vegas 6.1.2__cp311-cp311-macosx_11_0_arm64.whl → 6.1.3__cp311-cp311-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vegas might be problematic. Click here for more details.

Binary file
vegas/_vegas.pyx CHANGED
@@ -34,6 +34,11 @@ import warnings
34
34
  import numpy
35
35
  import gvar
36
36
 
37
+ if numpy.version.version >= '2.0':
38
+ FLOAT_TYPE = numpy.float64
39
+ else:
40
+ FLOAT_TYPE = numpy.float_
41
+
37
42
  cdef double TINY = 10 ** (sys.float_info.min_10_exp + 50) # smallest and biggest
38
43
  cdef double HUGE = 10 ** (sys.float_info.max_10_exp - 50) # with extra headroom
39
44
  cdef double EPSILON = sys.float_info.epsilon * 1e4 # roundoff error threshold (see Schubert and Gertz Table 2)
@@ -230,8 +235,8 @@ cdef class AdaptiveMap:
230
235
  "no of increments < 1 in AdaptiveMap -- %s"
231
236
  % str(ninc)
232
237
  )
233
- new_inc = numpy.empty((dim, max(ninc)), numpy.float_)
234
- new_grid = numpy.empty((dim, new_inc.shape[1] + 1), numpy.float_)
238
+ new_inc = numpy.empty((dim, max(ninc)), FLOAT_TYPE)
239
+ new_grid = numpy.empty((dim, new_inc.shape[1] + 1), FLOAT_TYPE)
235
240
  for d in range(dim):
236
241
  tmp = numpy.linspace(self.grid[d, 0], self.grid[d, self.ninc[d]], ninc[d] + 1)
237
242
  for i in range(ninc[d] + 1):
@@ -256,11 +261,11 @@ cdef class AdaptiveMap:
256
261
  if y is None:
257
262
  y = gvar.RNG.random(size=self.dim)
258
263
  else:
259
- y = numpy.asarray(y, numpy.float_)
264
+ y = numpy.asarray(y, FLOAT_TYPE)
260
265
  y_shape = y.shape
261
266
  y.shape = -1, y.shape[-1]
262
267
  x = 0 * y
263
- jac = numpy.empty(y.shape[0], numpy.float_)
268
+ jac = numpy.empty(y.shape[0], FLOAT_TYPE)
264
269
  self.map(y, x, jac)
265
270
  x.shape = y_shape
266
271
  return x
@@ -282,7 +287,7 @@ cdef class AdaptiveMap:
282
287
  y_shape = y.shape
283
288
  y.shape = -1, y.shape[-1]
284
289
  ny = y.shape[0]
285
- jac = numpy.empty(y.shape, numpy.float_)
290
+ jac = numpy.empty(y.shape, FLOAT_TYPE)
286
291
  for i in range(ny):
287
292
  for d in range(dim):
288
293
  ninc = self.ninc[d]
@@ -451,8 +456,8 @@ cdef class AdaptiveMap:
451
456
  cdef numpy.npy_intp i, d
452
457
  if self.sum_f is None:
453
458
  shape = (self.inc.shape[0], self.inc.shape[1])
454
- self.sum_f = numpy.zeros(shape, numpy.float_)
455
- self.n_f = numpy.zeros(shape, numpy.float_) + TINY
459
+ self.sum_f = numpy.zeros(shape, FLOAT_TYPE)
460
+ self.n_f = numpy.zeros(shape, FLOAT_TYPE) + TINY
456
461
  if ny < 0:
457
462
  ny = y.shape[0]
458
463
  elif ny > y.shape[0]:
@@ -520,12 +525,12 @@ cdef class AdaptiveMap:
520
525
  if min(new_ninc) < 1:
521
526
  raise ValueError('ninc < 1: ' + str(list(new_ninc)))
522
527
  if max(new_ninc) == 1:
523
- new_grid = numpy.empty((dim, 2), numpy.float_)
528
+ new_grid = numpy.empty((dim, 2), FLOAT_TYPE)
524
529
  for d in range(dim):
525
530
  new_grid[d, 0] = self.grid[d, 0]
526
531
  new_grid[d, 1] = self.grid[d, self.ninc[d]]
527
532
  self.grid = numpy.asarray(new_grid)
528
- self.inc = numpy.empty((dim, 1), numpy.float_)
533
+ self.inc = numpy.empty((dim, 1), FLOAT_TYPE)
529
534
  self.ninc = numpy.array(dim * [1], dtype=numpy.intp)
530
535
  for d in range(dim):
531
536
  self.inc[d, 0] = self.grid[d, 1] - self.grid[d, 0]
@@ -533,10 +538,10 @@ cdef class AdaptiveMap:
533
538
  return
534
539
 
535
540
  # smooth and regrid
536
- new_grid = numpy.empty((dim, max(new_ninc) + 1), numpy.float_)
537
- avg_f = numpy.ones(self.inc.shape[1], numpy.float_) # default = uniform
541
+ new_grid = numpy.empty((dim, max(new_ninc) + 1), FLOAT_TYPE)
542
+ avg_f = numpy.ones(self.inc.shape[1], FLOAT_TYPE) # default = uniform
538
543
  if alpha > 0 and max(self.ninc) > 1:
539
- tmp_f = numpy.empty(self.inc.shape[1], numpy.float_)
544
+ tmp_f = numpy.empty(self.inc.shape[1], FLOAT_TYPE)
540
545
  for d in range(dim):
541
546
  old_ninc = self.ninc[d]
542
547
  if alpha != 0 and old_ninc > 1:
@@ -1142,7 +1147,7 @@ cdef class Integrator(object):
1142
1147
  self.sum_sigf = numpy.sum(self.sigf)
1143
1148
  self.nstrat = numpy.array(map.nstrat)
1144
1149
  else:
1145
- self.sigf = numpy.array([], numpy.float_) # reset sigf (dummy)
1150
+ self.sigf = numpy.array([], FLOAT_TYPE) # reset sigf (dummy)
1146
1151
  self.sum_sigf = HUGE
1147
1152
  args = dict(Integrator.defaults)
1148
1153
  if 'map' in args:
@@ -1169,7 +1174,7 @@ cdef class Integrator(object):
1169
1174
  self.sigf_h5.close()
1170
1175
  os.unlink(fname)
1171
1176
  self.sigf_h5 = None
1172
- self.sigf = numpy.array([], numpy.float_) # reset sigf (dummy)
1177
+ self.sigf = numpy.array([], FLOAT_TYPE) # reset sigf (dummy)
1173
1178
  self.sum_sigf = HUGE
1174
1179
 
1175
1180
  def __reduce__(Integrator self not None):
@@ -1371,7 +1376,7 @@ cdef class Integrator(object):
1371
1376
  # need to recalculate stratification distribution for beta>0
1372
1377
  # unless a new sigf was set
1373
1378
  old_val['sigf'] = self.sigf
1374
- self.sigf = numpy.array([], numpy.float_) # reset sigf (dummy)
1379
+ self.sigf = numpy.array([], FLOAT_TYPE) # reset sigf (dummy)
1375
1380
  self.sum_sigf = HUGE
1376
1381
  self.nstrat = nstrat
1377
1382
 
@@ -1398,7 +1403,7 @@ cdef class Integrator(object):
1398
1403
  # set up sigf
1399
1404
  self._clear_sigf_h5()
1400
1405
  if not self.minimize_mem:
1401
- self.sigf = numpy.ones(nsigf, numpy.float_)
1406
+ self.sigf = numpy.ones(nsigf, FLOAT_TYPE)
1402
1407
  else:
1403
1408
  try:
1404
1409
  import h5py
@@ -1410,10 +1415,10 @@ cdef class Integrator(object):
1410
1415
  self.sum_sigf = nsigf
1411
1416
  self.neval_hcube = numpy.empty(self.min_neval_batch // 2 + 1, dtype=numpy.intp)
1412
1417
  self.neval_hcube[:] = avg_neval_hcube
1413
- self.y = numpy.empty((self.min_neval_batch, self.dim), numpy.float_)
1414
- self.x = numpy.empty((self.min_neval_batch, self.dim), numpy.float_)
1415
- self.jac = numpy.empty(self.min_neval_batch, numpy.float_)
1416
- self.fdv2 = numpy.empty(self.min_neval_batch, numpy.float_)
1418
+ self.y = numpy.empty((self.min_neval_batch, self.dim), FLOAT_TYPE)
1419
+ self.x = numpy.empty((self.min_neval_batch, self.dim), FLOAT_TYPE)
1420
+ self.jac = numpy.empty(self.min_neval_batch, FLOAT_TYPE)
1421
+ self.fdv2 = numpy.empty(self.min_neval_batch, FLOAT_TYPE)
1417
1422
  return old_val
1418
1423
 
1419
1424
  def settings(Integrator self not None, ngrid=0):
@@ -1669,10 +1674,10 @@ cdef class Integrator(object):
1669
1674
 
1670
1675
  # 1) resize work arrays if needed (to double what is needed)
1671
1676
  if neval_batch > self.y.shape[0]:
1672
- self.y = numpy.empty((2 * neval_batch, self.dim), numpy.float_)
1673
- self.x = numpy.empty((2 * neval_batch, self.dim), numpy.float_)
1674
- self.jac = numpy.empty(2 * neval_batch, numpy.float_)
1675
- self.fdv2 = numpy.empty(2 * neval_batch, numpy.float_)
1677
+ self.y = numpy.empty((2 * neval_batch, self.dim), FLOAT_TYPE)
1678
+ self.x = numpy.empty((2 * neval_batch, self.dim), FLOAT_TYPE)
1679
+ self.jac = numpy.empty(2 * neval_batch, FLOAT_TYPE)
1680
+ self.fdv2 = numpy.empty(2 * neval_batch, FLOAT_TYPE)
1676
1681
  y = self.y
1677
1682
  x = self.x
1678
1683
  jac = self.jac
@@ -1931,8 +1936,8 @@ cdef class Integrator(object):
1931
1936
  cdef double[::1] sum_wf
1932
1937
  cdef double[::1] sum_dwf
1933
1938
  cdef double[:, ::1] sum_dwf2
1934
- cdef double[::1] mean = numpy.empty(1, numpy.float_)
1935
- cdef double[:, ::1] var = numpy.empty((1, 1), numpy.float_)
1939
+ cdef double[::1] mean = numpy.empty(1, FLOAT_TYPE)
1940
+ cdef double[:, ::1] var = numpy.empty((1, 1), FLOAT_TYPE)
1936
1941
  cdef numpy.npy_intp itn, i, j, jtmp, s, t, neval, fcn_size, len_hcube
1937
1942
  cdef bint adaptive_strat
1938
1943
  cdef double sum_sigf, sigf2
@@ -1963,12 +1968,12 @@ cdef class Integrator(object):
1963
1968
  fcn_size = fcn.size
1964
1969
 
1965
1970
  # allocate work arrays
1966
- dwf = numpy.empty(fcn_size, numpy.float_)
1967
- sum_wf = numpy.empty(fcn_size, numpy.float_)
1968
- sum_dwf = numpy.empty(fcn_size, numpy.float_)
1969
- sum_dwf2 = numpy.empty((fcn_size, fcn_size), numpy.float_)
1970
- mean = numpy.empty(fcn_size, numpy.float_)
1971
- var = numpy.empty((fcn_size, fcn_size), numpy.float_)
1971
+ dwf = numpy.empty(fcn_size, FLOAT_TYPE)
1972
+ sum_wf = numpy.empty(fcn_size, FLOAT_TYPE)
1973
+ sum_dwf = numpy.empty(fcn_size, FLOAT_TYPE)
1974
+ sum_dwf2 = numpy.empty((fcn_size, fcn_size), FLOAT_TYPE)
1975
+ mean = numpy.empty(fcn_size, FLOAT_TYPE)
1976
+ var = numpy.empty((fcn_size, fcn_size), FLOAT_TYPE)
1972
1977
  mean[:] = 0.0
1973
1978
  var[:, :] = 0.0
1974
1979
  result = VegasResult(fcn, weighted=self.adapt)
@@ -2958,14 +2963,14 @@ cdef class VegasIntegrand:
2958
2963
  nx = x.shape[0] // self.mpi_nproc + 1
2959
2964
  i0 = self.rank * nx
2960
2965
  i1 = min(i0 + nx, x.shape[0])
2961
- f = numpy.empty((nx, self.size), numpy.float_)
2966
+ f = numpy.empty((nx, self.size), FLOAT_TYPE)
2962
2967
  if i1 > i0:
2963
2968
  # fill f so long as haven't gone off end
2964
2969
  if jac is None:
2965
2970
  f[:(i1-i0)] = _eval(x[i0:i1], jac=None)
2966
2971
  else:
2967
2972
  f[:(i1-i0)] = _eval(x[i0:i1], jac=jac[i0:i1])
2968
- results = numpy.empty((self.mpi_nproc * nx, self.size), numpy.float_)
2973
+ results = numpy.empty((self.mpi_nproc * nx, self.size), FLOAT_TYPE)
2969
2974
  self.comm.Allgather(f, results)
2970
2975
  return results[:x.shape[0]]
2971
2976
  self.eval = _mpi_eval
@@ -3108,7 +3113,7 @@ cdef class _BatchIntegrand_from_NonBatch(_BatchIntegrand_from_Base):
3108
3113
  def __call__(self, numpy.ndarray[numpy.double_t, ndim=2] x, jac=None):
3109
3114
  cdef numpy.npy_intp i
3110
3115
  cdef numpy.ndarray[numpy.float_t, ndim=2] f = numpy.empty(
3111
- (x.shape[0], self.size), numpy.float_
3116
+ (x.shape[0], self.size), FLOAT_TYPE
3112
3117
  )
3113
3118
  if self.shape == ():
3114
3119
  # very common special case
vegas/_version.py CHANGED
@@ -1 +1 @@
1
- __version__ = '6.1.2'
1
+ __version__ = '6.1.3'
@@ -1,14 +1,14 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: vegas
3
- Version: 6.1.2
3
+ Version: 6.1.3
4
4
  Summary: Tools for adaptive multidimensional Monte Carlo integration.
5
5
  Home-page: https://github.com/gplepage/vegas
6
6
  Author: G. Peter Lepage
7
7
  Author-email: g.p.lepage@cornell.edu
8
8
  License: GPLv3
9
- Requires-Python: >=2.7
9
+ Requires-Python: >=3.9
10
10
  License-File: LICENSE.txt
11
- Requires-Dist: numpy >=1.16
11
+ Requires-Dist: numpy >=1.24
12
12
  Requires-Dist: gvar >=13.0.1
13
13
 
14
14
  vegas
@@ -0,0 +1,12 @@
1
+ vegas-6.1.3.dist-info/RECORD,,
2
+ vegas-6.1.3.dist-info/WHEEL,sha256=hjfPyNqNoWMgUS2aMcV0ItoWUHCgn_PbHPH0E9LXRd0,109
3
+ vegas-6.1.3.dist-info/top_level.txt,sha256=rnAmsIvsHyplln9ev-uw4hM7slW7VUdBQu9VgX8knkE,6
4
+ vegas-6.1.3.dist-info/LICENSE.txt,sha256=YQSKRpj-PNC7SScHem3AECgwVONM-whKrs74SDueZxM,31996
5
+ vegas-6.1.3.dist-info/METADATA,sha256=BuRLTS7JseZDVP4WK3qpkvLfokjsHL38JPGuipOK-FA,1841
6
+ vegas/_version.py,sha256=Y7jWMib9lFX_8EdGIp_ZATaE7o8aUsPkmmSC7RPET-k,22
7
+ vegas/__init__.pxd,sha256=MzfsI-0xD0rFnyHl1UFXz-2wSvGjfGA9QFKuCTr5nhs,646
8
+ vegas/_vegas.cpython-311-darwin.so,sha256=NaMYrm9d9uzH_2nT0nXmNpP2vS_r-hPb-cAA9LcIvsc,1274240
9
+ vegas/__init__.py,sha256=TWzA9zsS_xiNa_K3nC1NZZ4MlU7Vwaz0YtGJatzn3Jw,55840
10
+ vegas/_vegas.pyx,sha256=WxoUQGO9--QBOy3W-MTGOzxNGjvDwx9Eyrj9JyoVWPU,141246
11
+ vegas/_vegas.pxd,sha256=Qe0-Zuep8t9OXUq8yLLZ1T_e-7zABM4aN2inX6N4BX4,3035
12
+ vegas/_vegas.c,sha256=UmJEQzoo9uDne9f3rZoF5Nq5ZcLTUP89SsrLuBHacIg,5499712
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.43.0)
2
+ Generator: setuptools (70.2.0)
3
3
  Root-Is-Purelib: false
4
4
  Tag: cp311-cp311-macosx_11_0_arm64
5
5
 
@@ -1,12 +0,0 @@
1
- vegas-6.1.2.dist-info/RECORD,,
2
- vegas-6.1.2.dist-info/WHEEL,sha256=sieEctgmsyAnWfDYOiunmkigyyjGmYuUaApm_YItwoI,110
3
- vegas-6.1.2.dist-info/top_level.txt,sha256=rnAmsIvsHyplln9ev-uw4hM7slW7VUdBQu9VgX8knkE,6
4
- vegas-6.1.2.dist-info/LICENSE.txt,sha256=YQSKRpj-PNC7SScHem3AECgwVONM-whKrs74SDueZxM,31996
5
- vegas-6.1.2.dist-info/METADATA,sha256=kL6jNelQ5SZFzJY3F8WlI6MsbskzBWxD7muxn6WQxUM,1841
6
- vegas/_version.py,sha256=Uej179rJLsiLVamUZe0A6Q6mYkLR6ugvUdzQjDyWjdU,22
7
- vegas/__init__.pxd,sha256=MzfsI-0xD0rFnyHl1UFXz-2wSvGjfGA9QFKuCTr5nhs,646
8
- vegas/_vegas.cpython-311-darwin.so,sha256=jPMJId8d5q9qu8WQ81Onf0p55OVu6Yx7etwpWzBeE2s,1290560
9
- vegas/__init__.py,sha256=TWzA9zsS_xiNa_K3nC1NZZ4MlU7Vwaz0YtGJatzn3Jw,55840
10
- vegas/_vegas.pyx,sha256=jc9SbG7IUP4c16Sn65zb-avP3Hdjz3S7LMunbVVEpe8,141213
11
- vegas/_vegas.pxd,sha256=Qe0-Zuep8t9OXUq8yLLZ1T_e-7zABM4aN2inX6N4BX4,3035
12
- vegas/_vegas.c,sha256=9TxLr6vSRFu07DQnRn6SYGDix5SrnwmcbcljhsrwYbQ,5460149