vellum-ai 0.10.3__py3-none-any.whl → 0.10.6__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- vellum/client/core/client_wrapper.py +1 -1
- vellum/workflows/events/tests/test_event.py +30 -0
- vellum/workflows/events/types.py +57 -3
- vellum/workflows/nodes/__init__.py +6 -7
- vellum/workflows/nodes/bases/base.py +0 -1
- vellum/workflows/nodes/core/inline_subworkflow_node/node.py +2 -1
- vellum/workflows/nodes/core/map_node/node.py +1 -1
- vellum/workflows/nodes/core/retry_node/node.py +1 -0
- vellum/workflows/nodes/core/templating_node/node.py +5 -1
- vellum/workflows/nodes/core/try_node/node.py +66 -27
- vellum/workflows/nodes/core/try_node/tests/test_node.py +39 -8
- vellum/workflows/nodes/displayable/__init__.py +2 -0
- vellum/workflows/nodes/displayable/bases/api_node/node.py +3 -3
- vellum/workflows/nodes/displayable/code_execution_node/node.py +5 -2
- vellum/workflows/nodes/displayable/final_output_node/node.py +6 -2
- vellum/workflows/nodes/displayable/note_node/__init__.py +5 -0
- vellum/workflows/nodes/displayable/note_node/node.py +10 -0
- vellum/workflows/nodes/displayable/tests/test_inline_text_prompt_node.py +10 -11
- vellum/workflows/nodes/utils.py +2 -0
- vellum/workflows/outputs/base.py +26 -2
- vellum/workflows/runner/runner.py +41 -27
- vellum/workflows/state/tests/test_state.py +2 -0
- vellum/workflows/types/tests/test_utils.py +9 -0
- vellum/workflows/types/utils.py +1 -1
- vellum/workflows/utils/vellum_variables.py +13 -1
- vellum/workflows/workflows/base.py +24 -1
- {vellum_ai-0.10.3.dist-info → vellum_ai-0.10.6.dist-info}/METADATA +8 -6
- {vellum_ai-0.10.3.dist-info → vellum_ai-0.10.6.dist-info}/RECORD +61 -56
- vellum_cli/CONTRIBUTING.md +66 -0
- vellum_cli/README.md +3 -0
- vellum_ee/workflows/display/base.py +2 -1
- vellum_ee/workflows/display/nodes/base_node_display.py +27 -4
- vellum_ee/workflows/display/nodes/vellum/__init__.py +2 -0
- vellum_ee/workflows/display/nodes/vellum/api_node.py +3 -3
- vellum_ee/workflows/display/nodes/vellum/code_execution_node.py +4 -4
- vellum_ee/workflows/display/nodes/vellum/conditional_node.py +86 -41
- vellum_ee/workflows/display/nodes/vellum/guardrail_node.py +3 -3
- vellum_ee/workflows/display/nodes/vellum/inline_prompt_node.py +4 -5
- vellum_ee/workflows/display/nodes/vellum/inline_subworkflow_node.py +9 -9
- vellum_ee/workflows/display/nodes/vellum/map_node.py +5 -5
- vellum_ee/workflows/display/nodes/vellum/note_node.py +32 -0
- vellum_ee/workflows/display/nodes/vellum/prompt_deployment_node.py +5 -5
- vellum_ee/workflows/display/nodes/vellum/search_node.py +6 -10
- vellum_ee/workflows/display/nodes/vellum/subworkflow_deployment_node.py +2 -2
- vellum_ee/workflows/display/nodes/vellum/templating_node.py +4 -5
- vellum_ee/workflows/display/nodes/vellum/try_node.py +16 -4
- vellum_ee/workflows/display/tests/workflow_serialization/test_basic_code_execution_node_serialization.py +7 -3
- vellum_ee/workflows/display/tests/workflow_serialization/test_basic_conditional_node_serialization.py +127 -101
- vellum_ee/workflows/display/tests/workflow_serialization/test_basic_guardrail_node_serialization.py +6 -5
- vellum_ee/workflows/display/tests/workflow_serialization/test_basic_inline_subworkflow_serialization.py +77 -64
- vellum_ee/workflows/display/tests/workflow_serialization/test_basic_map_node_serialization.py +4 -3
- vellum_ee/workflows/display/tests/workflow_serialization/test_basic_prompt_deployment_serialization.py +6 -6
- vellum_ee/workflows/display/tests/workflow_serialization/test_basic_subworkflow_deployment_serialization.py +6 -6
- vellum_ee/workflows/display/tests/workflow_serialization/test_basic_terminal_node_serialization.py +4 -3
- vellum_ee/workflows/display/tests/workflow_serialization/test_complex_terminal_node_serialization.py +7 -6
- vellum_ee/workflows/display/workflows/base_workflow_display.py +14 -9
- vellum_ee/workflows/display/workflows/get_vellum_workflow_display_class.py +2 -7
- vellum_ee/workflows/display/workflows/vellum_workflow_display.py +18 -16
- {vellum_ai-0.10.3.dist-info → vellum_ai-0.10.6.dist-info}/LICENSE +0 -0
- {vellum_ai-0.10.3.dist-info → vellum_ai-0.10.6.dist-info}/WHEEL +0 -0
- {vellum_ai-0.10.3.dist-info → vellum_ai-0.10.6.dist-info}/entry_points.txt +0 -0
vellum/workflows/outputs/base.py
CHANGED
@@ -5,6 +5,7 @@ from pydantic import GetCoreSchemaHandler
|
|
5
5
|
from pydantic_core import core_schema
|
6
6
|
|
7
7
|
from vellum.workflows.constants import UNDEF
|
8
|
+
from vellum.workflows.descriptors.base import BaseDescriptor
|
8
9
|
from vellum.workflows.references.output import OutputReference
|
9
10
|
from vellum.workflows.types.utils import get_class_attr_names, infer_types
|
10
11
|
|
@@ -76,6 +77,23 @@ class BaseOutput(Generic[_Delta, _Accumulated]):
|
|
76
77
|
|
77
78
|
return data
|
78
79
|
|
80
|
+
def __repr__(self) -> str:
|
81
|
+
if self.value is not UNDEF:
|
82
|
+
return f"{self.__class__.__name__}({self.name}={self.value})"
|
83
|
+
elif self.delta is not UNDEF:
|
84
|
+
return f"{self.__class__.__name__}({self.name}={self.delta})"
|
85
|
+
else:
|
86
|
+
return f"{self.__class__.__name__}(name='{self.name}')"
|
87
|
+
|
88
|
+
def __eq__(self, other: Any) -> bool:
|
89
|
+
if not isinstance(other, BaseOutput):
|
90
|
+
return False
|
91
|
+
|
92
|
+
return self.name == other.name and self.value == other.value and self.delta == other.delta
|
93
|
+
|
94
|
+
def __hash__(self) -> int:
|
95
|
+
return hash((self._name, self._value, self._value))
|
96
|
+
|
79
97
|
|
80
98
|
@dataclass_transform(kw_only_default=True)
|
81
99
|
class _BaseOutputsMeta(type):
|
@@ -175,7 +193,9 @@ class BaseOutputs(metaclass=_BaseOutputsMeta):
|
|
175
193
|
if not isinstance(other, dict):
|
176
194
|
return super().__eq__(other)
|
177
195
|
|
178
|
-
outputs = {
|
196
|
+
outputs = {
|
197
|
+
name: value for name, value in vars(self).items() if not name.startswith("_") and value is not UNDEF
|
198
|
+
}
|
179
199
|
return outputs == other
|
180
200
|
|
181
201
|
def __repr__(self) -> str:
|
@@ -184,7 +204,11 @@ class BaseOutputs(metaclass=_BaseOutputsMeta):
|
|
184
204
|
|
185
205
|
def __iter__(self) -> Iterator[Tuple[OutputReference, Any]]:
|
186
206
|
for output_descriptor in self.__class__:
|
187
|
-
|
207
|
+
output_value = getattr(self, output_descriptor.name, UNDEF)
|
208
|
+
if isinstance(output_value, BaseDescriptor):
|
209
|
+
output_value = UNDEF
|
210
|
+
|
211
|
+
yield (output_descriptor, output_value)
|
188
212
|
|
189
213
|
def __getitem__(self, key: str) -> Any:
|
190
214
|
return getattr(self, key)
|
@@ -170,32 +170,37 @@ class WorkflowRunner(Generic[StateType]):
|
|
170
170
|
streaming_output_queues: Dict[str, Queue] = {}
|
171
171
|
outputs = node.Outputs()
|
172
172
|
|
173
|
+
def initiate_node_streaming_output(output: BaseOutput) -> None:
|
174
|
+
streaming_output_queues[output.name] = Queue()
|
175
|
+
output_descriptor = OutputReference(
|
176
|
+
name=output.name,
|
177
|
+
types=(type(output.delta),),
|
178
|
+
instance=None,
|
179
|
+
outputs_class=node.Outputs,
|
180
|
+
)
|
181
|
+
node.state.meta.node_outputs[output_descriptor] = streaming_output_queues[output.name]
|
182
|
+
self._work_item_event_queue.put(
|
183
|
+
WorkItemEvent(
|
184
|
+
node=node,
|
185
|
+
event=NodeExecutionStreamingEvent(
|
186
|
+
trace_id=node.state.meta.trace_id,
|
187
|
+
span_id=span_id,
|
188
|
+
body=NodeExecutionStreamingBody(
|
189
|
+
node_definition=node.__class__,
|
190
|
+
output=BaseOutput(name=output.name),
|
191
|
+
),
|
192
|
+
),
|
193
|
+
invoked_ports=invoked_ports,
|
194
|
+
)
|
195
|
+
)
|
196
|
+
|
173
197
|
for output in node_run_response:
|
174
198
|
invoked_ports = output > ports
|
175
|
-
if
|
199
|
+
if output.is_initiated:
|
200
|
+
initiate_node_streaming_output(output)
|
201
|
+
elif output.is_streaming:
|
176
202
|
if output.name not in streaming_output_queues:
|
177
|
-
|
178
|
-
output_descriptor = OutputReference(
|
179
|
-
name=output.name,
|
180
|
-
types=(type(output.delta),),
|
181
|
-
instance=None,
|
182
|
-
outputs_class=node.Outputs,
|
183
|
-
)
|
184
|
-
node.state.meta.node_outputs[output_descriptor] = streaming_output_queues[output.name]
|
185
|
-
self._work_item_event_queue.put(
|
186
|
-
WorkItemEvent(
|
187
|
-
node=node,
|
188
|
-
event=NodeExecutionStreamingEvent(
|
189
|
-
trace_id=node.state.meta.trace_id,
|
190
|
-
span_id=span_id,
|
191
|
-
body=NodeExecutionStreamingBody(
|
192
|
-
node_definition=node.__class__,
|
193
|
-
output=BaseOutput(name=output.name),
|
194
|
-
),
|
195
|
-
),
|
196
|
-
invoked_ports=invoked_ports,
|
197
|
-
)
|
198
|
-
)
|
203
|
+
initiate_node_streaming_output(output)
|
199
204
|
|
200
205
|
streaming_output_queues[output.name].put(output.delta)
|
201
206
|
self._work_item_event_queue.put(
|
@@ -212,7 +217,7 @@ class WorkflowRunner(Generic[StateType]):
|
|
212
217
|
invoked_ports=invoked_ports,
|
213
218
|
)
|
214
219
|
)
|
215
|
-
|
220
|
+
elif output.is_fulfilled:
|
216
221
|
if output.name in streaming_output_queues:
|
217
222
|
streaming_output_queues[output.name].put(UNDEF)
|
218
223
|
|
@@ -233,6 +238,11 @@ class WorkflowRunner(Generic[StateType]):
|
|
233
238
|
)
|
234
239
|
|
235
240
|
for descriptor, output_value in outputs:
|
241
|
+
if output_value is UNDEF:
|
242
|
+
if descriptor in node.state.meta.node_outputs:
|
243
|
+
del node.state.meta.node_outputs[descriptor]
|
244
|
+
continue
|
245
|
+
|
236
246
|
node.state.meta.node_outputs[descriptor] = output_value
|
237
247
|
|
238
248
|
invoked_ports = ports(outputs, node.state)
|
@@ -540,11 +550,15 @@ class WorkflowRunner(Generic[StateType]):
|
|
540
550
|
)
|
541
551
|
|
542
552
|
def stream(self) -> WorkflowEventStream:
|
543
|
-
background_thread = Thread(
|
553
|
+
background_thread = Thread(
|
554
|
+
target=self._run_background_thread, name=f"{self.workflow.__class__.__name__}.background_thread"
|
555
|
+
)
|
544
556
|
background_thread.start()
|
545
557
|
|
546
558
|
if self._cancel_signal:
|
547
|
-
cancel_thread = Thread(
|
559
|
+
cancel_thread = Thread(
|
560
|
+
target=self._run_cancel_thread, name=f"{self.workflow.__class__.__name__}.cancel_thread"
|
561
|
+
)
|
548
562
|
cancel_thread.start()
|
549
563
|
|
550
564
|
event: WorkflowEvent
|
@@ -557,7 +571,7 @@ class WorkflowRunner(Generic[StateType]):
|
|
557
571
|
self._initial_state.meta.is_terminated = False
|
558
572
|
|
559
573
|
# The extra level of indirection prevents the runner from waiting on the caller to consume the event stream
|
560
|
-
stream_thread = Thread(target=self._stream)
|
574
|
+
stream_thread = Thread(target=self._stream, name=f"{self.workflow.__class__.__name__}.stream_thread")
|
561
575
|
stream_thread.start()
|
562
576
|
|
563
577
|
while stream_thread.is_alive():
|
@@ -1,3 +1,4 @@
|
|
1
|
+
import pytest
|
1
2
|
from collections import defaultdict
|
2
3
|
from copy import deepcopy
|
3
4
|
import json
|
@@ -76,6 +77,7 @@ def test_state_deepcopy():
|
|
76
77
|
assert deepcopied_state.meta.node_outputs == state.meta.node_outputs
|
77
78
|
|
78
79
|
|
80
|
+
@pytest.mark.skip(reason="https://app.shortcut.com/vellum/story/5654")
|
79
81
|
def test_state_deepcopy__with_node_output_updates():
|
80
82
|
# GIVEN an initial state instance
|
81
83
|
state = MockState(foo="bar")
|
@@ -1,6 +1,8 @@
|
|
1
1
|
import pytest
|
2
2
|
from typing import ClassVar, Generic, List, TypeVar, Union
|
3
3
|
|
4
|
+
from vellum.workflows.nodes.bases.base import BaseNode
|
5
|
+
from vellum.workflows.nodes.core.try_node.node import TryNode
|
4
6
|
from vellum.workflows.outputs.base import BaseOutputs
|
5
7
|
from vellum.workflows.references.output import OutputReference
|
6
8
|
from vellum.workflows.types.utils import get_class_attr_names, infer_types
|
@@ -30,6 +32,11 @@ class ExampleGenericClass(Generic[T]):
|
|
30
32
|
class ExampleInheritedClass(ExampleClass):
|
31
33
|
theta: int
|
32
34
|
|
35
|
+
@TryNode.wrap()
|
36
|
+
class ExampleNode(BaseNode):
|
37
|
+
class Outputs(BaseNode.Outputs):
|
38
|
+
iota: str
|
39
|
+
|
33
40
|
|
34
41
|
@pytest.mark.parametrize(
|
35
42
|
"cls, attr_name, expected_type",
|
@@ -45,6 +52,7 @@ class ExampleInheritedClass(ExampleClass):
|
|
45
52
|
(ExampleInheritedClass, "theta", (int,)),
|
46
53
|
(ExampleInheritedClass, "alpha", (str,)),
|
47
54
|
(ExampleInheritedClass, "beta", (int,)),
|
55
|
+
(ExampleNode.Outputs, "iota", (str,)),
|
48
56
|
],
|
49
57
|
ids=[
|
50
58
|
"str",
|
@@ -58,6 +66,7 @@ class ExampleInheritedClass(ExampleClass):
|
|
58
66
|
"inherited_int",
|
59
67
|
"inherited_parent_annotation",
|
60
68
|
"inherited_parent_class_var",
|
69
|
+
"try_node_output",
|
61
70
|
],
|
62
71
|
)
|
63
72
|
def test_infer_types(cls, attr_name, expected_type):
|
vellum/workflows/types/utils.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1
1
|
from copy import deepcopy
|
2
2
|
from datetime import datetime
|
3
3
|
import importlib
|
4
|
+
import sys
|
4
5
|
from typing import (
|
5
6
|
Any,
|
6
7
|
ClassVar,
|
@@ -18,7 +19,6 @@ from typing import (
|
|
18
19
|
)
|
19
20
|
|
20
21
|
from vellum import ArrayVellumValue, ArrayVellumValueRequest, ChatMessagePromptBlock
|
21
|
-
|
22
22
|
from vellum.workflows.descriptors.base import BaseDescriptor
|
23
23
|
from vellum.workflows.types.core import Json, SpecialGenericAlias, UnderGenericAlias, UnionGenericAlias
|
24
24
|
|
@@ -1,3 +1,4 @@
|
|
1
|
+
import typing
|
1
2
|
from typing import List, Tuple, Type, Union, get_args, get_origin
|
2
3
|
|
3
4
|
from vellum import (
|
@@ -17,8 +18,8 @@ from vellum import (
|
|
17
18
|
VellumValueRequest,
|
18
19
|
VellumVariableType,
|
19
20
|
)
|
20
|
-
|
21
21
|
from vellum.workflows.descriptors.base import BaseDescriptor
|
22
|
+
from vellum.workflows.types.core import Json
|
22
23
|
|
23
24
|
|
24
25
|
def primitive_type_to_vellum_variable_type(type_: Union[Type, BaseDescriptor]) -> VellumVariableType:
|
@@ -32,6 +33,17 @@ def primitive_type_to_vellum_variable_type(type_: Union[Type, BaseDescriptor]) -
|
|
32
33
|
return "JSON"
|
33
34
|
|
34
35
|
if len(types) != 1:
|
36
|
+
# Check explicitly for our internal JSON type.
|
37
|
+
# Matches the type found at vellum.workflows.utils.vellum_variables.Json
|
38
|
+
if types == [
|
39
|
+
bool,
|
40
|
+
int,
|
41
|
+
float,
|
42
|
+
str,
|
43
|
+
typing.List[typing.ForwardRef('Json')], # type: ignore [misc]
|
44
|
+
typing.Dict[str, typing.ForwardRef('Json')], # type: ignore [misc]
|
45
|
+
]:
|
46
|
+
return "JSON"
|
35
47
|
raise ValueError(f"Expected Descriptor to only have one type, got {types}")
|
36
48
|
|
37
49
|
type_ = type_.types[0]
|
@@ -35,11 +35,17 @@ from vellum.workflows.emitters.base import BaseWorkflowEmitter
|
|
35
35
|
from vellum.workflows.errors import VellumError, VellumErrorCode
|
36
36
|
from vellum.workflows.events.node import (
|
37
37
|
NodeExecutionFulfilledBody,
|
38
|
+
NodeExecutionFulfilledEvent,
|
38
39
|
NodeExecutionInitiatedBody,
|
40
|
+
NodeExecutionInitiatedEvent,
|
39
41
|
NodeExecutionPausedBody,
|
42
|
+
NodeExecutionPausedEvent,
|
40
43
|
NodeExecutionRejectedBody,
|
44
|
+
NodeExecutionRejectedEvent,
|
41
45
|
NodeExecutionResumedBody,
|
46
|
+
NodeExecutionResumedEvent,
|
42
47
|
NodeExecutionStreamingBody,
|
48
|
+
NodeExecutionStreamingEvent,
|
43
49
|
)
|
44
50
|
from vellum.workflows.events.types import WorkflowEventType
|
45
51
|
from vellum.workflows.events.workflow import (
|
@@ -55,6 +61,7 @@ from vellum.workflows.events.workflow import (
|
|
55
61
|
WorkflowExecutionResumedBody,
|
56
62
|
WorkflowExecutionResumedEvent,
|
57
63
|
WorkflowExecutionStreamingBody,
|
64
|
+
WorkflowExecutionStreamingEvent,
|
58
65
|
)
|
59
66
|
from vellum.workflows.graph import Graph
|
60
67
|
from vellum.workflows.inputs.base import BaseInputs
|
@@ -204,7 +211,9 @@ class BaseWorkflow(Generic[WorkflowInputsType, StateType], metaclass=_BaseWorkfl
|
|
204
211
|
trace_id=uuid4(),
|
205
212
|
span_id=uuid4(),
|
206
213
|
body=WorkflowExecutionRejectedBody(
|
207
|
-
error=VellumError(
|
214
|
+
error=VellumError(
|
215
|
+
code=VellumErrorCode.INTERNAL_ERROR, message="Initiated event was never emitted"
|
216
|
+
),
|
208
217
|
workflow_definition=self.__class__,
|
209
218
|
),
|
210
219
|
)
|
@@ -363,3 +372,17 @@ NodeExecutionRejectedBody.model_rebuild()
|
|
363
372
|
NodeExecutionPausedBody.model_rebuild()
|
364
373
|
NodeExecutionResumedBody.model_rebuild()
|
365
374
|
NodeExecutionStreamingBody.model_rebuild()
|
375
|
+
|
376
|
+
WorkflowExecutionInitiatedEvent.model_rebuild()
|
377
|
+
WorkflowExecutionFulfilledEvent.model_rebuild()
|
378
|
+
WorkflowExecutionRejectedEvent.model_rebuild()
|
379
|
+
WorkflowExecutionPausedEvent.model_rebuild()
|
380
|
+
WorkflowExecutionResumedEvent.model_rebuild()
|
381
|
+
WorkflowExecutionStreamingEvent.model_rebuild()
|
382
|
+
|
383
|
+
NodeExecutionInitiatedEvent.model_rebuild()
|
384
|
+
NodeExecutionFulfilledEvent.model_rebuild()
|
385
|
+
NodeExecutionRejectedEvent.model_rebuild()
|
386
|
+
NodeExecutionPausedEvent.model_rebuild()
|
387
|
+
NodeExecutionResumedEvent.model_rebuild()
|
388
|
+
NodeExecutionStreamingEvent.model_rebuild()
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: vellum-ai
|
3
|
-
Version: 0.10.
|
3
|
+
Version: 0.10.6
|
4
4
|
Summary:
|
5
5
|
License: MIT
|
6
6
|
Requires-Python: >=3.9,<4.0
|
@@ -63,7 +63,6 @@ Description-Content-Type: text/markdown
|
|
63
63
|
|
64
64
|
# Introduction
|
65
65
|
|
66
|
-
|
67
66
|
[Vellum](https://www.vellum.ai/) is the end-to-end development platform for building production-grade AI applications
|
68
67
|
|
69
68
|
### Core Features
|
@@ -85,22 +84,21 @@ Description-Content-Type: text/markdown
|
|
85
84
|
- [Contributing](#contributing)
|
86
85
|
- [Open-source vs paid](#open-source-vs-paid)
|
87
86
|
|
88
|
-
|
89
87
|
## Get Started
|
88
|
+
|
90
89
|
Most functionality within the SDKs here requires a Vellum account and API key. To sign up, [talk to us](https://www.vellum.ai/landing-pages/request-demo)
|
91
90
|
or visit our [pricing page](https://www.vellum.ai/pricing).
|
92
91
|
|
93
92
|
Even without a Vellum account, you can use the Workflows SDK to define the control flow of your AI systems. [Learn
|
94
93
|
more below](#workflows-sdk).
|
95
94
|
|
96
|
-
|
97
|
-
|
98
95
|
## Client SDK
|
96
|
+
|
99
97
|
The Vellum Client SDK, found within `src/client` is a low-level client used to interact directly with the Vellum API.
|
100
98
|
Learn more and get started by visiting the [Vellum Client SDK README](/src/vellum/client/README.md).
|
101
99
|
|
102
|
-
|
103
100
|
## Workflows SDK
|
101
|
+
|
104
102
|
The Vellum Workflows SDK is a high-level framework for defining and debugging the control flow of AI systems. At
|
105
103
|
it's core, it's a powerful workflow engine with syntactic sugar for intuitively defining graphs, the nodes within,
|
106
104
|
and the relationships between them.
|
@@ -111,6 +109,9 @@ and debugging via a UI.
|
|
111
109
|
|
112
110
|
To learn more and get started, visit the [Vellum Workflows SDK README](/src/vellum/workflows/README.md).
|
113
111
|
|
112
|
+
## Contributing
|
113
|
+
|
114
|
+
See the [CONTRIBUTING.md](/CONTRIBUTING.md) for information on how to contribute to the Vellum SDKs.
|
114
115
|
|
115
116
|
## Open-Source vs. Paid
|
116
117
|
|
@@ -118,3 +119,4 @@ This repo is available under the [MIT expat license](https://github.com/vellum-a
|
|
118
119
|
for the `ee` directory (which has its [license here](https://github.com/vellum-ai/vellum-python-sdks/blob/main/ee/LICENSE)) if applicable.
|
119
120
|
|
120
121
|
To learn more, [book a demo](https://www.vellum.ai/landing-pages/request-demo) or see our [pricing page](https://www.vellum.ai/pricing).
|
122
|
+
|