vellum-ai 0.1.8__py3-none-any.whl → 0.1.10__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- vellum/__init__.py +70 -0
- vellum/client.py +331 -5
- vellum/core/client_wrapper.py +1 -1
- vellum/errors/forbidden_error.py +3 -2
- vellum/resources/registered_prompts/client.py +2 -0
- vellum/types/__init__.py +71 -0
- vellum/types/block_type_enum.py +4 -4
- vellum/types/chat_message_role.py +4 -4
- vellum/types/deployment_read.py +6 -6
- vellum/types/deployment_status.py +3 -3
- vellum/types/document_document_to_document_index.py +5 -5
- vellum/types/document_index_read.py +4 -4
- vellum/types/document_index_status.py +2 -2
- vellum/types/document_read.py +5 -5
- vellum/types/enriched_normalized_completion.py +3 -3
- vellum/types/environment_enum.py +3 -3
- vellum/types/error_variable_value.py +29 -0
- vellum/types/execute_prompt_api_error_response.py +28 -0
- vellum/types/execute_prompt_event.py +56 -0
- vellum/types/execute_prompt_response.py +31 -0
- vellum/types/finish_reason_enum.py +3 -3
- vellum/types/fulfilled_enum.py +5 -0
- vellum/types/fulfilled_execute_prompt_event.py +36 -0
- vellum/types/fulfilled_execute_prompt_response.py +39 -0
- vellum/types/fulfilled_prompt_execution_meta.py +34 -0
- vellum/types/generate_options_request.py +1 -1
- vellum/types/indexing_state_enum.py +5 -5
- vellum/types/initiated_enum.py +5 -0
- vellum/types/initiated_execute_prompt_event.py +34 -0
- vellum/types/initiated_prompt_execution_meta.py +35 -0
- vellum/types/json_variable_value.py +28 -0
- vellum/types/logical_operator.py +18 -18
- vellum/types/logprobs_enum.py +2 -2
- vellum/types/metadata_filter_rule_combinator.py +2 -2
- vellum/types/model_version_read.py +13 -12
- vellum/types/model_version_read_status_enum.py +4 -4
- vellum/types/processing_failure_reason_enum.py +2 -2
- vellum/types/processing_state_enum.py +4 -4
- vellum/types/prompt_deployment_expand_meta_request_request.py +42 -0
- vellum/types/prompt_execution_meta.py +37 -0
- vellum/types/prompt_output.py +41 -0
- vellum/types/provider_enum.py +17 -12
- vellum/types/raw_prompt_execution_overrides_request.py +32 -0
- vellum/types/rejected_enum.py +5 -0
- vellum/types/rejected_execute_prompt_event.py +36 -0
- vellum/types/rejected_execute_prompt_response.py +39 -0
- vellum/types/rejected_prompt_execution_meta.py +34 -0
- vellum/types/scenario_input_type_enum.py +2 -2
- vellum/types/slim_document.py +7 -7
- vellum/types/streaming_enum.py +5 -0
- vellum/types/streaming_execute_prompt_event.py +40 -0
- vellum/types/streaming_prompt_execution_meta.py +32 -0
- vellum/types/string_variable_value.py +28 -0
- vellum/types/vellum_error_code_enum.py +3 -3
- vellum/types/vellum_variable_type.py +11 -6
- vellum/types/workflow_execution_event_error_code.py +6 -6
- vellum/types/workflow_execution_event_type.py +2 -2
- vellum/types/workflow_node_result_event_state.py +4 -4
- vellum/types/workflow_request_input_request.py +14 -1
- vellum/types/workflow_request_number_input_request.py +29 -0
- {vellum_ai-0.1.8.dist-info → vellum_ai-0.1.10.dist-info}/METADATA +1 -1
- {vellum_ai-0.1.8.dist-info → vellum_ai-0.1.10.dist-info}/RECORD +63 -38
- {vellum_ai-0.1.8.dist-info → vellum_ai-0.1.10.dist-info}/WHEEL +0 -0
@@ -8,11 +8,11 @@ T_Result = typing.TypeVar("T_Result")
|
|
8
8
|
|
9
9
|
class IndexingStateEnum(str, enum.Enum):
|
10
10
|
"""
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
11
|
+
- `AWAITING_PROCESSING` - Awaiting Processing
|
12
|
+
- `QUEUED` - Queued
|
13
|
+
- `INDEXING` - Indexing
|
14
|
+
- `INDEXED` - Indexed
|
15
|
+
- `FAILED` - Failed
|
16
16
|
"""
|
17
17
|
|
18
18
|
AWAITING_PROCESSING = "AWAITING_PROCESSING"
|
@@ -0,0 +1,34 @@
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
2
|
+
|
3
|
+
import datetime as dt
|
4
|
+
import typing
|
5
|
+
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
7
|
+
from .initiated_prompt_execution_meta import InitiatedPromptExecutionMeta
|
8
|
+
|
9
|
+
try:
|
10
|
+
import pydantic.v1 as pydantic # type: ignore
|
11
|
+
except ImportError:
|
12
|
+
import pydantic # type: ignore
|
13
|
+
|
14
|
+
|
15
|
+
class InitiatedExecutePromptEvent(pydantic.BaseModel):
|
16
|
+
"""
|
17
|
+
The initial data returned indicating that the response from the model has returned and begun streaming.
|
18
|
+
"""
|
19
|
+
|
20
|
+
meta: typing.Optional[InitiatedPromptExecutionMeta]
|
21
|
+
execution_id: str
|
22
|
+
|
23
|
+
def json(self, **kwargs: typing.Any) -> str:
|
24
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
25
|
+
return super().json(**kwargs_with_defaults)
|
26
|
+
|
27
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
28
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
29
|
+
return super().dict(**kwargs_with_defaults)
|
30
|
+
|
31
|
+
class Config:
|
32
|
+
frozen = True
|
33
|
+
smart_union = True
|
34
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
@@ -0,0 +1,35 @@
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
2
|
+
|
3
|
+
import datetime as dt
|
4
|
+
import typing
|
5
|
+
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
7
|
+
|
8
|
+
try:
|
9
|
+
import pydantic.v1 as pydantic # type: ignore
|
10
|
+
except ImportError:
|
11
|
+
import pydantic # type: ignore
|
12
|
+
|
13
|
+
|
14
|
+
class InitiatedPromptExecutionMeta(pydantic.BaseModel):
|
15
|
+
"""
|
16
|
+
The subset of the metadata tracked by Vellum during prompt execution that the request opted into with `expand_meta`.
|
17
|
+
"""
|
18
|
+
|
19
|
+
model_name: typing.Optional[str]
|
20
|
+
latency: typing.Optional[int]
|
21
|
+
deployment_release_tag: typing.Optional[str]
|
22
|
+
prompt_version_id: typing.Optional[str]
|
23
|
+
|
24
|
+
def json(self, **kwargs: typing.Any) -> str:
|
25
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
26
|
+
return super().json(**kwargs_with_defaults)
|
27
|
+
|
28
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
29
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
30
|
+
return super().dict(**kwargs_with_defaults)
|
31
|
+
|
32
|
+
class Config:
|
33
|
+
frozen = True
|
34
|
+
smart_union = True
|
35
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
@@ -0,0 +1,28 @@
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
2
|
+
|
3
|
+
import datetime as dt
|
4
|
+
import typing
|
5
|
+
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
7
|
+
|
8
|
+
try:
|
9
|
+
import pydantic.v1 as pydantic # type: ignore
|
10
|
+
except ImportError:
|
11
|
+
import pydantic # type: ignore
|
12
|
+
|
13
|
+
|
14
|
+
class JsonVariableValue(pydantic.BaseModel):
|
15
|
+
value: typing.Optional[typing.Dict[str, typing.Any]]
|
16
|
+
|
17
|
+
def json(self, **kwargs: typing.Any) -> str:
|
18
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
19
|
+
return super().json(**kwargs_with_defaults)
|
20
|
+
|
21
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
22
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
23
|
+
return super().dict(**kwargs_with_defaults)
|
24
|
+
|
25
|
+
class Config:
|
26
|
+
frozen = True
|
27
|
+
smart_union = True
|
28
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
vellum/types/logical_operator.py
CHANGED
@@ -8,24 +8,24 @@ T_Result = typing.TypeVar("T_Result")
|
|
8
8
|
|
9
9
|
class LogicalOperator(str, enum.Enum):
|
10
10
|
"""
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
11
|
+
- `=` - EQUALS
|
12
|
+
- `!=` - DOES_NOT_EQUAL
|
13
|
+
- `<` - LESS_THAN
|
14
|
+
- `>` - GREATER_THAN
|
15
|
+
- `<=` - LESS_THAN_OR_EQUAL_TO
|
16
|
+
- `>=` - GREATER_THAN_OR_EQUAL_TO
|
17
|
+
- `contains` - CONTAINS
|
18
|
+
- `beginsWith` - BEGINS_WITH
|
19
|
+
- `endsWith` - ENDS_WITH
|
20
|
+
- `doesNotContain` - DOES_NOT_CONTAIN
|
21
|
+
- `doesNotBeginWith` - DOES_NOT_BEGIN_WITH
|
22
|
+
- `doesNotEndWith` - DOES_NOT_END_WITH
|
23
|
+
- `null` - NULL
|
24
|
+
- `notNull` - NOT_NULL
|
25
|
+
- `in` - IN
|
26
|
+
- `notIn` - NOT_IN
|
27
|
+
- `between` - BETWEEN
|
28
|
+
- `notBetween` - NOT_BETWEEN
|
29
29
|
"""
|
30
30
|
|
31
31
|
EQUALS = "="
|
vellum/types/logprobs_enum.py
CHANGED
@@ -23,18 +23,19 @@ class ModelVersionRead(pydantic.BaseModel):
|
|
23
23
|
description=(
|
24
24
|
"Which LLM provider this model version is associated with.\n"
|
25
25
|
"\n"
|
26
|
-
"
|
27
|
-
"
|
28
|
-
"
|
29
|
-
"
|
30
|
-
"
|
31
|
-
"
|
32
|
-
"
|
33
|
-
"
|
34
|
-
"
|
35
|
-
"
|
36
|
-
"
|
37
|
-
"
|
26
|
+
"- `ANTHROPIC` - Anthropic\n"
|
27
|
+
"- `AWS_BEDROCK` - AWS Bedrock\n"
|
28
|
+
"- `AZURE_OPENAI` - Azure OpenAI\n"
|
29
|
+
"- `COHERE` - Cohere\n"
|
30
|
+
"- `GOOGLE` - Google\n"
|
31
|
+
"- `HOSTED` - Hosted\n"
|
32
|
+
"- `MOSAICML` - MosaicML\n"
|
33
|
+
"- `OPENAI` - OpenAI\n"
|
34
|
+
"- `FIREWORKS_AI` - Fireworks AI\n"
|
35
|
+
"- `HUGGINGFACE` - HuggingFace\n"
|
36
|
+
"- `MYSTIC` - Mystic\n"
|
37
|
+
"- `PYQ` - Pyq\n"
|
38
|
+
"- `REPLICATE` - Replicate\n"
|
38
39
|
)
|
39
40
|
)
|
40
41
|
external_id: str = pydantic.Field(
|
@@ -8,10 +8,10 @@ T_Result = typing.TypeVar("T_Result")
|
|
8
8
|
|
9
9
|
class ModelVersionReadStatusEnum(str, enum.Enum):
|
10
10
|
"""
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
11
|
+
- `CREATING` - Creating
|
12
|
+
- `READY` - Ready
|
13
|
+
- `CREATION_FAILED` - Creation Failed
|
14
|
+
- `DISABLED` - Disabled
|
15
15
|
"""
|
16
16
|
|
17
17
|
CREATING = "CREATING"
|
@@ -8,8 +8,8 @@ T_Result = typing.TypeVar("T_Result")
|
|
8
8
|
|
9
9
|
class ProcessingFailureReasonEnum(str, enum.Enum):
|
10
10
|
"""
|
11
|
-
|
12
|
-
|
11
|
+
- `EXCEEDED_CHARACTER_LIMIT` - Exceeded Character Limit
|
12
|
+
- `INVALID_FILE` - Invalid File
|
13
13
|
"""
|
14
14
|
|
15
15
|
EXCEEDED_CHARACTER_LIMIT = "EXCEEDED_CHARACTER_LIMIT"
|
@@ -8,10 +8,10 @@ T_Result = typing.TypeVar("T_Result")
|
|
8
8
|
|
9
9
|
class ProcessingStateEnum(str, enum.Enum):
|
10
10
|
"""
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
11
|
+
- `QUEUED` - Queued
|
12
|
+
- `PROCESSING` - Processing
|
13
|
+
- `PROCESSED` - Processed
|
14
|
+
- `FAILED` - Failed
|
15
15
|
"""
|
16
16
|
|
17
17
|
QUEUED = "QUEUED"
|
@@ -0,0 +1,42 @@
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
2
|
+
|
3
|
+
import datetime as dt
|
4
|
+
import typing
|
5
|
+
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
7
|
+
|
8
|
+
try:
|
9
|
+
import pydantic.v1 as pydantic # type: ignore
|
10
|
+
except ImportError:
|
11
|
+
import pydantic # type: ignore
|
12
|
+
|
13
|
+
|
14
|
+
class PromptDeploymentExpandMetaRequestRequest(pydantic.BaseModel):
|
15
|
+
model_name: typing.Optional[bool] = pydantic.Field(
|
16
|
+
description="If enabled, the response will include the model identifier representing the ML Model invoked by the Prompt Deployment."
|
17
|
+
)
|
18
|
+
latency: typing.Optional[bool] = pydantic.Field(
|
19
|
+
description="If enabled, the response will include the time in nanoseconds it took to execute the Prompt Deployment."
|
20
|
+
)
|
21
|
+
deployment_release_tag: typing.Optional[bool] = pydantic.Field(
|
22
|
+
description="If enabled, the response will include the release tag of the Prompt Deployment."
|
23
|
+
)
|
24
|
+
prompt_version_id: typing.Optional[bool] = pydantic.Field(
|
25
|
+
description="If enabled, the response will include the ID of the Prompt Version backing the deployment."
|
26
|
+
)
|
27
|
+
finish_reason: typing.Optional[bool] = pydantic.Field(
|
28
|
+
description="If enabled, the response will include the reason provided by the model for why the execution finished."
|
29
|
+
)
|
30
|
+
|
31
|
+
def json(self, **kwargs: typing.Any) -> str:
|
32
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
33
|
+
return super().json(**kwargs_with_defaults)
|
34
|
+
|
35
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
36
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
37
|
+
return super().dict(**kwargs_with_defaults)
|
38
|
+
|
39
|
+
class Config:
|
40
|
+
frozen = True
|
41
|
+
smart_union = True
|
42
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
@@ -0,0 +1,37 @@
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
2
|
+
|
3
|
+
import datetime as dt
|
4
|
+
import typing
|
5
|
+
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
7
|
+
from .finish_reason_enum import FinishReasonEnum
|
8
|
+
|
9
|
+
try:
|
10
|
+
import pydantic.v1 as pydantic # type: ignore
|
11
|
+
except ImportError:
|
12
|
+
import pydantic # type: ignore
|
13
|
+
|
14
|
+
|
15
|
+
class PromptExecutionMeta(pydantic.BaseModel):
|
16
|
+
"""
|
17
|
+
The subset of the metadata tracked by Vellum during prompt execution that the request opted into with `expand_meta`.
|
18
|
+
"""
|
19
|
+
|
20
|
+
model_name: typing.Optional[str]
|
21
|
+
latency: typing.Optional[int]
|
22
|
+
deployment_release_tag: typing.Optional[str]
|
23
|
+
prompt_version_id: typing.Optional[str]
|
24
|
+
finish_reason: typing.Optional[FinishReasonEnum]
|
25
|
+
|
26
|
+
def json(self, **kwargs: typing.Any) -> str:
|
27
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
28
|
+
return super().json(**kwargs_with_defaults)
|
29
|
+
|
30
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
31
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
32
|
+
return super().dict(**kwargs_with_defaults)
|
33
|
+
|
34
|
+
class Config:
|
35
|
+
frozen = True
|
36
|
+
smart_union = True
|
37
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
@@ -0,0 +1,41 @@
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
2
|
+
|
3
|
+
from __future__ import annotations
|
4
|
+
|
5
|
+
import typing
|
6
|
+
|
7
|
+
import typing_extensions
|
8
|
+
|
9
|
+
from .error_variable_value import ErrorVariableValue
|
10
|
+
from .json_variable_value import JsonVariableValue
|
11
|
+
from .string_variable_value import StringVariableValue
|
12
|
+
|
13
|
+
|
14
|
+
class PromptOutput_String(StringVariableValue):
|
15
|
+
type: typing_extensions.Literal["STRING"]
|
16
|
+
|
17
|
+
class Config:
|
18
|
+
frozen = True
|
19
|
+
smart_union = True
|
20
|
+
allow_population_by_field_name = True
|
21
|
+
|
22
|
+
|
23
|
+
class PromptOutput_Json(JsonVariableValue):
|
24
|
+
type: typing_extensions.Literal["JSON"]
|
25
|
+
|
26
|
+
class Config:
|
27
|
+
frozen = True
|
28
|
+
smart_union = True
|
29
|
+
allow_population_by_field_name = True
|
30
|
+
|
31
|
+
|
32
|
+
class PromptOutput_Error(ErrorVariableValue):
|
33
|
+
type: typing_extensions.Literal["ERROR"]
|
34
|
+
|
35
|
+
class Config:
|
36
|
+
frozen = True
|
37
|
+
smart_union = True
|
38
|
+
allow_population_by_field_name = True
|
39
|
+
|
40
|
+
|
41
|
+
PromptOutput = typing.Union[PromptOutput_String, PromptOutput_Json, PromptOutput_Error]
|
vellum/types/provider_enum.py
CHANGED
@@ -8,18 +8,19 @@ T_Result = typing.TypeVar("T_Result")
|
|
8
8
|
|
9
9
|
class ProviderEnum(str, enum.Enum):
|
10
10
|
"""
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
11
|
+
- `ANTHROPIC` - Anthropic
|
12
|
+
- `AWS_BEDROCK` - AWS Bedrock
|
13
|
+
- `AZURE_OPENAI` - Azure OpenAI
|
14
|
+
- `COHERE` - Cohere
|
15
|
+
- `GOOGLE` - Google
|
16
|
+
- `HOSTED` - Hosted
|
17
|
+
- `MOSAICML` - MosaicML
|
18
|
+
- `OPENAI` - OpenAI
|
19
|
+
- `FIREWORKS_AI` - Fireworks AI
|
20
|
+
- `HUGGINGFACE` - HuggingFace
|
21
|
+
- `MYSTIC` - Mystic
|
22
|
+
- `PYQ` - Pyq
|
23
|
+
- `REPLICATE` - Replicate
|
23
24
|
"""
|
24
25
|
|
25
26
|
ANTHROPIC = "ANTHROPIC"
|
@@ -30,6 +31,7 @@ class ProviderEnum(str, enum.Enum):
|
|
30
31
|
HOSTED = "HOSTED"
|
31
32
|
MOSAICML = "MOSAICML"
|
32
33
|
OPENAI = "OPENAI"
|
34
|
+
FIREWORKS_AI = "FIREWORKS_AI"
|
33
35
|
HUGGINGFACE = "HUGGINGFACE"
|
34
36
|
MYSTIC = "MYSTIC"
|
35
37
|
PYQ = "PYQ"
|
@@ -45,6 +47,7 @@ class ProviderEnum(str, enum.Enum):
|
|
45
47
|
hosted: typing.Callable[[], T_Result],
|
46
48
|
mosaicml: typing.Callable[[], T_Result],
|
47
49
|
openai: typing.Callable[[], T_Result],
|
50
|
+
fireworks_ai: typing.Callable[[], T_Result],
|
48
51
|
huggingface: typing.Callable[[], T_Result],
|
49
52
|
mystic: typing.Callable[[], T_Result],
|
50
53
|
pyq: typing.Callable[[], T_Result],
|
@@ -66,6 +69,8 @@ class ProviderEnum(str, enum.Enum):
|
|
66
69
|
return mosaicml()
|
67
70
|
if self is ProviderEnum.OPENAI:
|
68
71
|
return openai()
|
72
|
+
if self is ProviderEnum.FIREWORKS_AI:
|
73
|
+
return fireworks_ai()
|
69
74
|
if self is ProviderEnum.HUGGINGFACE:
|
70
75
|
return huggingface()
|
71
76
|
if self is ProviderEnum.MYSTIC:
|
@@ -0,0 +1,32 @@
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
2
|
+
|
3
|
+
import datetime as dt
|
4
|
+
import typing
|
5
|
+
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
7
|
+
|
8
|
+
try:
|
9
|
+
import pydantic.v1 as pydantic # type: ignore
|
10
|
+
except ImportError:
|
11
|
+
import pydantic # type: ignore
|
12
|
+
|
13
|
+
|
14
|
+
class RawPromptExecutionOverridesRequest(pydantic.BaseModel):
|
15
|
+
body: typing.Optional[typing.Dict[str, typing.Any]]
|
16
|
+
headers: typing.Optional[typing.Dict[str, typing.Optional[str]]] = pydantic.Field(
|
17
|
+
description="The raw headers to send to the model host."
|
18
|
+
)
|
19
|
+
url: typing.Optional[str] = pydantic.Field(description="The raw URL to send to the model host.")
|
20
|
+
|
21
|
+
def json(self, **kwargs: typing.Any) -> str:
|
22
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
23
|
+
return super().json(**kwargs_with_defaults)
|
24
|
+
|
25
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
26
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
27
|
+
return super().dict(**kwargs_with_defaults)
|
28
|
+
|
29
|
+
class Config:
|
30
|
+
frozen = True
|
31
|
+
smart_union = True
|
32
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
@@ -0,0 +1,36 @@
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
2
|
+
|
3
|
+
import datetime as dt
|
4
|
+
import typing
|
5
|
+
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
7
|
+
from .rejected_prompt_execution_meta import RejectedPromptExecutionMeta
|
8
|
+
from .vellum_error import VellumError
|
9
|
+
|
10
|
+
try:
|
11
|
+
import pydantic.v1 as pydantic # type: ignore
|
12
|
+
except ImportError:
|
13
|
+
import pydantic # type: ignore
|
14
|
+
|
15
|
+
|
16
|
+
class RejectedExecutePromptEvent(pydantic.BaseModel):
|
17
|
+
"""
|
18
|
+
The final data returned indicating an error occurred during the stream.
|
19
|
+
"""
|
20
|
+
|
21
|
+
error: VellumError
|
22
|
+
execution_id: str
|
23
|
+
meta: typing.Optional[RejectedPromptExecutionMeta]
|
24
|
+
|
25
|
+
def json(self, **kwargs: typing.Any) -> str:
|
26
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
27
|
+
return super().json(**kwargs_with_defaults)
|
28
|
+
|
29
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
30
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
31
|
+
return super().dict(**kwargs_with_defaults)
|
32
|
+
|
33
|
+
class Config:
|
34
|
+
frozen = True
|
35
|
+
smart_union = True
|
36
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
@@ -0,0 +1,39 @@
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
2
|
+
|
3
|
+
import datetime as dt
|
4
|
+
import typing
|
5
|
+
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
7
|
+
from .prompt_execution_meta import PromptExecutionMeta
|
8
|
+
from .vellum_error import VellumError
|
9
|
+
|
10
|
+
try:
|
11
|
+
import pydantic.v1 as pydantic # type: ignore
|
12
|
+
except ImportError:
|
13
|
+
import pydantic # type: ignore
|
14
|
+
|
15
|
+
|
16
|
+
class RejectedExecutePromptResponse(pydantic.BaseModel):
|
17
|
+
"""
|
18
|
+
The unsuccessful response from the model containing an error of what went wrong.
|
19
|
+
"""
|
20
|
+
|
21
|
+
meta: typing.Optional[PromptExecutionMeta]
|
22
|
+
raw: typing.Optional[typing.Dict[str, typing.Any]] = pydantic.Field(
|
23
|
+
description="The subset of the raw response from the model that the request opted into with `expand_raw`."
|
24
|
+
)
|
25
|
+
execution_id: str = pydantic.Field(description="The ID of the execution.")
|
26
|
+
error: VellumError
|
27
|
+
|
28
|
+
def json(self, **kwargs: typing.Any) -> str:
|
29
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
30
|
+
return super().json(**kwargs_with_defaults)
|
31
|
+
|
32
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
33
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
34
|
+
return super().dict(**kwargs_with_defaults)
|
35
|
+
|
36
|
+
class Config:
|
37
|
+
frozen = True
|
38
|
+
smart_union = True
|
39
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
@@ -0,0 +1,34 @@
|
|
1
|
+
# This file was auto-generated by Fern from our API Definition.
|
2
|
+
|
3
|
+
import datetime as dt
|
4
|
+
import typing
|
5
|
+
|
6
|
+
from ..core.datetime_utils import serialize_datetime
|
7
|
+
from .finish_reason_enum import FinishReasonEnum
|
8
|
+
|
9
|
+
try:
|
10
|
+
import pydantic.v1 as pydantic # type: ignore
|
11
|
+
except ImportError:
|
12
|
+
import pydantic # type: ignore
|
13
|
+
|
14
|
+
|
15
|
+
class RejectedPromptExecutionMeta(pydantic.BaseModel):
|
16
|
+
"""
|
17
|
+
The subset of the metadata tracked by Vellum during prompt execution that the request opted into with `expand_meta`.
|
18
|
+
"""
|
19
|
+
|
20
|
+
latency: typing.Optional[int]
|
21
|
+
finish_reason: typing.Optional[FinishReasonEnum]
|
22
|
+
|
23
|
+
def json(self, **kwargs: typing.Any) -> str:
|
24
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
25
|
+
return super().json(**kwargs_with_defaults)
|
26
|
+
|
27
|
+
def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
|
28
|
+
kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
|
29
|
+
return super().dict(**kwargs_with_defaults)
|
30
|
+
|
31
|
+
class Config:
|
32
|
+
frozen = True
|
33
|
+
smart_union = True
|
34
|
+
json_encoders = {dt.datetime: serialize_datetime}
|
vellum/types/slim_document.py
CHANGED
@@ -28,22 +28,22 @@ class SlimDocument(pydantic.BaseModel):
|
|
28
28
|
description=(
|
29
29
|
"An enum value representing where this document is along its processing lifecycle. Note that this is different than its indexing lifecycle.\n"
|
30
30
|
"\n"
|
31
|
-
"
|
32
|
-
"
|
33
|
-
"
|
34
|
-
"
|
31
|
+
"- `QUEUED` - Queued\n"
|
32
|
+
"- `PROCESSING` - Processing\n"
|
33
|
+
"- `PROCESSED` - Processed\n"
|
34
|
+
"- `FAILED` - Failed\n"
|
35
35
|
)
|
36
36
|
)
|
37
37
|
processing_failure_reason: typing.Optional[ProcessingFailureReasonEnum] = pydantic.Field(
|
38
38
|
description=(
|
39
39
|
"An enum value representing why the document could not be processed. Is null unless processing_state is FAILED.\n"
|
40
40
|
"\n"
|
41
|
-
"
|
42
|
-
"
|
41
|
+
"- `EXCEEDED_CHARACTER_LIMIT` - Exceeded Character Limit\n"
|
42
|
+
"- `INVALID_FILE` - Invalid File\n"
|
43
43
|
)
|
44
44
|
)
|
45
45
|
status: typing.Optional[DocumentStatus] = pydantic.Field(
|
46
|
-
description=("The document's current status.\n" "\n" "
|
46
|
+
description=("The document's current status.\n" "\n" "- `ACTIVE` - Active\n")
|
47
47
|
)
|
48
48
|
keywords: typing.Optional[typing.List[str]] = pydantic.Field(
|
49
49
|
description="A list of keywords associated with this document. Originally provided when uploading the document."
|