vellum-ai 0.12.15__py3-none-any.whl → 0.12.17__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (48) hide show
  1. vellum/client/core/client_wrapper.py +1 -1
  2. vellum/plugins/vellum_mypy.py +80 -11
  3. vellum/prompts/blocks/compilation.py +43 -0
  4. vellum/utils/templating/render.py +3 -0
  5. vellum/workflows/nodes/bases/base.py +4 -0
  6. vellum/workflows/nodes/core/inline_subworkflow_node/node.py +10 -2
  7. vellum/workflows/nodes/core/inline_subworkflow_node/tests/test_node.py +16 -0
  8. vellum/workflows/nodes/core/retry_node/node.py +24 -3
  9. vellum/workflows/nodes/core/retry_node/tests/test_node.py +40 -0
  10. vellum/workflows/nodes/core/templating_node/tests/test_templating_node.py +20 -1
  11. vellum/workflows/nodes/displayable/api_node/node.py +3 -3
  12. {vellum_ai-0.12.15.dist-info → vellum_ai-0.12.17.dist-info}/METADATA +10 -8
  13. {vellum_ai-0.12.15.dist-info → vellum_ai-0.12.17.dist-info}/RECORD +48 -45
  14. vellum_cli/__init__.py +14 -0
  15. vellum_cli/pull.py +7 -4
  16. vellum_cli/push.py +26 -4
  17. vellum_cli/tests/conftest.py +4 -2
  18. vellum_cli/tests/test_push.py +75 -4
  19. vellum_ee/workflows/display/nodes/vellum/api_node.py +3 -3
  20. vellum_ee/workflows/display/nodes/vellum/base_node.py +17 -0
  21. vellum_ee/workflows/display/nodes/vellum/code_execution_node.py +2 -2
  22. vellum_ee/workflows/display/nodes/vellum/inline_prompt_node.py +2 -2
  23. vellum_ee/workflows/display/nodes/vellum/inline_subworkflow_node.py +20 -6
  24. vellum_ee/workflows/display/nodes/vellum/map_node.py +1 -0
  25. vellum_ee/workflows/display/nodes/vellum/prompt_deployment_node.py +2 -2
  26. vellum_ee/workflows/display/nodes/vellum/search_node.py +4 -2
  27. vellum_ee/workflows/display/nodes/vellum/templating_node.py +1 -1
  28. vellum_ee/workflows/display/nodes/vellum/tests/test_utils.py +3 -3
  29. vellum_ee/workflows/display/tests/workflow_serialization/generic_nodes/__init__.py +0 -0
  30. vellum_ee/workflows/display/tests/workflow_serialization/generic_nodes/conftest.py +28 -0
  31. vellum_ee/workflows/display/tests/workflow_serialization/generic_nodes/test_trigger_serialization.py +123 -0
  32. vellum_ee/workflows/display/tests/workflow_serialization/test_basic_conditional_node_serialization.py +2 -11
  33. vellum_ee/workflows/display/tests/workflow_serialization/test_basic_error_node_serialization.py +2 -14
  34. vellum_ee/workflows/display/tests/workflow_serialization/test_basic_generic_node_serialization.py +1 -7
  35. vellum_ee/workflows/display/tests/workflow_serialization/test_basic_inline_subworkflow_serialization.py +17 -1
  36. vellum_ee/workflows/display/tests/workflow_serialization/test_basic_map_node_serialization.py +17 -1
  37. vellum_ee/workflows/display/tests/workflow_serialization/test_basic_merge_node_serialization.py +1 -9
  38. vellum_ee/workflows/display/tests/workflow_serialization/test_basic_try_node_serialization.py +1 -1
  39. vellum_ee/workflows/display/tests/workflow_serialization/test_complex_terminal_node_serialization.py +1 -4
  40. vellum_ee/workflows/display/types.py +5 -1
  41. vellum_ee/workflows/display/utils/vellum.py +3 -3
  42. vellum_ee/workflows/display/vellum.py +4 -0
  43. vellum_ee/workflows/display/workflows/base_workflow_display.py +44 -16
  44. vellum_ee/workflows/display/workflows/get_vellum_workflow_display_class.py +3 -0
  45. vellum_ee/workflows/display/workflows/vellum_workflow_display.py +7 -8
  46. {vellum_ai-0.12.15.dist-info → vellum_ai-0.12.17.dist-info}/LICENSE +0 -0
  47. {vellum_ai-0.12.15.dist-info → vellum_ai-0.12.17.dist-info}/WHEEL +0 -0
  48. {vellum_ai-0.12.15.dist-info → vellum_ai-0.12.17.dist-info}/entry_points.txt +0 -0
@@ -18,7 +18,7 @@ class BaseClientWrapper:
18
18
  headers: typing.Dict[str, str] = {
19
19
  "X-Fern-Language": "Python",
20
20
  "X-Fern-SDK-Name": "vellum-ai",
21
- "X-Fern-SDK-Version": "0.12.15",
21
+ "X-Fern-SDK-Version": "0.12.17",
22
22
  }
23
23
  headers["X_API_KEY"] = self.api_key
24
24
  return headers
@@ -4,6 +4,7 @@ from typing import Callable, Dict, List, Optional, Set, Type
4
4
  from mypy.nodes import (
5
5
  AssignmentStmt,
6
6
  CallExpr,
7
+ ClassDef,
7
8
  Decorator,
8
9
  MemberExpr,
9
10
  NameExpr,
@@ -198,13 +199,27 @@ class VellumMypyPlugin(Plugin):
198
199
  return
199
200
 
200
201
  current_node_outputs = node_info.names.get("Outputs")
201
- if not current_node_outputs:
202
+ if not current_node_outputs and isinstance(base_node_outputs.node, TypeInfo):
202
203
  node_info.names["Outputs"] = base_node_outputs.copy()
203
- new_outputs_sym = node_info.names["Outputs"].node
204
- if isinstance(new_outputs_sym, TypeInfo):
205
- result_sym = new_outputs_sym.names[attribute_name].node
206
- if isinstance(result_sym, Var):
207
- result_sym.type = base_node_resolved_type
204
+
205
+ new_outputs_fullname = f"{node_info.fullname}.Outputs"
206
+ new_outputs_defn_raw = base_node_outputs.node.defn.serialize()
207
+ new_outputs_defn_raw["fullname"] = new_outputs_fullname
208
+ new_outputs_defn = ClassDef.deserialize(new_outputs_defn_raw)
209
+ new_outputs_sym = TypeInfo(
210
+ names=base_node_outputs.node.names.copy(),
211
+ defn=new_outputs_defn,
212
+ module_name=node_info.module_name,
213
+ )
214
+
215
+ base_result_sym = base_node_outputs.node.names[attribute_name].node
216
+ if isinstance(base_result_sym, Var):
217
+ new_result_sym = Var.deserialize(base_result_sym.serialize())
218
+ new_result_sym._fullname = f"{new_outputs_fullname}.{attribute_name}"
219
+ new_result_sym.type = base_node_resolved_type
220
+ new_outputs_sym.names[attribute_name].node = new_result_sym
221
+ new_outputs_sym.bases.append(Instance(base_node_outputs.node, []))
222
+ node_info.names["Outputs"].node = new_outputs_sym
208
223
 
209
224
  def _base_node_class_hook(self, ctx: ClassDefContext) -> None:
210
225
  """
@@ -472,10 +487,22 @@ class VellumMypyPlugin(Plugin):
472
487
 
473
488
  def _run_method_hook(self, ctx: MethodContext) -> MypyType:
474
489
  """
475
- We use this to target `Workflow.run()` so that the WorkflowExecutionFulfilledEvent is properly typed
476
- using the `Outputs` class defined on the user-defined subclass of `Workflow`.
490
+ We use this to target:
491
+ - `BaseWorkflow.run()`, so that the WorkflowExecutionFulfilledEvent is properly typed
492
+ using the `Outputs` class defined on the user-defined subclass of `Workflow`.
493
+ - `BaseNode.run()`, so that the `Outputs` class defined on the user-defined subclass of `Node`
494
+ is properly typed.
477
495
  """
478
496
 
497
+ if isinstance(ctx.default_return_type, TypeAliasType):
498
+ return self._workflow_run_method_hook(ctx)
499
+
500
+ if isinstance(ctx.default_return_type, Instance):
501
+ return self._node_run_method_hook(ctx)
502
+
503
+ return ctx.default_return_type
504
+
505
+ def _workflow_run_method_hook(self, ctx: MethodContext) -> MypyType:
479
506
  if not isinstance(ctx.default_return_type, TypeAliasType):
480
507
  return ctx.default_return_type
481
508
 
@@ -494,7 +521,7 @@ class VellumMypyPlugin(Plugin):
494
521
  if fulfilled_event.type.fullname != "vellum.workflows.events.workflow.WorkflowExecutionFulfilledEvent":
495
522
  return ctx.default_return_type
496
523
 
497
- outputs_node = self._get_outputs_node(ctx)
524
+ outputs_node = self._get_workflow_outputs_type_info(ctx)
498
525
  if not outputs_node:
499
526
  return ctx.default_return_type
500
527
 
@@ -513,6 +540,19 @@ class VellumMypyPlugin(Plugin):
513
540
  column=ctx.default_return_type.column,
514
541
  )
515
542
 
543
+ def _node_run_method_hook(self, ctx: MethodContext) -> MypyType:
544
+ if not isinstance(ctx.default_return_type, Instance):
545
+ return ctx.default_return_type
546
+
547
+ if not _is_subclass(ctx.default_return_type.type, "vellum.workflows.nodes.bases.base.BaseNode.Outputs"):
548
+ return ctx.default_return_type
549
+
550
+ outputs_node = self._get_node_outputs_type_info(ctx)
551
+ if not outputs_node:
552
+ return ctx.default_return_type
553
+
554
+ return Instance(outputs_node, [])
555
+
516
556
  def _stream_method_hook(self, ctx: MethodContext) -> MypyType:
517
557
  """
518
558
  We use this to target `Workflow.stream()` so that the WorkflowExecutionFulfilledEvent is properly typed
@@ -557,7 +597,7 @@ class VellumMypyPlugin(Plugin):
557
597
  if fulfilled_event_index == -1 or not fulfilled_event:
558
598
  return ctx.default_return_type
559
599
 
560
- outputs_node = self._get_outputs_node(ctx)
600
+ outputs_node = self._get_workflow_outputs_type_info(ctx)
561
601
  if not outputs_node:
562
602
  return ctx.default_return_type
563
603
 
@@ -594,7 +634,7 @@ class VellumMypyPlugin(Plugin):
594
634
  column=ctx.default_return_type.column,
595
635
  )
596
636
 
597
- def _get_outputs_node(self, ctx: MethodContext) -> Optional[TypeInfo]:
637
+ def _get_workflow_outputs_type_info(self, ctx: MethodContext) -> Optional[TypeInfo]:
598
638
  if not isinstance(ctx.context, CallExpr):
599
639
  return None
600
640
 
@@ -624,6 +664,35 @@ class VellumMypyPlugin(Plugin):
624
664
 
625
665
  return resolved_outputs_node.node
626
666
 
667
+ def _get_node_outputs_type_info(self, ctx: MethodContext) -> Optional[TypeInfo]:
668
+ if not isinstance(ctx.context, CallExpr):
669
+ return None
670
+
671
+ if not isinstance(ctx.context.callee, MemberExpr):
672
+ return None
673
+
674
+ expr = ctx.context.callee.expr
675
+ instance = ctx.api.get_expression_type(expr)
676
+ if not isinstance(instance, Instance) or not _is_subclass(
677
+ instance.type, "vellum.workflows.nodes.bases.base.BaseNode"
678
+ ):
679
+ return None
680
+
681
+ outputs_node = instance.type.names.get("Outputs")
682
+
683
+ if (
684
+ not outputs_node
685
+ or not isinstance(outputs_node.node, TypeInfo)
686
+ or not _is_subclass(outputs_node.node, "vellum.workflows.outputs.base.BaseOutputs")
687
+ ):
688
+ return None
689
+
690
+ # TODO: For some reason, returning the correct Outputs type info is causing `result` to not
691
+ # be found. `test_templating_node.py` is the best place to test this.
692
+ # https://app.shortcut.com/vellum/story/6132
693
+ # return outputs_node.node
694
+ return None
695
+
627
696
  def _resolve_descriptors_in_outputs(self, type_info: SymbolTableNode) -> SymbolTableNode:
628
697
  new_type_info = type_info.copy()
629
698
  if not isinstance(new_type_info.node, TypeInfo):
@@ -10,6 +10,12 @@ from vellum import (
10
10
  StringVellumValue,
11
11
  VellumVariable,
12
12
  )
13
+ from vellum.client.types.audio_vellum_value import AudioVellumValue
14
+ from vellum.client.types.function_call import FunctionCall
15
+ from vellum.client.types.function_call_vellum_value import FunctionCallVellumValue
16
+ from vellum.client.types.image_vellum_value import ImageVellumValue
17
+ from vellum.client.types.vellum_audio import VellumAudio
18
+ from vellum.client.types.vellum_image import VellumImage
13
19
  from vellum.prompts.blocks.exceptions import PromptCompilationError
14
20
  from vellum.prompts.blocks.types import CompiledChatMessagePromptBlock, CompiledPromptBlock, CompiledValuePromptBlock
15
21
  from vellum.utils.templating.constants import DEFAULT_JINJA_CUSTOM_FILTERS
@@ -112,6 +118,43 @@ def compile_prompt_blocks(
112
118
 
113
119
  elif block.block_type == "FUNCTION_DEFINITION":
114
120
  raise PromptCompilationError("Function definitions shouldn't go through compilation process")
121
+
122
+ elif block.block_type == "FUNCTION_CALL":
123
+ function_call_block = CompiledValuePromptBlock(
124
+ content=FunctionCallVellumValue(
125
+ value=FunctionCall(
126
+ id=block.id,
127
+ name=block.name,
128
+ arguments=block.arguments,
129
+ ),
130
+ ),
131
+ cache_config=block.cache_config,
132
+ )
133
+ compiled_blocks.append(function_call_block)
134
+
135
+ elif block.block_type == "IMAGE":
136
+ image_block = CompiledValuePromptBlock(
137
+ content=ImageVellumValue(
138
+ value=VellumImage(
139
+ src=block.src,
140
+ metadata=block.metadata,
141
+ ),
142
+ ),
143
+ cache_config=block.cache_config,
144
+ )
145
+ compiled_blocks.append(image_block)
146
+
147
+ elif block.block_type == "AUDIO":
148
+ audio_block = CompiledValuePromptBlock(
149
+ content=AudioVellumValue(
150
+ value=VellumAudio(
151
+ src=block.src,
152
+ metadata=block.metadata,
153
+ ),
154
+ ),
155
+ cache_config=block.cache_config,
156
+ )
157
+ compiled_blocks.append(audio_block)
115
158
  else:
116
159
  raise PromptCompilationError(f"Unknown block_type: {block.block_type}")
117
160
 
@@ -28,6 +28,9 @@ def render_sandboxed_jinja_template(
28
28
  keep_trailing_newline=True,
29
29
  finalize=finalize,
30
30
  )
31
+ environment.policies["json.dumps_kwargs"] = {
32
+ "cls": DefaultStateEncoder,
33
+ }
31
34
 
32
35
  if jinja_custom_filters:
33
36
  environment.filters.update(jinja_custom_filters)
@@ -324,6 +324,10 @@ class BaseNode(Generic[StateType], metaclass=BaseNodeMeta):
324
324
  if not descriptor.instance:
325
325
  continue
326
326
 
327
+ if any(isinstance(t, type) and issubclass(t, BaseDescriptor) for t in descriptor.types):
328
+ # We don't want to resolve attributes that are _meant_ to be descriptors
329
+ continue
330
+
327
331
  resolved_value = resolve_value(descriptor.instance, self.state, path=descriptor.name, memo=inputs)
328
332
  setattr(self, descriptor.name, resolved_value)
329
333
 
@@ -1,5 +1,6 @@
1
1
  from typing import TYPE_CHECKING, ClassVar, Generic, Iterator, Optional, Set, Type, TypeVar, Union
2
2
 
3
+ from vellum.workflows.constants import UNDEF
3
4
  from vellum.workflows.context import execution_context, get_parent_context
4
5
  from vellum.workflows.errors.types import WorkflowErrorCode
5
6
  from vellum.workflows.exceptions import NodeException
@@ -27,7 +28,7 @@ class InlineSubworkflowNode(BaseNode[StateType], Generic[StateType, WorkflowInpu
27
28
  """
28
29
 
29
30
  subworkflow: Type["BaseWorkflow[WorkflowInputsType, InnerStateType]"]
30
- subworkflow_inputs: ClassVar[Union[EntityInputsInterface, BaseInputs]] = {}
31
+ subworkflow_inputs: ClassVar[Union[EntityInputsInterface, BaseInputs, Type[UNDEF]]] = UNDEF
31
32
 
32
33
  def run(self) -> Iterator[BaseOutput]:
33
34
  with execution_context(parent_context=get_parent_context() or self._context.parent_context):
@@ -71,7 +72,14 @@ class InlineSubworkflowNode(BaseNode[StateType], Generic[StateType, WorkflowInpu
71
72
 
72
73
  def _compile_subworkflow_inputs(self) -> WorkflowInputsType:
73
74
  inputs_class = self.subworkflow.get_inputs_class()
74
- if isinstance(self.subworkflow_inputs, dict):
75
+ if self.subworkflow_inputs is UNDEF:
76
+ inputs_dict = {}
77
+ for descriptor in inputs_class:
78
+ if hasattr(self, descriptor.name):
79
+ inputs_dict[descriptor.name] = getattr(self, descriptor.name)
80
+
81
+ return inputs_class(**inputs_dict)
82
+ elif isinstance(self.subworkflow_inputs, dict):
75
83
  return inputs_class(**self.subworkflow_inputs)
76
84
  elif isinstance(self.subworkflow_inputs, inputs_class):
77
85
  return self.subworkflow_inputs
@@ -39,3 +39,19 @@ def test_inline_subworkflow_node__inputs(inputs):
39
39
  assert events == [
40
40
  BaseOutput(name="out", value="bar"),
41
41
  ]
42
+
43
+
44
+ def test_inline_subworkflow_node__support_inputs_as_attributes():
45
+ # GIVEN a node setup with subworkflow inputs
46
+ class MyNode(InlineSubworkflowNode):
47
+ subworkflow = MySubworkflow
48
+ foo = "bar"
49
+
50
+ # WHEN the node is run
51
+ node = MyNode()
52
+ events = list(node.run())
53
+
54
+ # THEN the output is as expected
55
+ assert events == [
56
+ BaseOutput(name="out", value="bar"),
57
+ ]
@@ -1,5 +1,7 @@
1
1
  from typing import Callable, Generic, Optional, Type
2
2
 
3
+ from vellum.workflows.descriptors.base import BaseDescriptor
4
+ from vellum.workflows.descriptors.utils import resolve_value
3
5
  from vellum.workflows.errors.types import WorkflowErrorCode
4
6
  from vellum.workflows.exceptions import NodeException
5
7
  from vellum.workflows.inputs.base import BaseInputs
@@ -21,6 +23,7 @@ class RetryNode(BaseAdornmentNode[StateType], Generic[StateType]):
21
23
 
22
24
  max_attempts: int
23
25
  retry_on_error_code: Optional[WorkflowErrorCode] = None
26
+ retry_on_condition: Optional[BaseDescriptor] = None
24
27
 
25
28
  class SubworkflowInputs(BaseInputs):
26
29
  attempt_number: int
@@ -55,18 +58,36 @@ class RetryNode(BaseAdornmentNode[StateType], Generic[StateType]):
55
58
  last_exception = NodeException(
56
59
  code=WorkflowErrorCode.INVALID_OUTPUTS,
57
60
  message=f"""Unexpected rejection on attempt {attempt_number}: {terminal_event.error.code.value}.
61
+ Message: {terminal_event.error.message}""",
62
+ )
63
+ break
64
+ elif self.retry_on_condition and not resolve_value(self.retry_on_condition, self.state):
65
+ last_exception = NodeException(
66
+ code=WorkflowErrorCode.INVALID_OUTPUTS,
67
+ message=f"""Rejection failed on attempt {attempt_number}: {terminal_event.error.code.value}.
58
68
  Message: {terminal_event.error.message}""",
59
69
  )
60
70
  break
61
71
  else:
62
- last_exception = Exception(terminal_event.error.message)
72
+ last_exception = NodeException(
73
+ terminal_event.error.message,
74
+ code=terminal_event.error.code,
75
+ )
63
76
 
64
77
  raise last_exception
65
78
 
66
79
  @classmethod
67
80
  def wrap(
68
- cls, max_attempts: int, retry_on_error_code: Optional[WorkflowErrorCode] = None
81
+ cls,
82
+ max_attempts: int,
83
+ retry_on_error_code: Optional[WorkflowErrorCode] = None,
84
+ retry_on_condition: Optional[BaseDescriptor] = None,
69
85
  ) -> Callable[..., Type["RetryNode"]]:
70
86
  return create_adornment(
71
- cls, attributes={"max_attempts": max_attempts, "retry_on_error_code": retry_on_error_code}
87
+ cls,
88
+ attributes={
89
+ "max_attempts": max_attempts,
90
+ "retry_on_error_code": retry_on_error_code,
91
+ "retry_on_condition": retry_on_condition,
92
+ },
72
93
  )
@@ -6,6 +6,7 @@ from vellum.workflows.inputs.base import BaseInputs
6
6
  from vellum.workflows.nodes.bases import BaseNode
7
7
  from vellum.workflows.nodes.core.retry_node.node import RetryNode
8
8
  from vellum.workflows.outputs import BaseOutputs
9
+ from vellum.workflows.references.lazy import LazyReference
9
10
  from vellum.workflows.state.base import BaseState, StateMeta
10
11
 
11
12
 
@@ -91,3 +92,42 @@ def test_retry_node__use_parent_inputs_and_state():
91
92
 
92
93
  # THEN the data is used successfully
93
94
  assert outputs.value == "foo bar"
95
+
96
+
97
+ def test_retry_node__condition_arg_successfully_retries():
98
+ # GIVEN workflow Inputs and State
99
+ class State(BaseState):
100
+ count = 0
101
+
102
+ # AND a retry node that retries on a condition
103
+ @RetryNode.wrap(
104
+ max_attempts=5,
105
+ retry_on_condition=LazyReference(lambda: State.count.less_than(3)),
106
+ )
107
+ class TestNode(BaseNode[State]):
108
+ attempt_number = RetryNode.SubworkflowInputs.attempt_number
109
+
110
+ class Outputs(BaseOutputs):
111
+ value: str
112
+
113
+ def run(self) -> Outputs:
114
+ if not isinstance(self.state.meta.parent, State):
115
+ raise NodeException(message="Failed to resolve parent state")
116
+
117
+ self.state.meta.parent.count += 1
118
+ raise NodeException(message=f"This is failure attempt {self.attempt_number}")
119
+
120
+ # WHEN the node is run
121
+ node = TestNode(state=State())
122
+ with pytest.raises(NodeException) as exc_info:
123
+ node.run()
124
+
125
+ # THEN the exception raised is the last one
126
+ assert (
127
+ exc_info.value.message
128
+ == """Rejection failed on attempt 3: INTERNAL_ERROR.
129
+ Message: This is failure attempt 3"""
130
+ )
131
+
132
+ # AND the state was updated each time
133
+ assert node.state.count == 3
@@ -1,5 +1,6 @@
1
1
  import json
2
2
 
3
+ from vellum.client.types.function_call import FunctionCall
3
4
  from vellum.workflows.nodes.bases.base import BaseNode
4
5
  from vellum.workflows.nodes.core.templating_node.node import TemplatingNode
5
6
  from vellum.workflows.state import BaseState
@@ -21,7 +22,9 @@ def test_templating_node__dict_output():
21
22
  outputs = node.run()
22
23
 
23
24
  # THEN the output is json serializable
24
- assert json.loads(outputs.result) == {"key": "value"}
25
+ # https://app.shortcut.com/vellum/story/6132
26
+ dump: str = outputs.result # type: ignore[assignment]
27
+ assert json.loads(dump) == {"key": "value"}
25
28
 
26
29
 
27
30
  def test_templating_node__int_output():
@@ -106,3 +109,19 @@ def test_templating_node__execution_count_reference():
106
109
 
107
110
  # THEN the output is just the total
108
111
  assert outputs.result == "0"
112
+
113
+
114
+ def test_templating_node__pydantic_to_json():
115
+ # GIVEN a templating node that uses tojson on a pydantic model
116
+ class JSONTemplateNode(TemplatingNode[BaseState, Json]):
117
+ template = "{{ function_call | tojson }}"
118
+ inputs = {
119
+ "function_call": FunctionCall(name="test", arguments={"key": "value"}),
120
+ }
121
+
122
+ # WHEN the node is run
123
+ node = JSONTemplateNode()
124
+ outputs = node.run()
125
+
126
+ # THEN the output is the expected JSON
127
+ assert outputs.result == {"name": "test", "arguments": {"key": "value"}, "id": None}
@@ -2,7 +2,7 @@ from typing import Optional, Union
2
2
 
3
3
  from vellum.workflows.constants import AuthorizationType
4
4
  from vellum.workflows.nodes.displayable.bases.api_node import BaseAPINode
5
- from vellum.workflows.references.vellum_secret import VellumSecretReference
5
+ from vellum.workflows.types.core import VellumSecret
6
6
 
7
7
 
8
8
  class APINode(BaseAPINode):
@@ -24,8 +24,8 @@ class APINode(BaseAPINode):
24
24
 
25
25
  authorization_type: Optional[AuthorizationType] = None
26
26
  api_key_header_key: Optional[str] = None
27
- api_key_header_value: Optional[Union[str, VellumSecretReference]] = None
28
- bearer_token_value: Optional[Union[str, VellumSecretReference]] = None
27
+ api_key_header_value: Optional[Union[str, VellumSecret]] = None
28
+ bearer_token_value: Optional[Union[str, VellumSecret]] = None
29
29
 
30
30
  def run(self) -> BaseAPINode.Outputs:
31
31
  headers = self.headers or {}
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: vellum-ai
3
- Version: 0.12.15
3
+ Version: 0.12.17
4
4
  Summary:
5
5
  License: MIT
6
6
  Requires-Python: >=3.9,<4.0
@@ -40,9 +40,11 @@ Requires-Dist: typing_extensions (>=4.0.0)
40
40
  Description-Content-Type: text/markdown
41
41
 
42
42
  <p align="center">
43
- <h1 align="center">
44
- Vellum
45
- </h1>
43
+ <a href="https://vellum.ai">
44
+ <picture>
45
+ <img alt="Vellum README banner" src="https://storage.googleapis.com/vellum-public/assets/github-readme-banner.png" height="128">
46
+ </picture>
47
+ </a>
46
48
  <p align="center">
47
49
  <a href="https://vellum.ai">Learn more</a>
48
50
  ·
@@ -64,13 +66,13 @@ Description-Content-Type: text/markdown
64
66
 
65
67
  # Introduction
66
68
 
67
- [Vellum](https://www.vellum.ai/) is the end-to-end development platform for building production-grade AI applications
69
+ [Vellum](https://www.vellum.ai/) is the end-to-end development platform for building production-grade AI applications.
68
70
 
69
71
  ### Core Features
70
72
 
71
73
  - **Orchestration:** A powerful SDK and IDE for defining and debugging the control flow of your AI applications
72
74
  - **Prompting:** A best-in-class prompt playground for iterating on and refining prompts between models from any provider
73
- - **Evaluations**: An evaluations framework that makes it easy to measure the quality of your AI systems at scale.
75
+ - **Evaluations**: An evaluations framework that makes it easy to measure the quality of your AI systems at scale
74
76
  - **Retrieval:** A ready-to-go service for turning unstructured content into intelligent, context-aware solutions
75
77
  optimized for AI systems
76
78
  - **Deployment:** Decouple updates to your AI systems from your application code with an easy integration +
@@ -87,7 +89,7 @@ Description-Content-Type: text/markdown
87
89
 
88
90
  ## Get Started
89
91
 
90
- Most functionality within the SDKs here requires a Vellum account and API key. To sign up, [talk to us](https://www.vellum.ai/landing-pages/request-demo)
92
+ Most functionality within the SDK requires a Vellum account and API key. To sign up, [talk to us](https://www.vellum.ai/landing-pages/request-demo)
91
93
  or visit our [pricing page](https://www.vellum.ai/pricing).
92
94
 
93
95
  Even without a Vellum account, you can use the Workflows SDK to define the control flow of your AI systems. [Learn
@@ -101,7 +103,7 @@ Learn more and get started by visiting the [Vellum Client SDK README](/src/vellu
101
103
  ## Workflows SDK
102
104
 
103
105
  The Vellum Workflows SDK is a high-level framework for defining and debugging the control flow of AI systems. At
104
- it's core, it's a powerful workflow engine with syntactic sugar for intuitively defining graphs, the nodes within,
106
+ it's core, it's a powerful workflow engine with syntactic sugar for declaratively defining graphs, the nodes within,
105
107
  and the relationships between them.
106
108
 
107
109
  The Workflows SDK can be used with or without a Vellum account, but a Vellum account is required to use certain