg0AOP94yQ-x1yAg8juX_QoFN9Y7w,5223
6
6
  vellum_cli/image_push.py,sha256=SJwhwWJsLjwGNezNVd_oCVpFMfPsAB3dfLWmriZZUtw,4419
7
7
  vellum_cli/logger.py,sha256=PuRFa0WCh4sAGFS5aqWB0QIYpS6nBWwPJrIXpWxugV4,1022
8
- vellum_cli/pull.py,sha256=EkQirsTe0KCpJ8oHTE3S9_M2XHSrb2wrXNq4hTkMZng,5770
8
+ vellum_cli/pull.py,sha256=q68fr1o5H9l8Dvc8BTY1GARJYjAV1i6Fg-Lg4Oo4FDw,6155
9
9
  vellum_cli/push.py,sha256=gcYhIogeYejZIhNm5Cjp0VBECaXLmVQEvZjrPH0-TSU,5337
10
10
  vellum_cli/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
11
  vellum_cli/tests/conftest.py,sha256=eFGwBxib3Nki830lIFintB0b6r4x8T_KMnmzhlTY5x0,1337
12
12
  vellum_cli/tests/test_config.py,sha256=uvKGDc8BoVyT9_H0Z-g8469zVxomn6Oi3Zj-vK7O_wU,2631
13
13
  vellum_cli/tests/test_main.py,sha256=qDZG-aQauPwBwM6A2DIu1494n47v3pL28XakTbLGZ-k,272
14
- vellum_cli/tests/test_pull.py,sha256=pGqpBkahC360UITDE8BlcJ7LPd9DyRPn4NrCNdkQmAQ,15907
14
+ vellum_cli/tests/test_pull.py,sha256=P2JFNHU1hE6iydYl7rW35h7c8_DSrLiAS7gNsFMy1JU,17829
15
15
  vellum_cli/tests/test_push.py,sha256=V2iGcskh2X3OHj2uV5Vx_BhmtyfmUkyx0lrp8DDOExc,5824
16
16
  vellum_ee/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
17
17
  vellum_ee/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -20,7 +20,7 @@ vellum_ee/workflows/display/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMp
20
20
  vellum_ee/workflows/display/base.py,sha256=3ZFUYRNKL24fBqXhKpa_Dq2W1a-a86J20dmJYA3H2eY,1755
21
21
  vellum_ee/workflows/display/nodes/__init__.py,sha256=5XOcZJXYUgaLS55QgRJzyQ_W1tpeprjnYAeYVezqoGw,160
22
22
  vellum_ee/workflows/display/nodes/base_node_display.py,sha256=23PLqcpMe_mYkYdug9PDb6Br7o64Thx9-IhcviKGvGo,6662
23
- vellum_ee/workflows/display/nodes/base_node_vellum_display.py,sha256=7F4zQnZQBOTp9turUUS41RaO40Z14m851WOLJHgmHPU,2234
23
+ vellum_ee/workflows/display/nodes/base_node_vellum_display.py,sha256=BxA-YVUJvB36NM-Q5DNCwckeqymwLKMp9DVCaTyrPbs,2253
24
24
  vellum_ee/workflows/display/nodes/get_node_display_class.py,sha256=vyKeJAevAXvEAEtWeTEdBZXD3eJQYW_DEXLKVZ5KmYc,1325
25
25
  vellum_ee/workflows/display/nodes/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
26
26
  vellum_ee/workflows/display/nodes/tests/test_base_node_display.py,sha256=QqR3Ly0RNrXwOeLdW5nERDFt0gRPf76n1bPES6o5UN4,1093
@@ -28,8 +28,8 @@ vellum_ee/workflows/display/nodes/types.py,sha256=St1BB6no528OyELGiyRabWao0GGw6m
28
28
  vellum_ee/workflows/display/nodes/utils.py,sha256=sloya5TpXsnot1HURc9L51INwflRqUzHxRVnCS9Cd-4,973
29
29
  vellum_ee/workflows/display/nodes/vellum/__init__.py,sha256=nmPLj8vkbVCS46XQqmHq8Xj8Mr36wCK_vWf26A9KIkw,1505
30
30
  vellum_ee/workflows/display/nodes/vellum/api_node.py,sha256=4SSQGecKWHuoGy5YIGJeOZVHGKwTs_8Y-gf3GvsHb0M,8506
31
- vellum_ee/workflows/display/nodes/vellum/code_execution_node.py,sha256=_sdLmmOa1ZqZQZXzw0GMoUpgnV1sdOfc_19LJCBS_Xc,4288
32
- vellum_ee/workflows/display/nodes/vellum/conditional_node.py,sha256=TP7ItMeEXbVbkGr5Qwjv8vl9V0Fi9QBE04d3kdJH4JE,13666
31
+ vellum_ee/workflows/display/nodes/vellum/code_execution_node.py,sha256=XqizRn5bLwT8LMwgyvfbln8inhCxzTi1EkD22Fx-5-U,4222
32
+ vellum_ee/workflows/display/nodes/vellum/conditional_node.py,sha256=EtdqJfhYw03PuT2iyJ6mSAZK4RsQqDie_2AnJAtMelk,13625
33
33
  vellum_ee/workflows/display/nodes/vellum/error_node.py,sha256=ygTjSjYDI4DtkxADWub5rhBnRWItMKWF6fezBrgpOKA,1979
34
34
  vellum_ee/workflows/display/nodes/vellum/final_output_node.py,sha256=t5iJQVoRT5g-v2IiUb4kFYdvUVKch0zn27016pzDZoo,2761
35
35
  vellum_ee/workflows/display/nodes/vellum/guardrail_node.py,sha256=3TJvHX_Uuf_gr94VkYc_zmNH8I5p71ChIeoAbJZ3ddY,2158
@@ -39,13 +39,13 @@ vellum_ee/workflows/display/nodes/vellum/map_node.py,sha256=AqUlItgSZij12qRKguKV
39
39
  vellum_ee/workflows/display/nodes/vellum/merge_node.py,sha256=jzO63B9KiEAncnBqmz2ZTcxjmEHozMEe7WnfpcpsQYg,3195
40
40
  vellum_ee/workflows/display/nodes/vellum/note_node.py,sha256=9VpC3h0RYOxJuRbjDwidBYlLKakkmlEnDMBh2C7lHcY,1107
41
41
  vellum_ee/workflows/display/nodes/vellum/prompt_deployment_node.py,sha256=gLRkizwyw21-Z12IyDbdOJpXayiZZd4HWd6qgZQg8sc,3106
42
- vellum_ee/workflows/display/nodes/vellum/search_node.py,sha256=I4_ENFWEhHUDYFUWF67-EyToCwmJynAXcbNpqw6Cpio,8681
42
+ vellum_ee/workflows/display/nodes/vellum/search_node.py,sha256=laNWcDt62VRM5hLfcOi-ouAyNhYiFRsD0PWbVGLwlLI,9035
43
43
  vellum_ee/workflows/display/nodes/vellum/subworkflow_deployment_node.py,sha256=zOp4voBSgB3MR1R93wTOrsiiara_hxEAYFupLl_SvTA,2657
44
- vellum_ee/workflows/display/nodes/vellum/templating_node.py,sha256=UNYxoE-89agE8ugK0aWg_uN61jPqlC2VSxWHk568sN4,3324
44
+ vellum_ee/workflows/display/nodes/vellum/templating_node.py,sha256=IHumtFFZSanRizU3-0ATFgUnDuSFZMScZce8YTDJiGU,3373
45
45
  vellum_ee/workflows/display/nodes/vellum/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
46
46
  vellum_ee/workflows/display/nodes/vellum/tests/test_utils.py,sha256=aJfQnIvlrRHVKgQid_gg6VQKkJyPgFnzbvWt9_t0Vz0,3860
47
47
  vellum_ee/workflows/display/nodes/vellum/try_node.py,sha256=hB8dcGMGkuC95kk9hmZUgHsCLwEA37fHTFXj0JzbRjM,4692
48
- vellum_ee/workflows/display/nodes/vellum/utils.py,sha256=3QsKS5Kht2Nod4A18T0bb4filK9AkyK5oImVlViK3l8,4643
48
+ vellum_ee/workflows/display/nodes/vellum/utils.py,sha256=6mPg9QilJfLw9Sgk_h9LRSyKZpKgRu06mr3X1AmmDCA,4691
49
49
  vellum_ee/workflows/display/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
50
50
  vellum_ee/workflows/display/tests/test_vellum_workflow_display.py,sha256=TEg3QbdE7rLbEhml9pMWmay--phsekGlfGVhTblxCGE,1727
51
51
  vellum_ee/workflows/display/tests/workflow_serialization/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -76,7 +76,7 @@ vellum/client/README.md,sha256=JkCJjmMZl4jrPj46pkmL9dpK4gSzQQmP5I7z4aME4LY,4749
76
76
  vellum/client/__init__.py,sha256=o4m7iRZWEV8rP3GkdaztHAjNmjxjWERlarviFoHzuKI,110927
77
77
  vellum/client/core/__init__.py,sha256=SQ85PF84B9MuKnBwHNHWemSGuy-g_515gFYNFhvEE0I,1438
78
78
  vellum/client/core/api_error.py,sha256=RE8LELok2QCjABadECTvtDp7qejA1VmINCh6TbqPwSE,426
79
- vellum/client/core/client_wrapper.py,sha256=Txk5jgvpOyeOcWKUtrs-1p5HZ-zPxTysTZVwMYsX3-A,1868
79
+ vellum/client/core/client_wrapper.py,sha256=Djd_7GxqAd6z6spaztPvuwOWM8nCLYHOM1pxOFHfmrc,1868
80
80
  vellum/client/core/datetime_utils.py,sha256=nBys2IsYrhPdszxGKCNRPSOCwa-5DWOHG95FB8G9PKo,1047
81
81
  vellum/client/core/file.py,sha256=X9IbmkZmB2bB_DpmZAO3crWdXagOakAyn6UCOCImCPg,2322
82
82
  vellum/client/core/http_client.py,sha256=R0pQpCppnEtxccGvXl4uJ76s7ro_65Fo_erlNNLp_AI,19228
@@ -130,7 +130,7 @@ vellum/client/resources/workflow_deployments/types/workflow_deployments_list_req
130
130
  vellum/client/resources/workflow_sandboxes/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
131
131
  vellum/client/resources/workflow_sandboxes/client.py,sha256=3wVQxkjrJ5bIS8fB5FpKXCP2dX38299ghWrJ8YmXxwQ,7435
132
132
  vellum/client/resources/workflows/__init__.py,sha256=Z4xi8Nxd9U4t35FQSepTt1p-ns0X1xtdNs168kUcuBk,153
133
- vellum/client/resources/workflows/client.py,sha256=5wqDiO1xYnYxNmbaEE1OTnUn3YXKpruYqF3taCjLRDI,10263
133
+ vellum/client/resources/workflows/client.py,sha256=1X9KKRIr-Jwxbkd2a43DYfukKRKgNL1IXkGb9VC15a0,11391
134
134
  vellum/client/resources/workflows/types/__init__.py,sha256=-uFca4ypncAOvfsg6sjD-5C9zWdA5qNvU6m675GphVg,177
135
135
  vellum/client/resources/workflows/types/workflows_pull_request_format.py,sha256=dOWE_jnDnniIJLoeseeCms23aklghyBkoPmBFzcqqZk,165
136
136
  vellum/client/resources/workspace_secrets/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
@@ -173,7 +173,7 @@ vellum/client/types/chat_history_vellum_value_request.py,sha256=HzAiysncG5unJ-tl
173
173
  vellum/client/types/chat_message.py,sha256=EOA8v5Ebx2KS9BtwBBGbuvSK-pn4xWYZiioHuuPWvzw,916
174
174
  vellum/client/types/chat_message_content.py,sha256=DQLB5rG40qLRLsmKWWo-XKa4rhk9TGQs_eFTFow2zEM,607
175
175
  vellum/client/types/chat_message_content_request.py,sha256=iFT_PmN6sUjeN1_fZXr2ePJEbSq_GZcClBvtu8SdVmQ,724
176
- vellum/client/types/chat_message_prompt_block.py,sha256=K0D42GPIgJYfYYigXU6ggCUbwHcB1LwMNDjXDybh3MQ,1351
176
+ vellum/client/types/chat_message_prompt_block.py,sha256=b6WmJqAc6r15XhHKsq3VmZBP-uoKV4jCSO-_xrDY5Qw,1351
177
177
  vellum/client/types/chat_message_request.py,sha256=r2EW1pfnvNYx2fo6mBqU5HQrUzp67WXuE5G-XK281E4,945
178
178
  vellum/client/types/chat_message_role.py,sha256=-i0Jrcbwf72MkMoaFTGyxRduvlN7f5Y9ULhCXR5KNdA,182
179
179
  vellum/client/types/code_execution_node_array_result.py,sha256=KCdbmjXjReO-hPPpBsSR17h_roDUpc4R-92cmIn59ck,952
@@ -271,7 +271,7 @@ vellum/client/types/function_call_request.py,sha256=eJBIN-wLkkkDUIwAy1nMeWHu3MZ5
271
271
  vellum/client/types/function_call_variable_value.py,sha256=VQKCiEtJsmIK3i7CtFV_2ZpxeX70rqpUViXIvAci8L0,702
272
272
  vellum/client/types/function_call_vellum_value.py,sha256=lLJb-S_-S_UXm6una1BMyCbqLpMhbbMcaVIYNO45h5o,759
273
273
  vellum/client/types/function_call_vellum_value_request.py,sha256=oUteuCfWcj7UJbSE_Vywmmva9kyTaeL9iv5WJHabDVs,788
274
- vellum/client/types/function_definition.py,sha256=D6uZTIndSeTT4O6FQjU7jVB6Tn1VWOqlAjCa92qX5cE,1127
274
+ vellum/client/types/function_definition.py,sha256=UzlrrBtdWe7RMStfc1UVdcnr4s8N4mOhsM306p6x_CE,1693
275
275
  vellum/client/types/generate_options_request.py,sha256=TUDqsH0tiPWDZH4T-p5gsvKvwVHEVZ_k6oI3qsjlsk4,782
276
276
  vellum/client/types/generate_request.py,sha256=gL6ywAJe6YCJ5oKbtYwL2H_TMdC_6PJZAI7-P3UOF3I,1286
277
277
  vellum/client/types/generate_response.py,sha256=QjbBGFGRE1tHcyDodM6Avzq0YHI4gsprkAWpdqZRrh4,1135
@@ -304,7 +304,7 @@ vellum/client/types/initiated_workflow_node_result_event.py,sha256=Nu1J4iQYsW2HH
304
304
  vellum/client/types/instructor_vectorizer_config.py,sha256=7udlosXv4CUWTW_Q9m0mz3VRi1FKSbBhDIOhtxRd0-U,731
305
305
  vellum/client/types/instructor_vectorizer_config_request.py,sha256=6LGFFQKntMfX7bdetUqEMVdr3KJHEps0oDp2bNmqWbM,738
306
306
  vellum/client/types/iteration_state_enum.py,sha256=83JSh842OJgQiLtNn1KMimy6RlEYRVH3mDmYWS6Ewzo,180
307
- vellum/client/types/jinja_prompt_block.py,sha256=Q2aIQh8a-i09kL1ISM-kzTq7TZoyaafDDlmCkUmLnVw,939
307
+ vellum/client/types/jinja_prompt_block.py,sha256=-wukO4TaDvGlrbkg9ZtDOPEfoLmaoX7830ktLGHRrvI,939
308
308
  vellum/client/types/json_input.py,sha256=ZUA2O9YueBCx0IMMdB8uYNSWJiSDZxMm5ogwbwCmz_g,761
309
309
  vellum/client/types/json_input_request.py,sha256=x5sA-VXxF4QH-98xRcIKPZhsMVbnJNUQofiUQqyfGk4,768
310
310
  vellum/client/types/json_variable_value.py,sha256=X7eBEWxuozfvIdqD5sIZ5L-L77Ou6IIsZaQVNXh5G2k,634
@@ -392,7 +392,7 @@ vellum/client/types/paginated_test_suite_test_case_list.py,sha256=9KrCCQKy0egMmV
392
392
  vellum/client/types/paginated_workflow_release_tag_read_list.py,sha256=dH24ESWyAMVtyHsBkxG8kJ9oORY04Wn3IN-7jvV7Lu4,818
393
393
  vellum/client/types/pdf_search_result_meta_source.py,sha256=EMVhqdN1bwE6Ujdx4VhlmKQtJvitN-57kY8oZPxh9dI,1126
394
394
  vellum/client/types/pdf_search_result_meta_source_request.py,sha256=nUhaD2Kw1paGC6O_ICVNu3R0e1SVgTshRTkGNgmcjXo,1133
395
- vellum/client/types/plain_text_prompt_block.py,sha256=GlzovdRbT6mhunMvIpF94_0apjh_0SZtkdlx5HFrE0k,930
395
+ vellum/client/types/plain_text_prompt_block.py,sha256=cqEN-B4mcvMw_9lBN7FQG8pk9b5LBJ9xpM6PTgkGiqs,930
396
396
  vellum/client/types/price.py,sha256=ewzXDBVLaleuXMVQ-gQ3G1Nl5J2OWOVEMEFfnQIpiTk,610
397
397
  vellum/client/types/processing_failure_reason_enum.py,sha256=R_KIW7TcQejhc-vLhtNf9SdkYADgoZCn4ch4_RRIvsI,195
398
398
  vellum/client/types/prompt_block.py,sha256=MIsxxmAmuT0thkkG12xm3THO5dlRLbFeMZBVTSvb788,493
@@ -424,7 +424,7 @@ vellum/client/types/rejected_workflow_node_result_event.py,sha256=o9AUc9hT60F8ck
424
424
  vellum/client/types/release_tag_source.py,sha256=YavosOXZ976yfXTNWRTZwh2HhRiYmSDk0bQCkl-jCoQ,158
425
425
  vellum/client/types/replace_test_suite_test_case_request.py,sha256=c1GT1RUCei1yWxyZy4Gv40PkXYisvK5OkzlqQ6WeBYA,1906
426
426
  vellum/client/types/rich_text_child_block.py,sha256=X_ACKFKSUx5SXT1cLp0Y5-7VrNxcGOggPm67Lk2442U,270
427
- vellum/client/types/rich_text_prompt_block.py,sha256=60Bg_1wuXAd5eBiO9xiN8NjMvYE67ZLTtAb1A3N-7oI,1036
427
+ vellum/client/types/rich_text_prompt_block.py,sha256=_Y2tRnSDtOUYHcq7zNfYbgqcLZab-Zd-Yh6UKdybVIY,1036
428
428
  vellum/client/types/sandbox_scenario.py,sha256=f4S0tDxmPYHIrD_BMjRL3XZGcGxlWy9apfI64hV7MBE,844
429
429
  vellum/client/types/scenario_input.py,sha256=caC8p5ZnuXhv2ZiHvzTvKL3Ebtr4NXP9Q8UcJEVB8-U,476
430
430
  vellum/client/types/scenario_input_chat_history_variable_value.py,sha256=ihgJktmZpz_12wx2yPtyrSrBjcBcSg9fby7h_eLoXgI,835
@@ -566,7 +566,7 @@ vellum/client/types/token_overlapping_window_chunking_request.py,sha256=IjCs9UDr
566
566
  vellum/client/types/unit_enum.py,sha256=BKWRVp2WfHtGK4D6TsolhNJHGHfExzrRHkFn8H8QkwQ,113
567
567
  vellum/client/types/upload_document_response.py,sha256=6_5Cm4yBPq5nD-rEql6GsmrAtSVVtNRczOL5YwsBVMI,649
568
568
  vellum/client/types/upsert_test_suite_test_case_request.py,sha256=iB38vx4mo4yNLV5XTeXMGR-PJLOQPloWQOAAi7PDpM0,2079
569
- vellum/client/types/variable_prompt_block.py,sha256=TnFQpfulqvbO-Ogs0u_IqQ6TPMMRC_Grz5uzd9-gMTs,946
569
+ vellum/client/types/variable_prompt_block.py,sha256=PZxTq_zu7wa5r2eTBbwCRL7hwDKaLaBT3URB1RR2WKw,946
570
570
  vellum/client/types/vellum_audio.py,sha256=oPm1bcxk7fTfWfHWOPSLvrZrRBjCyPDVDRMACPoWmMI,721
571
571
  vellum/client/types/vellum_audio_request.py,sha256=y9CZgQ1TteW0AHNk8GuAZLNVFa981rh7P9vyV8bfgys,728
572
572
  vellum/client/types/vellum_error.py,sha256=jCKfuCkDTiyFb1-QyP2cg0wReja6wMuooKPAjNhBA0M,643
@@ -1297,7 +1297,7 @@ vellum/workflows/nodes/displayable/bases/base_prompt_node/__init__.py,sha256=Org
1297
1297
  vellum/workflows/nodes/displayable/bases/base_prompt_node/node.py,sha256=EvylK1rGKpd4iiooEW9O5A9Q8DMTtBwETe_GtQT8M-E,2139
1298
1298
  vellum/workflows/nodes/displayable/bases/inline_prompt_node/__init__.py,sha256=Hl35IAoepRpE-j4cALaXVJIYTYOF3qszyVbxTj4kS1s,82
1299
1299
  vellum/workflows/nodes/displayable/bases/inline_prompt_node/constants.py,sha256=fnjiRWLoRlC4Puo5oQcpZD5Hd-EesxsAo9l5tGAkpZQ,270
1300
- vellum/workflows/nodes/displayable/bases/inline_prompt_node/node.py,sha256=H1AVDnitwIkwya12oV68Qj2tyb786pfRHHz5qxtubD4,5935
1300
+ vellum/workflows/nodes/displayable/bases/inline_prompt_node/node.py,sha256=fypgmZHgaDtGqSBC8rjYiyryJ0H58LPt_CafLfAprO0,6341
1301
1301
  vellum/workflows/nodes/displayable/bases/prompt_deployment_node.py,sha256=zdpNJoawB5PedsCCfgOGDDoWuif0jNtlV-K9sFL6cNQ,4968
1302
1302
  vellum/workflows/nodes/displayable/bases/search_node.py,sha256=pqiui8G6l_9FLE1HH4rCdFC73Bl7_AIBAmQQMjqe190,3570
1303
1303
  vellum/workflows/nodes/displayable/code_execution_node/__init__.py,sha256=0FLWMMktpzSnmBMizQglBpcPrP80fzVsoJwJgf822Cg,76
@@ -1316,7 +1316,7 @@ vellum/workflows/nodes/displayable/guardrail_node/node.py,sha256=7Ep7Ff7FtFry3Jw
1316
1316
  vellum/workflows/nodes/displayable/inline_prompt_node/__init__.py,sha256=gSUOoEZLlrx35-tQhSAd3An8WDwBqyiQh-sIebLU9wU,74
1317
1317
  vellum/workflows/nodes/displayable/inline_prompt_node/node.py,sha256=dTnP1yH1P0NqMw3noxt9XwaDCpX8ZOhuvVYNAn_DdCQ,2119
1318
1318
  vellum/workflows/nodes/displayable/inline_prompt_node/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1319
- vellum/workflows/nodes/displayable/inline_prompt_node/tests/test_node.py,sha256=189Oo66QDYJS8vCcyLe9ErJBGpWZVmPePFHta8wzdeM,2615
1319
+ vellum/workflows/nodes/displayable/inline_prompt_node/tests/test_node.py,sha256=P1DUL0wIG-cyA5dqGv7242cFWJXysmombdujKrJtl7k,4669
1320
1320
  vellum/workflows/nodes/displayable/merge_node/__init__.py,sha256=J8IC08dSH7P76wKlNuxe1sn7toNGtSQdFirUbtPDEs0,60
1321
1321
  vellum/workflows/nodes/displayable/merge_node/node.py,sha256=ZyPvcTgfPOneOm5Dc2kUOoPkwNJqwRPZSj232akXynA,324
1322
1322
  vellum/workflows/nodes/displayable/note_node/__init__.py,sha256=KWA3P4fyYJ-fOTky8qNGlcOotQ-HeHJ9AjZt6mRQmCE,58
@@ -1328,7 +1328,7 @@ vellum/workflows/nodes/displayable/search_node/node.py,sha256=yhFWulbNmSQoDAwtTS
1328
1328
  vellum/workflows/nodes/displayable/subworkflow_deployment_node/__init__.py,sha256=9yYM6001YZeqI1VOk1QuEM_yrffk_EdsO7qaPzINKds,92
1329
1329
  vellum/workflows/nodes/displayable/subworkflow_deployment_node/node.py,sha256=pnbRCgdzWXrXhm5jDkDDASl5xu5w3DxskC34yJVmWUs,7147
1330
1330
  vellum/workflows/nodes/displayable/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1331
- vellum/workflows/nodes/displayable/tests/test_inline_text_prompt_node.py,sha256=lLnXKAUYtgvQ6MpT4GoTrqLtdlyDlUt1pPHrmu-Gf00,4705
1331
+ vellum/workflows/nodes/displayable/tests/test_inline_text_prompt_node.py,sha256=UI_RMmXn9qwB-StnFPvkDd9FctBQAg43wrfouqvPepk,4701
1332
1332
  vellum/workflows/nodes/displayable/tests/test_search_node_wth_text_output.py,sha256=4CMwDtXwTaEvFfDpA6j2iLqc7S6IICSkvVZOobEpeps,6954
1333
1333
  vellum/workflows/nodes/displayable/tests/test_text_prompt_deployment_node.py,sha256=KqKJtJ0vuNoPuUPMdILmBTt4a2fBBxxun-nmOI7T8jo,2585
1334
1334
  vellum/workflows/nodes/utils.py,sha256=EZt7CzJmgQBR_GWFpZr8d-oaoti3tolTd2Cv9wm7dKo,1087
@@ -1353,6 +1353,7 @@ vellum/workflows/resolvers/__init__.py,sha256=eH6hTvZO4IciDaf_cf7aM2vs-DkBDyJPyc
1353
1353
  vellum/workflows/resolvers/base.py,sha256=WHra9LRtlTuB1jmuNqkfVE2JUgB61Cyntn8f0b0WZg4,411
1354
1354
  vellum/workflows/runner/__init__.py,sha256=i1iG5sAhtpdsrlvwgH6B-m49JsINkiWyPWs8vyT-bqM,72
1355
1355
  vellum/workflows/runner/runner.py,sha256=RXnLEmSJFbp0u4vKF7rvD2fscuYfcRYkspIJINnvFAI,27607
1356
+ vellum/workflows/sandbox.py,sha256=wNyOfd3gb6-O85EQcBIHNCnSYPH7Oufh2z4hQnR2HFU,2059
1356
1357
  vellum/workflows/state/__init__.py,sha256=yUUdR-_Vl7UiixNDYQZ-GEM_kJI9dnOia75TtuNEsnE,60
1357
1358
  vellum/workflows/state/base.py,sha256=jpSzF1OQd3-fqi6dMGlNsQl-7JnJxCdzWIigmX8Wz-I,14425
1358
1359
  vellum/workflows/state/context.py,sha256=oXiEdNsWJi1coRB85IreTgUeR6_CrWWBXndtLff9S7M,1272
@@ -1360,6 +1361,8 @@ vellum/workflows/state/encoder.py,sha256=kRrqwD0vFCiSRZR3rg8Sjkh8sDEerQQhlvmdSYQ
1360
1361
  vellum/workflows/state/store.py,sha256=VYGBQgN1bpd1as5eGiouV_7scg8QsRs4_1aqZAGIsRQ,793
1361
1362
  vellum/workflows/state/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1362
1363
  vellum/workflows/state/tests/test_state.py,sha256=BQjcdREIK1MPuGhivRUgpynVJLftjEpH9RG3cRKxQEY,3310
1364
+ vellum/workflows/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1365
+ vellum/workflows/tests/test_sandbox.py,sha256=OMN15LuFUV58-XnAhtBiLcEjNt-Pj6bZgetDr8miCiw,1808
1363
1366
  vellum/workflows/types/__init__.py,sha256=KxUTMBGzuRCfiMqzzsykOeVvrrkaZmTTo1a7SLu8gRM,68
1364
1367
  vellum/workflows/types/core.py,sha256=D2NcSBwGgWj_mtXZqe3KnEQcb5qd5HzqAwnxwmlCfCw,899
1365
1368
  vellum/workflows/types/generics.py,sha256=ZkfoRhWs042i5IjA99v2wIhmh1u-Wieo3LzosgGWJVk,600
@@ -1368,10 +1371,10 @@ vellum/workflows/types/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NM
1368
1371
  vellum/workflows/types/tests/test_utils.py,sha256=t6eqTSZqw2oVkIw6lP393qVmuyzjZZ62Ls1iELwZg_o,2434
1369
1372
  vellum/workflows/types/utils.py,sha256=Vk_itjV8YrfoT_Pm_x7QMvBdpCTr_XBTlszqZkQQJLw,5587
1370
1373
  vellum/workflows/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1371
- vellum/workflows/utils/functions.py,sha256=udPTz1yFuSbHIQ6UeOUXro_hj4c8XdAb00_bH-Bf9N0,2529
1374
+ vellum/workflows/utils/functions.py,sha256=7A4BImhtY__qQpNrF5uPiwLfkj6PSUxYvF7ITigIkxY,4051
1372
1375
  vellum/workflows/utils/names.py,sha256=QLUqfJ1tmSEeUwBKTTiv_Qk3QGbInC2RSmlXfGXc8Wo,380
1373
1376
  vellum/workflows/utils/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1374
- vellum/workflows/utils/tests/test_functions.py,sha256=68OdrS1Gf3incmRd4g3a7-nylqQbJdQjl7AyfVUJg5I,5223
1377
+ vellum/workflows/utils/tests/test_functions.py,sha256=ytdruS55aO2egsb5sAv8_9jf68L1cJoZu2uKV2iamrg,8083
1375
1378
  vellum/workflows/utils/tests/test_names.py,sha256=aOqpyvMsOEK_9mg_-yaNxQDW7QQfwqsYs37PseyLhxw,402
1376
1379
  vellum/workflows/utils/tests/test_uuids.py,sha256=i77ABQ0M3S-aFLzDXHJq_yr5FPkJEWCMBn1HJ3DObrE,437
1377
1380
  vellum/workflows/utils/tests/test_vellum_variables.py,sha256=0ISy1xjY7_rci0Mt_naK0xrmurE1REZLMCgPOCLFKRM,776
@@ -1381,8 +1384,8 @@ vellum/workflows/vellum_client.py,sha256=ODrq_TSl-drX2aezXegf7pizpWDVJuTXH-j6528
1381
1384
  vellum/workflows/workflows/__init__.py,sha256=KY45TqvavCCvXIkyCFMEc0dc6jTMOUci93U2DUrlZYc,66
1382
1385
  vellum/workflows/workflows/base.py,sha256=zpspOEdO5Ye_0ZvN-Wkzv9iQSiF1sD201ba8lhbnPbs,17086
1383
1386
  vellum/workflows/workflows/event_filters.py,sha256=GSxIgwrX26a1Smfd-6yss2abGCnadGsrSZGa7t7LpJA,2008
1384
- vellum_ai-0.12.4.dist-info/LICENSE,sha256=hOypcdt481qGNISA784bnAGWAE6tyIf9gc2E78mYC3E,1574
1385
- vellum_ai-0.12.4.dist-info/METADATA,sha256=NGdP3b6at6hPyXJWKWlyXKb0dSLEnYSUy3yIy1pVJIc,5128
1386
- vellum_ai-0.12.4.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
1387
- vellum_ai-0.12.4.dist-info/entry_points.txt,sha256=HCH4yc_V3J_nDv3qJzZ_nYS8llCHZViCDP1ejgCc5Ak,42
1388
- vellum_ai-0.12.4.dist-info/RECORD,,
1387
+ vellum_ai-0.12.6.dist-info/LICENSE,sha256=hOypcdt481qGNISA784bnAGWAE6tyIf9gc2E78mYC3E,1574
1388
+ vellum_ai-0.12.6.dist-info/METADATA,sha256=C1VU1fn4OEzUUW4pv7NTqN6hMP4XCwxUZldj2hAtths,5128
1389
+ vellum_ai-0.12.6.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
1390
+ vellum_ai-0.12.6.dist-info/entry_points.txt,sha256=HCH4yc_V3J_nDv3qJzZ_nYS8llCHZViCDP1ejgCc5Ak,42
1391
+ vellum_ai-0.12.6.dist-info/RECORD,,
vellum_cli/__init__.py CHANGED
@@ -125,10 +125,16 @@ Should only be used for debugging purposes.""",
125
125
  help="""Exclude the code definition of each Resource from the pull response. \
126
126
  Should only be used for debugging purposes.""",
127
127
  )
128
+ @click.option(
129
+ "--strict",
130
+ is_flag=True,
131
+ help="""Raises an error immediately if there are any issues with the pulling of the Resource.""",
132
+ )
128
133
  def pull(
129
134
  ctx: click.Context,
130
135
  include_json: Optional[bool],
131
136
  exclude_code: Optional[bool],
137
+ strict: Optional[bool],
132
138
  ) -> None:
133
139
  """Pull Resources from Vellum"""
134
140
 
@@ -136,6 +142,7 @@ def pull(
136
142
  pull_command(
137
143
  include_json=include_json,
138
144
  exclude_code=exclude_code,
145
+ strict=strict,
139
146
  )
140
147
 
141
148
 
@@ -159,12 +166,18 @@ Should only be used for debugging purposes.""",
159
166
  help="""Exclude the code definition of the Workflow from the pull response. \
160
167
  Should only be used for debugging purposes.""",
161
168
  )
169
+ @click.option(
170
+ "--strict",
171
+ is_flag=True,
172
+ help="""Raises an error immediately if there are any issues with the pulling of the Workflow.""",
173
+ )
162
174
  def workflows_pull(
163
175
  module: Optional[str],
164
176
  include_json: Optional[bool],
165
177
  workflow_sandbox_id: Optional[str],
166
178
  workflow_deployment: Optional[str],
167
179
  exclude_code: Optional[bool],
180
+ strict: Optional[bool],
168
181
  ) -> None:
169
182
  """
170
183
  Pull Workflows from Vellum. If a module is provided, only the Workflow for that module will be pulled.
@@ -177,6 +190,7 @@ def workflows_pull(
177
190
  workflow_sandbox_id=workflow_sandbox_id,
178
191
  workflow_deployment=workflow_deployment,
179
192
  exclude_code=exclude_code,
193
+ strict=strict,
180
194
  )
181
195
 
182
196
 
vellum_cli/pull.py CHANGED
@@ -13,6 +13,8 @@ from vellum.workflows.vellum_client import create_vellum_client
13
13
  from vellum_cli.config import VellumCliConfig, WorkflowConfig, load_vellum_cli_config
14
14
  from vellum_cli.logger import load_cli_logger
15
15
 
16
+ ERROR_LOG_FILE_NAME = "error.log"
17
+
16
18
 
17
19
  def _is_valid_uuid(val: Union[str, UUID, None]) -> bool:
18
20
  try:
@@ -81,6 +83,7 @@ def pull_command(
81
83
  workflow_deployment: Optional[str] = None,
82
84
  include_json: Optional[bool] = None,
83
85
  exclude_code: Optional[bool] = None,
86
+ strict: Optional[bool] = None,
84
87
  ) -> None:
85
88
  load_dotenv()
86
89
  logger = load_cli_logger()
@@ -109,6 +112,8 @@ def pull_command(
109
112
  query_parameters["include_json"] = include_json
110
113
  if exclude_code:
111
114
  query_parameters["exclude_code"] = exclude_code
115
+ if strict:
116
+ query_parameters["strict"] = strict
112
117
 
113
118
  response = client.workflows.pull(
114
119
  pk,
@@ -119,6 +124,7 @@ def pull_command(
119
124
  zip_buffer = io.BytesIO(zip_bytes)
120
125
 
121
126
  target_dir = os.path.join(os.getcwd(), *workflow_config.module.split("."))
127
+ error_content = ""
122
128
  with zipfile.ZipFile(zip_buffer) as zip_file:
123
129
  # Delete files in target_dir that aren't in the zip file
124
130
  if os.path.exists(target_dir):
@@ -146,8 +152,13 @@ def pull_command(
146
152
  target_file = os.path.join(target_dir, file_name)
147
153
  os.makedirs(os.path.dirname(target_file), exist_ok=True)
148
154
  with zip_file.open(file_name) as source, open(target_file, "w") as target:
155
+ content = source.read().decode("utf-8")
156
+ if file_name == ERROR_LOG_FILE_NAME:
157
+ error_content = content
158
+ continue
159
+
149
160
  logger.info(f"Writing to {target_file}...")
150
- target.write(source.read().decode("utf-8"))
161
+ target.write(content)
151
162
 
152
163
  if include_json:
153
164
  logger.warning(
@@ -158,4 +169,7 @@ Its schema should be considered unstable and subject to change at any time."""
158
169
  if save_lock_file:
159
170
  config.save()
160
171
 
161
- logger.info(f"Successfully pulled Workflow into {workflow_config.module}")
172
+ if error_content:
173
+ logger.error(error_content)
174
+ else:
175
+ logger.info(f"Successfully pulled Workflow into {workflow_config.module}")
@@ -441,3 +441,48 @@ def test_pull__sandbox_id_with_other_workflow_deployment_in_lock(vellum_client,
441
441
  "deployments": [],
442
442
  },
443
443
  ]
444
+
445
+
446
+ def test_pull__handle_error_log(vellum_client, mock_module):
447
+ # GIVEN a pyproject.toml with a workflow configured
448
+ temp_dir = mock_module.temp_dir
449
+ module = mock_module.module
450
+ workflow_sandbox_id = mock_module.workflow_sandbox_id
451
+
452
+ # AND the workflow pull API call returns a zip file with an error log
453
+ vellum_client.workflows.pull.return_value = iter(
454
+ [_zip_file_map({"workflow.py": "print('hello')", "error.log": "test error"})]
455
+ )
456
+
457
+ # WHEN the user runs the pull command with the new workflow sandbox id
458
+ runner = CliRunner()
459
+ result = runner.invoke(cli_main, ["workflows", "pull", "--workflow-sandbox-id", workflow_sandbox_id])
460
+
461
+ # THEN the command returns successfully
462
+ assert result.exit_code == 0
463
+
464
+ # AND the error log file is not written to the module directory
465
+ assert not os.path.exists(os.path.join(temp_dir, *module.split("."), "error.log"))
466
+
467
+ # AND the error log is printed to the console
468
+ assert result.output.endswith("\x1b[31;20mtest error\x1b[0m\n")
469
+
470
+
471
+ def test_pull__strict__with_error(vellum_client, mock_module):
472
+ # GIVEN a pyproject.toml with a workflow configured
473
+ workflow_sandbox_id = mock_module.workflow_sandbox_id
474
+
475
+ # AND the workflow pull API call returns a zip file
476
+ vellum_client.workflows.pull.return_value = iter([_zip_file_map({"workflow.py": "print('hello')"})])
477
+
478
+ # WHEN the user runs the pull command with the new workflow sandbox id
479
+ runner = CliRunner()
480
+ result = runner.invoke(cli_main, ["workflows", "pull", "--strict", "--workflow-sandbox-id", workflow_sandbox_id])
481
+
482
+ # THEN the command returns successfully
483
+ assert result.exit_code == 0
484
+
485
+ # AND the pull api is called with strict=True
486
+ vellum_client.workflows.pull.assert_called_once()
487
+ call_args = vellum_client.workflows.pull.call_args.kwargs
488
+ assert call_args["request_options"]["additional_query_parameters"] == {"strict": True}
@@ -1,5 +1,5 @@
1
1
  from uuid import UUID
2
- from typing import ClassVar, Dict, Optional
2
+ from typing import ClassVar, Dict, Optional, Union
3
3
 
4
4
  from vellum.workflows.nodes.utils import get_unadorned_node
5
5
  from vellum.workflows.ports import Port
@@ -18,7 +18,7 @@ class BaseNodeVellumDisplay(BaseNodeDisplay[NodeType]):
18
18
  target_handle_id: ClassVar[Optional[UUID]] = None
19
19
 
20
20
  # Used to explicitly set the node input ids by name for a node
21
- node_input_ids_by_name: ClassVar[Dict[str, UUID]] = {}
21
+ node_input_ids_by_name: ClassVar[Dict[str, Union[UUID, str]]] = {}
22
22
 
23
23
  def _get_node_display_uuid(self, attribute: str) -> UUID:
24
24
  explicit_value = self._get_explicit_node_display_attr(attribute, UUID)
@@ -1,6 +1,6 @@
1
1
  import inspect
2
2
  from uuid import UUID
3
- from typing import ClassVar, Dict, Generic, Optional, TypeVar
3
+ from typing import ClassVar, Generic, Optional, TypeVar
4
4
 
5
5
  from vellum.workflows.nodes.displayable.code_execution_node import CodeExecutionNode
6
6
  from vellum.workflows.nodes.displayable.code_execution_node.utils import read_file_from_path
@@ -21,8 +21,6 @@ class BaseCodeExecutionNodeDisplay(BaseNodeVellumDisplay[_CodeExecutionNodeType]
21
21
  output_id: ClassVar[Optional[UUID]] = None
22
22
  log_output_id: ClassVar[Optional[UUID]] = None
23
23
 
24
- node_input_ids_by_name: ClassVar[Dict[str, UUID]] = {}
25
-
26
24
  def serialize(
27
25
  self, display_context: WorkflowDisplayContext, error_output_id: Optional[UUID] = None, **kwargs
28
26
  ) -> JsonObject:
@@ -40,17 +40,17 @@ _ConditionalNodeType = TypeVar("_ConditionalNodeType", bound=ConditionalNode)
40
40
 
41
41
  @dataclass
42
42
  class RuleIdMap:
43
- id: UUID
43
+ id: str
44
44
  lhs: Optional["RuleIdMap"]
45
45
  rhs: Optional["RuleIdMap"]
46
- field_node_input_id: Optional[UUID]
47
- value_node_input_id: Optional[UUID]
46
+ field_node_input_id: Optional[str]
47
+ value_node_input_id: Optional[str]
48
48
 
49
49
 
50
50
  @dataclass
51
51
  class ConditionId:
52
- id: UUID
53
- rule_group_id: Optional[UUID]
52
+ id: str
53
+ rule_group_id: Optional[str]
54
54
 
55
55
 
56
56
  class BaseConditionalNodeDisplay(BaseNodeVellumDisplay[_ConditionalNodeType], Generic[_ConditionalNodeType]):
@@ -112,7 +112,7 @@ but the defined conditions have length {len(condition_ids)}"""
112
112
  node_id, f"{current_id}.field", descriptor._expression, display_context, field_node_input_id
113
113
  )
114
114
  node_inputs.append(expression_node_input)
115
- field_node_input_id = UUID(expression_node_input.id)
115
+ field_node_input_id = expression_node_input.id
116
116
  operator = self._convert_descriptor_to_operator(descriptor)
117
117
 
118
118
  elif isinstance(descriptor, (BetweenExpression, NotBetweenExpression)):
@@ -128,8 +128,8 @@ but the defined conditions have length {len(condition_ids)}"""
128
128
  )
129
129
  node_inputs.extend([field_node_input, value_node_input])
130
130
  operator = self._convert_descriptor_to_operator(descriptor)
131
- field_node_input_id = UUID(field_node_input.id)
132
- value_node_input_id = UUID(value_node_input.id)
131
+ field_node_input_id = field_node_input.id
132
+ value_node_input_id = value_node_input.id
133
133
 
134
134
  else:
135
135
  lhs = descriptor._lhs # type: ignore[attr-defined]
@@ -145,19 +145,19 @@ but the defined conditions have length {len(condition_ids)}"""
145
145
  node_id, f"{current_id}.value", rhs, display_context, value_node_input_id
146
146
  )
147
147
  node_inputs.append(rhs_node_input)
148
- value_node_input_id = UUID(rhs_node_input.id)
148
+ value_node_input_id = rhs_node_input.id
149
149
 
150
150
  operator = self._convert_descriptor_to_operator(descriptor)
151
- field_node_input_id = UUID(lhs_node_input.id)
151
+ field_node_input_id = lhs_node_input.id
152
152
 
153
153
  return {
154
- "id": str(current_id),
154
+ "id": current_id,
155
155
  "rules": None,
156
156
  "combinator": None,
157
157
  "negated": False,
158
- "field_node_input_id": str(field_node_input_id),
158
+ "field_node_input_id": field_node_input_id,
159
159
  "operator": operator,
160
- "value_node_input_id": str(value_node_input_id),
160
+ "value_node_input_id": value_node_input_id,
161
161
  }
162
162
 
163
163
  conditions = []
@@ -263,7 +263,7 @@ but the defined conditions have length {len(condition_ids)}"""
263
263
 
264
264
  def get_nested_rule_details_by_path(
265
265
  self, rule_ids: List[RuleIdMap], path: List[int]
266
- ) -> Union[Tuple[UUID, Optional[UUID], Optional[UUID]], None]:
266
+ ) -> Union[Tuple[str, Optional[str], Optional[str]], None]:
267
267
  current_rule = rule_ids[path[0]]
268
268
 
269
269
  for step in path[1:]:
@@ -284,11 +284,11 @@ but the defined conditions have length {len(condition_ids)}"""
284
284
 
285
285
  return None
286
286
 
287
- def _generate_hash_for_rule_ids(self, node_id, rule_id) -> Tuple[UUID, UUID, UUID]:
287
+ def _generate_hash_for_rule_ids(self, node_id, rule_id) -> Tuple[str, str, str]:
288
288
  return (
289
- uuid4_from_hash(f"{node_id}|{rule_id}|current"),
290
- uuid4_from_hash(f"{node_id}|{rule_id}||field"),
291
- uuid4_from_hash(f"{node_id}|{rule_id}||value"),
289
+ str(uuid4_from_hash(f"{node_id}|{rule_id}|current")),
290
+ str(uuid4_from_hash(f"{node_id}|{rule_id}||field")),
291
+ str(uuid4_from_hash(f"{node_id}|{rule_id}||value")),
292
292
  )
293
293
 
294
294
  def _get_source_handle_ids(self) -> Dict[int, UUID]:
@@ -28,7 +28,9 @@ class VariableIdMap:
28
28
 
29
29
 
30
30
  class BaseSearchNodeDisplay(BaseNodeVellumDisplay[_SearchNodeType], Generic[_SearchNodeType]):
31
- input_variable_ids_by_logical_id: Optional[Dict[str, str]] = None
31
+ # A mapping between the id of the operand (e.g. "lhs_variable_id" or "rhs_variable_id") and the id of the node input
32
+ # that the operand is pointing to.
33
+ metadata_filter_input_id_by_operand_id: Dict[UUID, UUID] = {}
32
34
 
33
35
  def serialize(
34
36
  self, display_context: WorkflowDisplayContext, error_output_id: Optional[UUID] = None, **kwargs
@@ -149,18 +151,20 @@ class BaseSearchNodeDisplay(BaseNodeVellumDisplay[_SearchNodeType], Generic[_Sea
149
151
  variables,
150
152
  )
151
153
  elif isinstance(logical_expression, VellumValueLogicalConditionRequest):
152
- lhs_variable_id = str(logical_expression.lhs_variable.value)
153
- rhs_variable_id = str(logical_expression.rhs_variable.value)
154
- lhs_query_input_id = (
155
- self.input_variable_ids_by_logical_id[lhs_variable_id]
156
- if self.input_variable_ids_by_logical_id
157
- else str(uuid4_from_hash(f"{self.node_id}|{hash(tuple(path))}"))
158
- )
159
- rhs_query_input_id = (
160
- self.input_variable_ids_by_logical_id[rhs_variable_id]
161
- if self.input_variable_ids_by_logical_id
162
- else str(uuid4_from_hash(f"{self.node_id}|{hash(tuple(path))}"))
163
- )
154
+ lhs_variable_id = logical_expression.lhs_variable.value
155
+ if not isinstance(lhs_variable_id, str):
156
+ raise TypeError(f"Expected lhs_variable_id to be a string, got {type(lhs_variable_id)}")
157
+
158
+ rhs_variable_id = logical_expression.rhs_variable.value
159
+ if not isinstance(rhs_variable_id, str):
160
+ raise TypeError(f"Expected rhs_variable_id to be a string, got {type(rhs_variable_id)}")
161
+
162
+ lhs_query_input_id: UUID = self.metadata_filter_input_id_by_operand_id.get(
163
+ UUID(lhs_variable_id)
164
+ ) or uuid4_from_hash(f"{self.node_id}|{hash(tuple(path))}")
165
+ rhs_query_input_id: UUID = self.metadata_filter_input_id_by_operand_id.get(
166
+ UUID(rhs_variable_id)
167
+ ) or uuid4_from_hash(f"{self.node_id}|{hash(tuple(path))}")
164
168
 
165
169
  return (
166
170
  {
@@ -173,7 +177,7 @@ class BaseSearchNodeDisplay(BaseNodeVellumDisplay[_SearchNodeType], Generic[_Sea
173
177
  create_node_input(
174
178
  self.node_id,
175
179
  f"vellum-query-builder-variable-{lhs_variable_id}",
176
- lhs_query_input_id,
180
+ str(lhs_query_input_id),
177
181
  display_context,
178
182
  input_id=UUID(lhs_variable_id),
179
183
  pointer_type=InputVariablePointer,
@@ -181,7 +185,7 @@ class BaseSearchNodeDisplay(BaseNodeVellumDisplay[_SearchNodeType], Generic[_Sea
181
185
  create_node_input(
182
186
  self.node_id,
183
187
  f"vellum-query-builder-variable-{rhs_variable_id}",
184
- rhs_query_input_id,
188
+ str(rhs_query_input_id),
185
189
  display_context,
186
190
  input_id=UUID(rhs_variable_id),
187
191
  pointer_type=InputVariablePointer,
@@ -25,7 +25,7 @@ class BaseTemplatingNodeDisplay(BaseNodeVellumDisplay[_TemplatingNodeType], Gene
25
25
 
26
26
  template_input_id = self.template_input_id or next(
27
27
  (
28
- input_id
28
+ UUID(input_id) if isinstance(input_id, str) else input_id
29
29
  for input_name, input_id in self.node_input_ids_by_name.items()
30
30
  if input_name == TEMPLATE_INPUT_NAME
31
31
  ),
@@ -1,5 +1,5 @@
1
1
  from uuid import UUID
2
- from typing import Any, List, Optional, Type, cast
2
+ from typing import Any, List, Optional, Type, Union, cast
3
3
 
4
4
  from vellum.workflows.descriptors.base import BaseDescriptor
5
5
  from vellum.workflows.expressions.coalesce_expression import CoalesceExpression
@@ -27,10 +27,10 @@ def create_node_input(
27
27
  input_name: str,
28
28
  value: Any,
29
29
  display_context: WorkflowDisplayContext,
30
- input_id: Optional[UUID],
30
+ input_id: Union[Optional[UUID], Optional[str]],
31
31
  pointer_type: Optional[Type[NodeInputValuePointerRule]] = ConstantValuePointer,
32
32
  ) -> NodeInput:
33
- input_id = input_id or uuid4_from_hash(f"{node_id}|{input_name}")
33
+ input_id = str(input_id) if input_id else str(uuid4_from_hash(f"{node_id}|{input_name}"))
34
34
  if (
35
35
  isinstance(value, OutputReference)
36
36
  and value.outputs_class._node_class
@@ -42,7 +42,7 @@ def create_node_input(
42
42
 
43
43
  rules = create_node_input_value_pointer_rules(value, display_context, pointer_type=pointer_type)
44
44
  return NodeInput(
45
- id=str(input_id),
45
+ id=input_id,
46
46
  key=input_name,
47
47
  value=NodeInputValuePointer(
48
48
  rules=rules,