vellum-ai 0.10.4__py3-none-any.whl → 0.10.6__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- vellum/client/core/client_wrapper.py +1 -1
- vellum/workflows/nodes/__init__.py +6 -7
- vellum/workflows/nodes/bases/base.py +0 -1
- vellum/workflows/nodes/core/inline_subworkflow_node/node.py +1 -1
- vellum/workflows/nodes/core/templating_node/node.py +5 -1
- vellum/workflows/nodes/core/try_node/node.py +65 -27
- vellum/workflows/nodes/core/try_node/tests/test_node.py +17 -10
- vellum/workflows/nodes/displayable/__init__.py +2 -0
- vellum/workflows/nodes/displayable/bases/api_node/node.py +3 -3
- vellum/workflows/nodes/displayable/code_execution_node/node.py +5 -2
- vellum/workflows/nodes/displayable/final_output_node/node.py +6 -2
- vellum/workflows/nodes/displayable/note_node/__init__.py +5 -0
- vellum/workflows/nodes/displayable/note_node/node.py +10 -0
- vellum/workflows/nodes/displayable/tests/test_inline_text_prompt_node.py +10 -11
- vellum/workflows/nodes/utils.py +2 -0
- vellum/workflows/outputs/base.py +26 -2
- vellum/workflows/runner/runner.py +41 -27
- vellum/workflows/types/tests/test_utils.py +9 -0
- vellum/workflows/types/utils.py +1 -1
- vellum/workflows/utils/vellum_variables.py +13 -1
- vellum/workflows/workflows/base.py +24 -1
- {vellum_ai-0.10.4.dist-info → vellum_ai-0.10.6.dist-info}/METADATA +8 -6
- {vellum_ai-0.10.4.dist-info → vellum_ai-0.10.6.dist-info}/RECORD +56 -51
- vellum_cli/CONTRIBUTING.md +66 -0
- vellum_cli/README.md +3 -0
- vellum_ee/workflows/display/base.py +2 -1
- vellum_ee/workflows/display/nodes/base_node_display.py +27 -4
- vellum_ee/workflows/display/nodes/vellum/__init__.py +2 -0
- vellum_ee/workflows/display/nodes/vellum/api_node.py +3 -3
- vellum_ee/workflows/display/nodes/vellum/code_execution_node.py +4 -4
- vellum_ee/workflows/display/nodes/vellum/conditional_node.py +86 -41
- vellum_ee/workflows/display/nodes/vellum/guardrail_node.py +3 -3
- vellum_ee/workflows/display/nodes/vellum/inline_prompt_node.py +4 -5
- vellum_ee/workflows/display/nodes/vellum/inline_subworkflow_node.py +9 -9
- vellum_ee/workflows/display/nodes/vellum/map_node.py +5 -5
- vellum_ee/workflows/display/nodes/vellum/note_node.py +32 -0
- vellum_ee/workflows/display/nodes/vellum/prompt_deployment_node.py +5 -5
- vellum_ee/workflows/display/nodes/vellum/search_node.py +1 -1
- vellum_ee/workflows/display/nodes/vellum/subworkflow_deployment_node.py +2 -2
- vellum_ee/workflows/display/nodes/vellum/templating_node.py +1 -1
- vellum_ee/workflows/display/nodes/vellum/try_node.py +16 -4
- vellum_ee/workflows/display/tests/workflow_serialization/test_basic_code_execution_node_serialization.py +7 -3
- vellum_ee/workflows/display/tests/workflow_serialization/test_basic_conditional_node_serialization.py +127 -101
- vellum_ee/workflows/display/tests/workflow_serialization/test_basic_guardrail_node_serialization.py +6 -5
- vellum_ee/workflows/display/tests/workflow_serialization/test_basic_inline_subworkflow_serialization.py +77 -64
- vellum_ee/workflows/display/tests/workflow_serialization/test_basic_map_node_serialization.py +4 -3
- vellum_ee/workflows/display/tests/workflow_serialization/test_basic_prompt_deployment_serialization.py +6 -6
- vellum_ee/workflows/display/tests/workflow_serialization/test_basic_subworkflow_deployment_serialization.py +6 -6
- vellum_ee/workflows/display/tests/workflow_serialization/test_basic_terminal_node_serialization.py +4 -3
- vellum_ee/workflows/display/tests/workflow_serialization/test_complex_terminal_node_serialization.py +7 -6
- vellum_ee/workflows/display/workflows/base_workflow_display.py +14 -9
- vellum_ee/workflows/display/workflows/get_vellum_workflow_display_class.py +2 -7
- vellum_ee/workflows/display/workflows/vellum_workflow_display.py +18 -16
- {vellum_ai-0.10.4.dist-info → vellum_ai-0.10.6.dist-info}/LICENSE +0 -0
- {vellum_ai-0.10.4.dist-info → vellum_ai-0.10.6.dist-info}/WHEEL +0 -0
- {vellum_ai-0.10.4.dist-info → vellum_ai-0.10.6.dist-info}/entry_points.txt +0 -0
@@ -17,7 +17,7 @@ class BaseClientWrapper:
|
|
17
17
|
headers: typing.Dict[str, str] = {
|
18
18
|
"X-Fern-Language": "Python",
|
19
19
|
"X-Fern-SDK-Name": "vellum-ai",
|
20
|
-
"X-Fern-SDK-Version": "0.10.
|
20
|
+
"X-Fern-SDK-Version": "0.10.6",
|
21
21
|
}
|
22
22
|
headers["X_API_KEY"] = self.api_key
|
23
23
|
return headers
|
@@ -1,5 +1,5 @@
|
|
1
1
|
from vellum.workflows.nodes.bases import BaseNode
|
2
|
-
from vellum.workflows.nodes.core import
|
2
|
+
from vellum.workflows.nodes.core import ErrorNode, InlineSubworkflowNode, MapNode, RetryNode, TemplatingNode, TryNode
|
3
3
|
from vellum.workflows.nodes.displayable import (
|
4
4
|
APINode,
|
5
5
|
CodeExecutionNode,
|
@@ -7,6 +7,7 @@ from vellum.workflows.nodes.displayable import (
|
|
7
7
|
FinalOutputNode,
|
8
8
|
GuardrailNode,
|
9
9
|
InlinePromptNode,
|
10
|
+
NoteNode,
|
10
11
|
PromptDeploymentNode,
|
11
12
|
SearchNode,
|
12
13
|
SubworkflowDeploymentNode,
|
@@ -28,20 +29,18 @@ __all__ = [
|
|
28
29
|
"TemplatingNode",
|
29
30
|
"TryNode",
|
30
31
|
# Displayable Base Nodes
|
31
|
-
"BaseSearchNode",
|
32
32
|
"BaseInlinePromptNode",
|
33
33
|
"BasePromptDeploymentNode",
|
34
|
+
"BaseSearchNode",
|
34
35
|
# Displayable Nodes
|
35
36
|
"APINode",
|
36
37
|
"CodeExecutionNode",
|
38
|
+
"ConditionalNode",
|
39
|
+
"FinalOutputNode",
|
37
40
|
"GuardrailNode",
|
38
41
|
"InlinePromptNode",
|
42
|
+
"NoteNode",
|
39
43
|
"PromptDeploymentNode",
|
40
44
|
"SearchNode",
|
41
|
-
"ConditionalNode",
|
42
|
-
"GuardrailNode",
|
43
45
|
"SubworkflowDeploymentNode",
|
44
|
-
"FinalOutputNode",
|
45
|
-
"PromptDeploymentNode",
|
46
|
-
"SearchNode",
|
47
46
|
]
|
@@ -215,7 +215,6 @@ class BaseNode(Generic[StateType], metaclass=BaseNodeMeta):
|
|
215
215
|
# https://app.shortcut.com/vellum/story/4008/auto-inherit-basenodeoutputs-in-outputs-classes
|
216
216
|
class Outputs(BaseOutputs):
|
217
217
|
_node_class: Optional[Type["BaseNode"]] = None
|
218
|
-
pass
|
219
218
|
|
220
219
|
class Ports(NodePorts):
|
221
220
|
default = Port(default=True)
|
@@ -57,7 +57,7 @@ class InlineSubworkflowNode(BaseSubworkflowNode[StateType], Generic[StateType, W
|
|
57
57
|
if outputs is None:
|
58
58
|
raise NodeException(
|
59
59
|
message="Expected to receive outputs from Workflow Deployment",
|
60
|
-
code=VellumErrorCode.
|
60
|
+
code=VellumErrorCode.INVALID_OUTPUTS,
|
61
61
|
)
|
62
62
|
|
63
63
|
# For any outputs somehow in our final fulfilled outputs array,
|
@@ -49,7 +49,11 @@ class _TemplatingNodeMeta(BaseNodeMeta):
|
|
49
49
|
if not isinstance(parent, _TemplatingNodeMeta):
|
50
50
|
raise ValueError("TemplatingNode must be created with the TemplatingNodeMeta metaclass")
|
51
51
|
|
52
|
-
parent.__dict__["Outputs"].__annotations__
|
52
|
+
annotations = parent.__dict__["Outputs"].__annotations__
|
53
|
+
parent.__dict__["Outputs"].__annotations__ = {
|
54
|
+
**annotations,
|
55
|
+
"result": parent.get_output_type(),
|
56
|
+
}
|
53
57
|
return parent
|
54
58
|
|
55
59
|
def get_output_type(cls) -> Type:
|
@@ -1,10 +1,13 @@
|
|
1
|
-
|
1
|
+
import sys
|
2
|
+
from types import ModuleType
|
3
|
+
from typing import TYPE_CHECKING, Any, Callable, Dict, Generic, Iterator, Optional, Set, Tuple, Type, TypeVar, cast
|
2
4
|
|
3
5
|
from vellum.workflows.errors.types import VellumError, VellumErrorCode
|
4
6
|
from vellum.workflows.exceptions import NodeException
|
5
7
|
from vellum.workflows.nodes.bases import BaseNode
|
6
8
|
from vellum.workflows.nodes.bases.base import BaseNodeMeta
|
7
|
-
from vellum.workflows.
|
9
|
+
from vellum.workflows.nodes.utils import ADORNMENT_MODULE_NAME
|
10
|
+
from vellum.workflows.outputs.base import BaseOutput, BaseOutputs
|
8
11
|
from vellum.workflows.types.generics import StateType
|
9
12
|
|
10
13
|
if TYPE_CHECKING:
|
@@ -56,34 +59,60 @@ class TryNode(BaseNode[StateType], Generic[StateType], metaclass=_TryNodeMeta):
|
|
56
59
|
class Outputs(BaseNode.Outputs):
|
57
60
|
error: Optional[VellumError] = None
|
58
61
|
|
59
|
-
def run(self) ->
|
62
|
+
def run(self) -> Iterator[BaseOutput]:
|
60
63
|
subworkflow = self.subworkflow(
|
61
64
|
parent_state=self.state,
|
62
65
|
context=self._context,
|
63
66
|
)
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
67
|
+
subworkflow_stream = subworkflow.stream()
|
68
|
+
|
69
|
+
outputs: Optional[BaseOutputs] = None
|
70
|
+
exception: Optional[NodeException] = None
|
71
|
+
fulfilled_output_names: Set[str] = set()
|
72
|
+
|
73
|
+
for event in subworkflow_stream:
|
74
|
+
if exception:
|
75
|
+
continue
|
76
|
+
|
77
|
+
if event.name == "workflow.execution.streaming":
|
78
|
+
if event.output.is_fulfilled:
|
79
|
+
fulfilled_output_names.add(event.output.name)
|
80
|
+
yield event.output
|
81
|
+
elif event.name == "workflow.execution.fulfilled":
|
82
|
+
outputs = event.outputs
|
83
|
+
elif event.name == "workflow.execution.paused":
|
84
|
+
exception = NodeException(
|
85
|
+
code=VellumErrorCode.INVALID_OUTPUTS,
|
86
|
+
message="Subworkflow unexpectedly paused within Try Node",
|
87
|
+
)
|
88
|
+
elif event.name == "workflow.execution.rejected":
|
89
|
+
if self.on_error_code and self.on_error_code != event.error.code:
|
90
|
+
exception = NodeException(
|
91
|
+
code=VellumErrorCode.INVALID_OUTPUTS,
|
92
|
+
message=f"""Unexpected rejection: {event.error.code.value}.
|
93
|
+
Message: {event.error.message}""",
|
94
|
+
)
|
95
|
+
else:
|
96
|
+
outputs = self.Outputs(error=event.error)
|
97
|
+
|
98
|
+
if exception:
|
99
|
+
raise exception
|
100
|
+
|
101
|
+
if outputs is None:
|
72
102
|
raise NodeException(
|
73
103
|
code=VellumErrorCode.INVALID_OUTPUTS,
|
74
|
-
message="
|
75
|
-
)
|
76
|
-
elif self.on_error_code and self.on_error_code != terminal_event.error.code:
|
77
|
-
raise NodeException(
|
78
|
-
code=VellumErrorCode.INVALID_OUTPUTS,
|
79
|
-
message=f"""Unexpected rejection: {terminal_event.error.code.value}.
|
80
|
-
Message: {terminal_event.error.message}""",
|
81
|
-
)
|
82
|
-
else:
|
83
|
-
return self.Outputs(
|
84
|
-
error=terminal_event.error,
|
104
|
+
message="Expected to receive outputs from Try Node's subworkflow",
|
85
105
|
)
|
86
106
|
|
107
|
+
# For any outputs somehow in our final fulfilled outputs array,
|
108
|
+
# but not fulfilled by the stream.
|
109
|
+
for descriptor, value in outputs:
|
110
|
+
if descriptor.name not in fulfilled_output_names:
|
111
|
+
yield BaseOutput(
|
112
|
+
name=descriptor.name,
|
113
|
+
value=value,
|
114
|
+
)
|
115
|
+
|
87
116
|
@classmethod
|
88
117
|
def wrap(cls, on_error_code: Optional[VellumErrorCode] = None) -> Callable[..., Type["TryNode"]]:
|
89
118
|
_on_error_code = on_error_code
|
@@ -101,11 +130,20 @@ Message: {terminal_event.error.message}""",
|
|
101
130
|
class Outputs(inner_cls.Outputs): # type: ignore[name-defined]
|
102
131
|
pass
|
103
132
|
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
133
|
+
dynamic_module = f"{inner_cls.__module__}.{inner_cls.__name__}.{ADORNMENT_MODULE_NAME}"
|
134
|
+
# This dynamic module allows calls to `type_hints` to work
|
135
|
+
sys.modules[dynamic_module] = ModuleType(dynamic_module)
|
136
|
+
|
137
|
+
# We use a dynamic wrapped node class to be uniquely tied to this `inner_cls` node during serialization
|
138
|
+
WrappedNode = type(
|
139
|
+
cls.__name__,
|
140
|
+
(TryNode,),
|
141
|
+
{
|
142
|
+
"__module__": dynamic_module,
|
143
|
+
"on_error_code": _on_error_code,
|
144
|
+
"subworkflow": Subworkflow,
|
145
|
+
},
|
146
|
+
)
|
109
147
|
return WrappedNode
|
110
148
|
|
111
149
|
return decorator
|
@@ -7,6 +7,7 @@ from vellum.workflows.inputs.base import BaseInputs
|
|
7
7
|
from vellum.workflows.nodes.bases import BaseNode
|
8
8
|
from vellum.workflows.nodes.core.try_node.node import TryNode
|
9
9
|
from vellum.workflows.outputs import BaseOutputs
|
10
|
+
from vellum.workflows.outputs.base import BaseOutput
|
10
11
|
from vellum.workflows.state.base import BaseState, StateMeta
|
11
12
|
from vellum.workflows.state.context import WorkflowContext
|
12
13
|
|
@@ -23,11 +24,15 @@ def test_try_node__on_error_code__successfully_caught():
|
|
23
24
|
|
24
25
|
# WHEN the node is run and throws a PROVIDER_ERROR
|
25
26
|
node = TestNode(state=BaseState())
|
26
|
-
outputs = node.run()
|
27
|
-
|
28
|
-
# THEN the exception is
|
29
|
-
assert outputs ==
|
30
|
-
|
27
|
+
outputs = [o for o in node.run()]
|
28
|
+
|
29
|
+
# THEN the exception is caught and returned
|
30
|
+
assert len(outputs) == 2
|
31
|
+
assert set(outputs) == {
|
32
|
+
BaseOutput(name="value"),
|
33
|
+
BaseOutput(
|
34
|
+
name="error", value=VellumError(message="This will be caught", code=VellumErrorCode.PROVIDER_ERROR)
|
35
|
+
),
|
31
36
|
}
|
32
37
|
|
33
38
|
|
@@ -44,7 +49,7 @@ def test_try_node__retry_on_error_code__missed():
|
|
44
49
|
# WHEN the node is run and throws a different exception
|
45
50
|
node = TestNode(state=BaseState())
|
46
51
|
with pytest.raises(NodeException) as exc_info:
|
47
|
-
node.run()
|
52
|
+
list(node.run())
|
48
53
|
|
49
54
|
# THEN the exception is not caught
|
50
55
|
assert exc_info.value.message == "Unexpected rejection: INTERNAL_ERROR.\nMessage: This will be missed"
|
@@ -78,10 +83,11 @@ def test_try_node__use_parent_inputs_and_state():
|
|
78
83
|
meta=StateMeta(workflow_inputs=Inputs(foo="foo")),
|
79
84
|
),
|
80
85
|
)
|
81
|
-
outputs = node.run()
|
86
|
+
outputs = list(node.run())
|
82
87
|
|
83
88
|
# THEN the data is used successfully
|
84
|
-
assert outputs ==
|
89
|
+
assert len(outputs) == 1
|
90
|
+
assert outputs[-1] == BaseOutput(name="value", value="foo bar")
|
85
91
|
|
86
92
|
|
87
93
|
def test_try_node__use_parent_execution_context():
|
@@ -100,7 +106,8 @@ def test_try_node__use_parent_execution_context():
|
|
100
106
|
_vellum_client=Vellum(api_key="test-key"),
|
101
107
|
)
|
102
108
|
)
|
103
|
-
outputs = node.run()
|
109
|
+
outputs = list(node.run())
|
104
110
|
|
105
111
|
# THEN the inner node had access to the key
|
106
|
-
assert outputs ==
|
112
|
+
assert len(outputs) == 1
|
113
|
+
assert outputs[-1] == BaseOutput(name="key", value="test-key")
|
@@ -9,6 +9,7 @@ from .final_output_node import FinalOutputNode
|
|
9
9
|
from .guardrail_node import GuardrailNode
|
10
10
|
from .inline_prompt_node import InlinePromptNode
|
11
11
|
from .merge_node import MergeNode
|
12
|
+
from .note_node import NoteNode
|
12
13
|
from .prompt_deployment_node import PromptDeploymentNode
|
13
14
|
from .search_node import SearchNode
|
14
15
|
from .subworkflow_deployment_node import SubworkflowDeploymentNode
|
@@ -23,6 +24,7 @@ __all__ = [
|
|
23
24
|
"GuardrailNode",
|
24
25
|
"MapNode",
|
25
26
|
"MergeNode",
|
27
|
+
"NoteNode",
|
26
28
|
"SubworkflowDeploymentNode",
|
27
29
|
"PromptDeploymentNode",
|
28
30
|
"SearchNode",
|
@@ -8,7 +8,7 @@ from vellum.workflows.errors.types import VellumErrorCode
|
|
8
8
|
from vellum.workflows.exceptions import NodeException
|
9
9
|
from vellum.workflows.nodes.bases import BaseNode
|
10
10
|
from vellum.workflows.outputs import BaseOutputs
|
11
|
-
from vellum.workflows.types.core import JsonObject, VellumSecret
|
11
|
+
from vellum.workflows.types.core import Json, JsonObject, VellumSecret
|
12
12
|
from vellum.workflows.types.generics import StateType
|
13
13
|
|
14
14
|
|
@@ -26,11 +26,11 @@ class BaseAPINode(BaseNode, Generic[StateType]):
|
|
26
26
|
url: str
|
27
27
|
method: APIRequestMethod
|
28
28
|
data: Optional[str] = None
|
29
|
-
json: Optional["
|
29
|
+
json: Optional["Json"] = None
|
30
30
|
headers: Optional[Dict[str, Union[str, VellumSecret]]] = None
|
31
31
|
|
32
32
|
class Outputs(BaseOutputs):
|
33
|
-
json: Optional["
|
33
|
+
json: Optional["Json"]
|
34
34
|
headers: Dict[str, str]
|
35
35
|
status_code: int
|
36
36
|
text: str
|
@@ -19,7 +19,6 @@ from vellum import (
|
|
19
19
|
VellumValue,
|
20
20
|
)
|
21
21
|
from vellum.core import RequestOptions
|
22
|
-
|
23
22
|
from vellum.workflows.errors.types import VellumErrorCode
|
24
23
|
from vellum.workflows.exceptions import NodeException
|
25
24
|
from vellum.workflows.nodes.bases import BaseNode
|
@@ -44,7 +43,11 @@ class _CodeExecutionNodeMeta(BaseNodeMeta):
|
|
44
43
|
if not isinstance(parent, _CodeExecutionNodeMeta):
|
45
44
|
raise ValueError("CodeExecutionNode must be created with the CodeExecutionNodeMeta metaclass")
|
46
45
|
|
47
|
-
parent.__dict__["Outputs"].__annotations__
|
46
|
+
annotations = parent.__dict__["Outputs"].__annotations__
|
47
|
+
parent.__dict__["Outputs"].__annotations__ = {
|
48
|
+
**annotations,
|
49
|
+
"result": parent.get_output_type(),
|
50
|
+
}
|
48
51
|
return parent
|
49
52
|
|
50
53
|
def get_output_type(cls) -> Type:
|
@@ -16,9 +16,13 @@ class _FinalOutputNodeMeta(BaseNodeMeta):
|
|
16
16
|
|
17
17
|
# We use the compiled class to infer the output type for the Outputs.value descriptor.
|
18
18
|
if not isinstance(parent, _FinalOutputNodeMeta):
|
19
|
-
raise ValueError("
|
19
|
+
raise ValueError("FinalOutputNode must be created with the FinalOutputNodeMeta metaclass")
|
20
20
|
|
21
|
-
parent.__dict__["Outputs"].__annotations__
|
21
|
+
annotations = parent.__dict__["Outputs"].__annotations__
|
22
|
+
parent.__dict__["Outputs"].__annotations__ = {
|
23
|
+
**annotations,
|
24
|
+
"value": parent.get_output_type(),
|
25
|
+
}
|
22
26
|
return parent
|
23
27
|
|
24
28
|
def get_output_type(cls) -> Type:
|
@@ -11,13 +11,12 @@ from vellum import (
|
|
11
11
|
StringVellumValue,
|
12
12
|
VellumError,
|
13
13
|
)
|
14
|
-
|
15
|
-
from vellum.workflows.constants import UNDEF
|
16
|
-
from vellum.workflows.errors import VellumError as WacVellumError
|
14
|
+
from vellum.workflows.errors import VellumError as SdkVellumError
|
17
15
|
from vellum.workflows.errors.types import VellumErrorCode
|
18
16
|
from vellum.workflows.inputs import BaseInputs
|
19
17
|
from vellum.workflows.nodes import InlinePromptNode
|
20
18
|
from vellum.workflows.nodes.core.try_node.node import TryNode
|
19
|
+
from vellum.workflows.outputs.base import BaseOutput
|
21
20
|
from vellum.workflows.state import BaseState
|
22
21
|
from vellum.workflows.state.base import StateMeta
|
23
22
|
|
@@ -136,13 +135,13 @@ def test_inline_text_prompt_node__catch_provider_error(vellum_adhoc_prompt_clien
|
|
136
135
|
meta=StateMeta(workflow_inputs=Inputs(input="Say something.")),
|
137
136
|
)
|
138
137
|
)
|
139
|
-
outputs = node.run()
|
138
|
+
outputs = list(node.run())
|
140
139
|
|
141
140
|
# THEN the node should have produced the outputs we expect
|
142
|
-
|
143
|
-
|
144
|
-
|
145
|
-
|
146
|
-
|
147
|
-
|
148
|
-
|
141
|
+
assert BaseOutput(
|
142
|
+
name="error",
|
143
|
+
value=SdkVellumError(
|
144
|
+
message="OpenAI failed",
|
145
|
+
code=VellumErrorCode.PROVIDER_ERROR,
|
146
|
+
),
|
147
|
+
) in outputs
|
vellum/workflows/nodes/utils.py
CHANGED
@@ -5,6 +5,8 @@ from vellum.workflows.nodes import BaseNode
|
|
5
5
|
from vellum.workflows.references import NodeReference
|
6
6
|
from vellum.workflows.types.generics import NodeType
|
7
7
|
|
8
|
+
ADORNMENT_MODULE_NAME = "<adornment>"
|
9
|
+
|
8
10
|
|
9
11
|
@cache
|
10
12
|
def get_wrapped_node(node: Type[NodeType]) -> Type[BaseNode]:
|
vellum/workflows/outputs/base.py
CHANGED
@@ -5,6 +5,7 @@ from pydantic import GetCoreSchemaHandler
|
|
5
5
|
from pydantic_core import core_schema
|
6
6
|
|
7
7
|
from vellum.workflows.constants import UNDEF
|
8
|
+
from vellum.workflows.descriptors.base import BaseDescriptor
|
8
9
|
from vellum.workflows.references.output import OutputReference
|
9
10
|
from vellum.workflows.types.utils import get_class_attr_names, infer_types
|
10
11
|
|
@@ -76,6 +77,23 @@ class BaseOutput(Generic[_Delta, _Accumulated]):
|
|
76
77
|
|
77
78
|
return data
|
78
79
|
|
80
|
+
def __repr__(self) -> str:
|
81
|
+
if self.value is not UNDEF:
|
82
|
+
return f"{self.__class__.__name__}({self.name}={self.value})"
|
83
|
+
elif self.delta is not UNDEF:
|
84
|
+
return f"{self.__class__.__name__}({self.name}={self.delta})"
|
85
|
+
else:
|
86
|
+
return f"{self.__class__.__name__}(name='{self.name}')"
|
87
|
+
|
88
|
+
def __eq__(self, other: Any) -> bool:
|
89
|
+
if not isinstance(other, BaseOutput):
|
90
|
+
return False
|
91
|
+
|
92
|
+
return self.name == other.name and self.value == other.value and self.delta == other.delta
|
93
|
+
|
94
|
+
def __hash__(self) -> int:
|
95
|
+
return hash((self._name, self._value, self._value))
|
96
|
+
|
79
97
|
|
80
98
|
@dataclass_transform(kw_only_default=True)
|
81
99
|
class _BaseOutputsMeta(type):
|
@@ -175,7 +193,9 @@ class BaseOutputs(metaclass=_BaseOutputsMeta):
|
|
175
193
|
if not isinstance(other, dict):
|
176
194
|
return super().__eq__(other)
|
177
195
|
|
178
|
-
outputs = {
|
196
|
+
outputs = {
|
197
|
+
name: value for name, value in vars(self).items() if not name.startswith("_") and value is not UNDEF
|
198
|
+
}
|
179
199
|
return outputs == other
|
180
200
|
|
181
201
|
def __repr__(self) -> str:
|
@@ -184,7 +204,11 @@ class BaseOutputs(metaclass=_BaseOutputsMeta):
|
|
184
204
|
|
185
205
|
def __iter__(self) -> Iterator[Tuple[OutputReference, Any]]:
|
186
206
|
for output_descriptor in self.__class__:
|
187
|
-
|
207
|
+
output_value = getattr(self, output_descriptor.name, UNDEF)
|
208
|
+
if isinstance(output_value, BaseDescriptor):
|
209
|
+
output_value = UNDEF
|
210
|
+
|
211
|
+
yield (output_descriptor, output_value)
|
188
212
|
|
189
213
|
def __getitem__(self, key: str) -> Any:
|
190
214
|
return getattr(self, key)
|
@@ -170,32 +170,37 @@ class WorkflowRunner(Generic[StateType]):
|
|
170
170
|
streaming_output_queues: Dict[str, Queue] = {}
|
171
171
|
outputs = node.Outputs()
|
172
172
|
|
173
|
+
def initiate_node_streaming_output(output: BaseOutput) -> None:
|
174
|
+
streaming_output_queues[output.name] = Queue()
|
175
|
+
output_descriptor = OutputReference(
|
176
|
+
name=output.name,
|
177
|
+
types=(type(output.delta),),
|
178
|
+
instance=None,
|
179
|
+
outputs_class=node.Outputs,
|
180
|
+
)
|
181
|
+
node.state.meta.node_outputs[output_descriptor] = streaming_output_queues[output.name]
|
182
|
+
self._work_item_event_queue.put(
|
183
|
+
WorkItemEvent(
|
184
|
+
node=node,
|
185
|
+
event=NodeExecutionStreamingEvent(
|
186
|
+
trace_id=node.state.meta.trace_id,
|
187
|
+
span_id=span_id,
|
188
|
+
body=NodeExecutionStreamingBody(
|
189
|
+
node_definition=node.__class__,
|
190
|
+
output=BaseOutput(name=output.name),
|
191
|
+
),
|
192
|
+
),
|
193
|
+
invoked_ports=invoked_ports,
|
194
|
+
)
|
195
|
+
)
|
196
|
+
|
173
197
|
for output in node_run_response:
|
174
198
|
invoked_ports = output > ports
|
175
|
-
if
|
199
|
+
if output.is_initiated:
|
200
|
+
initiate_node_streaming_output(output)
|
201
|
+
elif output.is_streaming:
|
176
202
|
if output.name not in streaming_output_queues:
|
177
|
-
|
178
|
-
output_descriptor = OutputReference(
|
179
|
-
name=output.name,
|
180
|
-
types=(type(output.delta),),
|
181
|
-
instance=None,
|
182
|
-
outputs_class=node.Outputs,
|
183
|
-
)
|
184
|
-
node.state.meta.node_outputs[output_descriptor] = streaming_output_queues[output.name]
|
185
|
-
self._work_item_event_queue.put(
|
186
|
-
WorkItemEvent(
|
187
|
-
node=node,
|
188
|
-
event=NodeExecutionStreamingEvent(
|
189
|
-
trace_id=node.state.meta.trace_id,
|
190
|
-
span_id=span_id,
|
191
|
-
body=NodeExecutionStreamingBody(
|
192
|
-
node_definition=node.__class__,
|
193
|
-
output=BaseOutput(name=output.name),
|
194
|
-
),
|
195
|
-
),
|
196
|
-
invoked_ports=invoked_ports,
|
197
|
-
)
|
198
|
-
)
|
203
|
+
initiate_node_streaming_output(output)
|
199
204
|
|
200
205
|
streaming_output_queues[output.name].put(output.delta)
|
201
206
|
self._work_item_event_queue.put(
|
@@ -212,7 +217,7 @@ class WorkflowRunner(Generic[StateType]):
|
|
212
217
|
invoked_ports=invoked_ports,
|
213
218
|
)
|
214
219
|
)
|
215
|
-
|
220
|
+
elif output.is_fulfilled:
|
216
221
|
if output.name in streaming_output_queues:
|
217
222
|
streaming_output_queues[output.name].put(UNDEF)
|
218
223
|
|
@@ -233,6 +238,11 @@ class WorkflowRunner(Generic[StateType]):
|
|
233
238
|
)
|
234
239
|
|
235
240
|
for descriptor, output_value in outputs:
|
241
|
+
if output_value is UNDEF:
|
242
|
+
if descriptor in node.state.meta.node_outputs:
|
243
|
+
del node.state.meta.node_outputs[descriptor]
|
244
|
+
continue
|
245
|
+
|
236
246
|
node.state.meta.node_outputs[descriptor] = output_value
|
237
247
|
|
238
248
|
invoked_ports = ports(outputs, node.state)
|
@@ -540,11 +550,15 @@ class WorkflowRunner(Generic[StateType]):
|
|
540
550
|
)
|
541
551
|
|
542
552
|
def stream(self) -> WorkflowEventStream:
|
543
|
-
background_thread = Thread(
|
553
|
+
background_thread = Thread(
|
554
|
+
target=self._run_background_thread, name=f"{self.workflow.__class__.__name__}.background_thread"
|
555
|
+
)
|
544
556
|
background_thread.start()
|
545
557
|
|
546
558
|
if self._cancel_signal:
|
547
|
-
cancel_thread = Thread(
|
559
|
+
cancel_thread = Thread(
|
560
|
+
target=self._run_cancel_thread, name=f"{self.workflow.__class__.__name__}.cancel_thread"
|
561
|
+
)
|
548
562
|
cancel_thread.start()
|
549
563
|
|
550
564
|
event: WorkflowEvent
|
@@ -557,7 +571,7 @@ class WorkflowRunner(Generic[StateType]):
|
|
557
571
|
self._initial_state.meta.is_terminated = False
|
558
572
|
|
559
573
|
# The extra level of indirection prevents the runner from waiting on the caller to consume the event stream
|
560
|
-
stream_thread = Thread(target=self._stream)
|
574
|
+
stream_thread = Thread(target=self._stream, name=f"{self.workflow.__class__.__name__}.stream_thread")
|
561
575
|
stream_thread.start()
|
562
576
|
|
563
577
|
while stream_thread.is_alive():
|
@@ -1,6 +1,8 @@
|
|
1
1
|
import pytest
|
2
2
|
from typing import ClassVar, Generic, List, TypeVar, Union
|
3
3
|
|
4
|
+
from vellum.workflows.nodes.bases.base import BaseNode
|
5
|
+
from vellum.workflows.nodes.core.try_node.node import TryNode
|
4
6
|
from vellum.workflows.outputs.base import BaseOutputs
|
5
7
|
from vellum.workflows.references.output import OutputReference
|
6
8
|
from vellum.workflows.types.utils import get_class_attr_names, infer_types
|
@@ -30,6 +32,11 @@ class ExampleGenericClass(Generic[T]):
|
|
30
32
|
class ExampleInheritedClass(ExampleClass):
|
31
33
|
theta: int
|
32
34
|
|
35
|
+
@TryNode.wrap()
|
36
|
+
class ExampleNode(BaseNode):
|
37
|
+
class Outputs(BaseNode.Outputs):
|
38
|
+
iota: str
|
39
|
+
|
33
40
|
|
34
41
|
@pytest.mark.parametrize(
|
35
42
|
"cls, attr_name, expected_type",
|
@@ -45,6 +52,7 @@ class ExampleInheritedClass(ExampleClass):
|
|
45
52
|
(ExampleInheritedClass, "theta", (int,)),
|
46
53
|
(ExampleInheritedClass, "alpha", (str,)),
|
47
54
|
(ExampleInheritedClass, "beta", (int,)),
|
55
|
+
(ExampleNode.Outputs, "iota", (str,)),
|
48
56
|
],
|
49
57
|
ids=[
|
50
58
|
"str",
|
@@ -58,6 +66,7 @@ class ExampleInheritedClass(ExampleClass):
|
|
58
66
|
"inherited_int",
|
59
67
|
"inherited_parent_annotation",
|
60
68
|
"inherited_parent_class_var",
|
69
|
+
"try_node_output",
|
61
70
|
],
|
62
71
|
)
|
63
72
|
def test_infer_types(cls, attr_name, expected_type):
|
vellum/workflows/types/utils.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1
1
|
from copy import deepcopy
|
2
2
|
from datetime import datetime
|
3
3
|
import importlib
|
4
|
+
import sys
|
4
5
|
from typing import (
|
5
6
|
Any,
|
6
7
|
ClassVar,
|
@@ -18,7 +19,6 @@ from typing import (
|
|
18
19
|
)
|
19
20
|
|
20
21
|
from vellum import ArrayVellumValue, ArrayVellumValueRequest, ChatMessagePromptBlock
|
21
|
-
|
22
22
|
from vellum.workflows.descriptors.base import BaseDescriptor
|
23
23
|
from vellum.workflows.types.core import Json, SpecialGenericAlias, UnderGenericAlias, UnionGenericAlias
|
24
24
|
|
@@ -1,3 +1,4 @@
|
|
1
|
+
import typing
|
1
2
|
from typing import List, Tuple, Type, Union, get_args, get_origin
|
2
3
|
|
3
4
|
from vellum import (
|
@@ -17,8 +18,8 @@ from vellum import (
|
|
17
18
|
VellumValueRequest,
|
18
19
|
VellumVariableType,
|
19
20
|
)
|
20
|
-
|
21
21
|
from vellum.workflows.descriptors.base import BaseDescriptor
|
22
|
+
from vellum.workflows.types.core import Json
|
22
23
|
|
23
24
|
|
24
25
|
def primitive_type_to_vellum_variable_type(type_: Union[Type, BaseDescriptor]) -> VellumVariableType:
|
@@ -32,6 +33,17 @@ def primitive_type_to_vellum_variable_type(type_: Union[Type, BaseDescriptor]) -
|
|
32
33
|
return "JSON"
|
33
34
|
|
34
35
|
if len(types) != 1:
|
36
|
+
# Check explicitly for our internal JSON type.
|
37
|
+
# Matches the type found at vellum.workflows.utils.vellum_variables.Json
|
38
|
+
if types == [
|
39
|
+
bool,
|
40
|
+
int,
|
41
|
+
float,
|
42
|
+
str,
|
43
|
+
typing.List[typing.ForwardRef('Json')], # type: ignore [misc]
|
44
|
+
typing.Dict[str, typing.ForwardRef('Json')], # type: ignore [misc]
|
45
|
+
]:
|
46
|
+
return "JSON"
|
35
47
|
raise ValueError(f"Expected Descriptor to only have one type, got {types}")
|
36
48
|
|
37
49
|
type_ = type_.types[0]
|