vegas 6.1.2__cp311-cp311-macosx_11_0_arm64.whl → 6.1.3__cp311-cp311-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of vegas might be problematic. Click here for more details.
- vegas/_vegas.c +12670 -11774
- vegas/_vegas.cpython-311-darwin.so +0 -0
- vegas/_vegas.pyx +40 -35
- vegas/_version.py +1 -1
- {vegas-6.1.2.dist-info → vegas-6.1.3.dist-info}/METADATA +3 -3
- vegas-6.1.3.dist-info/RECORD +12 -0
- {vegas-6.1.2.dist-info → vegas-6.1.3.dist-info}/WHEEL +1 -1
- vegas-6.1.2.dist-info/RECORD +0 -12
- {vegas-6.1.2.dist-info → vegas-6.1.3.dist-info}/LICENSE.txt +0 -0
- {vegas-6.1.2.dist-info → vegas-6.1.3.dist-info}/top_level.txt +0 -0
|
Binary file
|
vegas/_vegas.pyx
CHANGED
|
@@ -34,6 +34,11 @@ import warnings
|
|
|
34
34
|
import numpy
|
|
35
35
|
import gvar
|
|
36
36
|
|
|
37
|
+
if numpy.version.version >= '2.0':
|
|
38
|
+
FLOAT_TYPE = numpy.float64
|
|
39
|
+
else:
|
|
40
|
+
FLOAT_TYPE = numpy.float_
|
|
41
|
+
|
|
37
42
|
cdef double TINY = 10 ** (sys.float_info.min_10_exp + 50) # smallest and biggest
|
|
38
43
|
cdef double HUGE = 10 ** (sys.float_info.max_10_exp - 50) # with extra headroom
|
|
39
44
|
cdef double EPSILON = sys.float_info.epsilon * 1e4 # roundoff error threshold (see Schubert and Gertz Table 2)
|
|
@@ -230,8 +235,8 @@ cdef class AdaptiveMap:
|
|
|
230
235
|
"no of increments < 1 in AdaptiveMap -- %s"
|
|
231
236
|
% str(ninc)
|
|
232
237
|
)
|
|
233
|
-
new_inc = numpy.empty((dim, max(ninc)),
|
|
234
|
-
new_grid = numpy.empty((dim, new_inc.shape[1] + 1),
|
|
238
|
+
new_inc = numpy.empty((dim, max(ninc)), FLOAT_TYPE)
|
|
239
|
+
new_grid = numpy.empty((dim, new_inc.shape[1] + 1), FLOAT_TYPE)
|
|
235
240
|
for d in range(dim):
|
|
236
241
|
tmp = numpy.linspace(self.grid[d, 0], self.grid[d, self.ninc[d]], ninc[d] + 1)
|
|
237
242
|
for i in range(ninc[d] + 1):
|
|
@@ -256,11 +261,11 @@ cdef class AdaptiveMap:
|
|
|
256
261
|
if y is None:
|
|
257
262
|
y = gvar.RNG.random(size=self.dim)
|
|
258
263
|
else:
|
|
259
|
-
y = numpy.asarray(y,
|
|
264
|
+
y = numpy.asarray(y, FLOAT_TYPE)
|
|
260
265
|
y_shape = y.shape
|
|
261
266
|
y.shape = -1, y.shape[-1]
|
|
262
267
|
x = 0 * y
|
|
263
|
-
jac = numpy.empty(y.shape[0],
|
|
268
|
+
jac = numpy.empty(y.shape[0], FLOAT_TYPE)
|
|
264
269
|
self.map(y, x, jac)
|
|
265
270
|
x.shape = y_shape
|
|
266
271
|
return x
|
|
@@ -282,7 +287,7 @@ cdef class AdaptiveMap:
|
|
|
282
287
|
y_shape = y.shape
|
|
283
288
|
y.shape = -1, y.shape[-1]
|
|
284
289
|
ny = y.shape[0]
|
|
285
|
-
jac = numpy.empty(y.shape,
|
|
290
|
+
jac = numpy.empty(y.shape, FLOAT_TYPE)
|
|
286
291
|
for i in range(ny):
|
|
287
292
|
for d in range(dim):
|
|
288
293
|
ninc = self.ninc[d]
|
|
@@ -451,8 +456,8 @@ cdef class AdaptiveMap:
|
|
|
451
456
|
cdef numpy.npy_intp i, d
|
|
452
457
|
if self.sum_f is None:
|
|
453
458
|
shape = (self.inc.shape[0], self.inc.shape[1])
|
|
454
|
-
self.sum_f = numpy.zeros(shape,
|
|
455
|
-
self.n_f = numpy.zeros(shape,
|
|
459
|
+
self.sum_f = numpy.zeros(shape, FLOAT_TYPE)
|
|
460
|
+
self.n_f = numpy.zeros(shape, FLOAT_TYPE) + TINY
|
|
456
461
|
if ny < 0:
|
|
457
462
|
ny = y.shape[0]
|
|
458
463
|
elif ny > y.shape[0]:
|
|
@@ -520,12 +525,12 @@ cdef class AdaptiveMap:
|
|
|
520
525
|
if min(new_ninc) < 1:
|
|
521
526
|
raise ValueError('ninc < 1: ' + str(list(new_ninc)))
|
|
522
527
|
if max(new_ninc) == 1:
|
|
523
|
-
new_grid = numpy.empty((dim, 2),
|
|
528
|
+
new_grid = numpy.empty((dim, 2), FLOAT_TYPE)
|
|
524
529
|
for d in range(dim):
|
|
525
530
|
new_grid[d, 0] = self.grid[d, 0]
|
|
526
531
|
new_grid[d, 1] = self.grid[d, self.ninc[d]]
|
|
527
532
|
self.grid = numpy.asarray(new_grid)
|
|
528
|
-
self.inc = numpy.empty((dim, 1),
|
|
533
|
+
self.inc = numpy.empty((dim, 1), FLOAT_TYPE)
|
|
529
534
|
self.ninc = numpy.array(dim * [1], dtype=numpy.intp)
|
|
530
535
|
for d in range(dim):
|
|
531
536
|
self.inc[d, 0] = self.grid[d, 1] - self.grid[d, 0]
|
|
@@ -533,10 +538,10 @@ cdef class AdaptiveMap:
|
|
|
533
538
|
return
|
|
534
539
|
|
|
535
540
|
# smooth and regrid
|
|
536
|
-
new_grid = numpy.empty((dim, max(new_ninc) + 1),
|
|
537
|
-
avg_f = numpy.ones(self.inc.shape[1],
|
|
541
|
+
new_grid = numpy.empty((dim, max(new_ninc) + 1), FLOAT_TYPE)
|
|
542
|
+
avg_f = numpy.ones(self.inc.shape[1], FLOAT_TYPE) # default = uniform
|
|
538
543
|
if alpha > 0 and max(self.ninc) > 1:
|
|
539
|
-
tmp_f = numpy.empty(self.inc.shape[1],
|
|
544
|
+
tmp_f = numpy.empty(self.inc.shape[1], FLOAT_TYPE)
|
|
540
545
|
for d in range(dim):
|
|
541
546
|
old_ninc = self.ninc[d]
|
|
542
547
|
if alpha != 0 and old_ninc > 1:
|
|
@@ -1142,7 +1147,7 @@ cdef class Integrator(object):
|
|
|
1142
1147
|
self.sum_sigf = numpy.sum(self.sigf)
|
|
1143
1148
|
self.nstrat = numpy.array(map.nstrat)
|
|
1144
1149
|
else:
|
|
1145
|
-
self.sigf = numpy.array([],
|
|
1150
|
+
self.sigf = numpy.array([], FLOAT_TYPE) # reset sigf (dummy)
|
|
1146
1151
|
self.sum_sigf = HUGE
|
|
1147
1152
|
args = dict(Integrator.defaults)
|
|
1148
1153
|
if 'map' in args:
|
|
@@ -1169,7 +1174,7 @@ cdef class Integrator(object):
|
|
|
1169
1174
|
self.sigf_h5.close()
|
|
1170
1175
|
os.unlink(fname)
|
|
1171
1176
|
self.sigf_h5 = None
|
|
1172
|
-
self.sigf = numpy.array([],
|
|
1177
|
+
self.sigf = numpy.array([], FLOAT_TYPE) # reset sigf (dummy)
|
|
1173
1178
|
self.sum_sigf = HUGE
|
|
1174
1179
|
|
|
1175
1180
|
def __reduce__(Integrator self not None):
|
|
@@ -1371,7 +1376,7 @@ cdef class Integrator(object):
|
|
|
1371
1376
|
# need to recalculate stratification distribution for beta>0
|
|
1372
1377
|
# unless a new sigf was set
|
|
1373
1378
|
old_val['sigf'] = self.sigf
|
|
1374
|
-
self.sigf = numpy.array([],
|
|
1379
|
+
self.sigf = numpy.array([], FLOAT_TYPE) # reset sigf (dummy)
|
|
1375
1380
|
self.sum_sigf = HUGE
|
|
1376
1381
|
self.nstrat = nstrat
|
|
1377
1382
|
|
|
@@ -1398,7 +1403,7 @@ cdef class Integrator(object):
|
|
|
1398
1403
|
# set up sigf
|
|
1399
1404
|
self._clear_sigf_h5()
|
|
1400
1405
|
if not self.minimize_mem:
|
|
1401
|
-
self.sigf = numpy.ones(nsigf,
|
|
1406
|
+
self.sigf = numpy.ones(nsigf, FLOAT_TYPE)
|
|
1402
1407
|
else:
|
|
1403
1408
|
try:
|
|
1404
1409
|
import h5py
|
|
@@ -1410,10 +1415,10 @@ cdef class Integrator(object):
|
|
|
1410
1415
|
self.sum_sigf = nsigf
|
|
1411
1416
|
self.neval_hcube = numpy.empty(self.min_neval_batch // 2 + 1, dtype=numpy.intp)
|
|
1412
1417
|
self.neval_hcube[:] = avg_neval_hcube
|
|
1413
|
-
self.y = numpy.empty((self.min_neval_batch, self.dim),
|
|
1414
|
-
self.x = numpy.empty((self.min_neval_batch, self.dim),
|
|
1415
|
-
self.jac = numpy.empty(self.min_neval_batch,
|
|
1416
|
-
self.fdv2 = numpy.empty(self.min_neval_batch,
|
|
1418
|
+
self.y = numpy.empty((self.min_neval_batch, self.dim), FLOAT_TYPE)
|
|
1419
|
+
self.x = numpy.empty((self.min_neval_batch, self.dim), FLOAT_TYPE)
|
|
1420
|
+
self.jac = numpy.empty(self.min_neval_batch, FLOAT_TYPE)
|
|
1421
|
+
self.fdv2 = numpy.empty(self.min_neval_batch, FLOAT_TYPE)
|
|
1417
1422
|
return old_val
|
|
1418
1423
|
|
|
1419
1424
|
def settings(Integrator self not None, ngrid=0):
|
|
@@ -1669,10 +1674,10 @@ cdef class Integrator(object):
|
|
|
1669
1674
|
|
|
1670
1675
|
# 1) resize work arrays if needed (to double what is needed)
|
|
1671
1676
|
if neval_batch > self.y.shape[0]:
|
|
1672
|
-
self.y = numpy.empty((2 * neval_batch, self.dim),
|
|
1673
|
-
self.x = numpy.empty((2 * neval_batch, self.dim),
|
|
1674
|
-
self.jac = numpy.empty(2 * neval_batch,
|
|
1675
|
-
self.fdv2 = numpy.empty(2 * neval_batch,
|
|
1677
|
+
self.y = numpy.empty((2 * neval_batch, self.dim), FLOAT_TYPE)
|
|
1678
|
+
self.x = numpy.empty((2 * neval_batch, self.dim), FLOAT_TYPE)
|
|
1679
|
+
self.jac = numpy.empty(2 * neval_batch, FLOAT_TYPE)
|
|
1680
|
+
self.fdv2 = numpy.empty(2 * neval_batch, FLOAT_TYPE)
|
|
1676
1681
|
y = self.y
|
|
1677
1682
|
x = self.x
|
|
1678
1683
|
jac = self.jac
|
|
@@ -1931,8 +1936,8 @@ cdef class Integrator(object):
|
|
|
1931
1936
|
cdef double[::1] sum_wf
|
|
1932
1937
|
cdef double[::1] sum_dwf
|
|
1933
1938
|
cdef double[:, ::1] sum_dwf2
|
|
1934
|
-
cdef double[::1] mean = numpy.empty(1,
|
|
1935
|
-
cdef double[:, ::1] var = numpy.empty((1, 1),
|
|
1939
|
+
cdef double[::1] mean = numpy.empty(1, FLOAT_TYPE)
|
|
1940
|
+
cdef double[:, ::1] var = numpy.empty((1, 1), FLOAT_TYPE)
|
|
1936
1941
|
cdef numpy.npy_intp itn, i, j, jtmp, s, t, neval, fcn_size, len_hcube
|
|
1937
1942
|
cdef bint adaptive_strat
|
|
1938
1943
|
cdef double sum_sigf, sigf2
|
|
@@ -1963,12 +1968,12 @@ cdef class Integrator(object):
|
|
|
1963
1968
|
fcn_size = fcn.size
|
|
1964
1969
|
|
|
1965
1970
|
# allocate work arrays
|
|
1966
|
-
dwf = numpy.empty(fcn_size,
|
|
1967
|
-
sum_wf = numpy.empty(fcn_size,
|
|
1968
|
-
sum_dwf = numpy.empty(fcn_size,
|
|
1969
|
-
sum_dwf2 = numpy.empty((fcn_size, fcn_size),
|
|
1970
|
-
mean = numpy.empty(fcn_size,
|
|
1971
|
-
var = numpy.empty((fcn_size, fcn_size),
|
|
1971
|
+
dwf = numpy.empty(fcn_size, FLOAT_TYPE)
|
|
1972
|
+
sum_wf = numpy.empty(fcn_size, FLOAT_TYPE)
|
|
1973
|
+
sum_dwf = numpy.empty(fcn_size, FLOAT_TYPE)
|
|
1974
|
+
sum_dwf2 = numpy.empty((fcn_size, fcn_size), FLOAT_TYPE)
|
|
1975
|
+
mean = numpy.empty(fcn_size, FLOAT_TYPE)
|
|
1976
|
+
var = numpy.empty((fcn_size, fcn_size), FLOAT_TYPE)
|
|
1972
1977
|
mean[:] = 0.0
|
|
1973
1978
|
var[:, :] = 0.0
|
|
1974
1979
|
result = VegasResult(fcn, weighted=self.adapt)
|
|
@@ -2958,14 +2963,14 @@ cdef class VegasIntegrand:
|
|
|
2958
2963
|
nx = x.shape[0] // self.mpi_nproc + 1
|
|
2959
2964
|
i0 = self.rank * nx
|
|
2960
2965
|
i1 = min(i0 + nx, x.shape[0])
|
|
2961
|
-
f = numpy.empty((nx, self.size),
|
|
2966
|
+
f = numpy.empty((nx, self.size), FLOAT_TYPE)
|
|
2962
2967
|
if i1 > i0:
|
|
2963
2968
|
# fill f so long as haven't gone off end
|
|
2964
2969
|
if jac is None:
|
|
2965
2970
|
f[:(i1-i0)] = _eval(x[i0:i1], jac=None)
|
|
2966
2971
|
else:
|
|
2967
2972
|
f[:(i1-i0)] = _eval(x[i0:i1], jac=jac[i0:i1])
|
|
2968
|
-
results = numpy.empty((self.mpi_nproc * nx, self.size),
|
|
2973
|
+
results = numpy.empty((self.mpi_nproc * nx, self.size), FLOAT_TYPE)
|
|
2969
2974
|
self.comm.Allgather(f, results)
|
|
2970
2975
|
return results[:x.shape[0]]
|
|
2971
2976
|
self.eval = _mpi_eval
|
|
@@ -3108,7 +3113,7 @@ cdef class _BatchIntegrand_from_NonBatch(_BatchIntegrand_from_Base):
|
|
|
3108
3113
|
def __call__(self, numpy.ndarray[numpy.double_t, ndim=2] x, jac=None):
|
|
3109
3114
|
cdef numpy.npy_intp i
|
|
3110
3115
|
cdef numpy.ndarray[numpy.float_t, ndim=2] f = numpy.empty(
|
|
3111
|
-
(x.shape[0], self.size),
|
|
3116
|
+
(x.shape[0], self.size), FLOAT_TYPE
|
|
3112
3117
|
)
|
|
3113
3118
|
if self.shape == ():
|
|
3114
3119
|
# very common special case
|
vegas/_version.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = '6.1.
|
|
1
|
+
__version__ = '6.1.3'
|
|
@@ -1,14 +1,14 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: vegas
|
|
3
|
-
Version: 6.1.
|
|
3
|
+
Version: 6.1.3
|
|
4
4
|
Summary: Tools for adaptive multidimensional Monte Carlo integration.
|
|
5
5
|
Home-page: https://github.com/gplepage/vegas
|
|
6
6
|
Author: G. Peter Lepage
|
|
7
7
|
Author-email: g.p.lepage@cornell.edu
|
|
8
8
|
License: GPLv3
|
|
9
|
-
Requires-Python: >=
|
|
9
|
+
Requires-Python: >=3.9
|
|
10
10
|
License-File: LICENSE.txt
|
|
11
|
-
Requires-Dist: numpy >=1.
|
|
11
|
+
Requires-Dist: numpy >=1.24
|
|
12
12
|
Requires-Dist: gvar >=13.0.1
|
|
13
13
|
|
|
14
14
|
vegas
|
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
vegas-6.1.3.dist-info/RECORD,,
|
|
2
|
+
vegas-6.1.3.dist-info/WHEEL,sha256=hjfPyNqNoWMgUS2aMcV0ItoWUHCgn_PbHPH0E9LXRd0,109
|
|
3
|
+
vegas-6.1.3.dist-info/top_level.txt,sha256=rnAmsIvsHyplln9ev-uw4hM7slW7VUdBQu9VgX8knkE,6
|
|
4
|
+
vegas-6.1.3.dist-info/LICENSE.txt,sha256=YQSKRpj-PNC7SScHem3AECgwVONM-whKrs74SDueZxM,31996
|
|
5
|
+
vegas-6.1.3.dist-info/METADATA,sha256=BuRLTS7JseZDVP4WK3qpkvLfokjsHL38JPGuipOK-FA,1841
|
|
6
|
+
vegas/_version.py,sha256=Y7jWMib9lFX_8EdGIp_ZATaE7o8aUsPkmmSC7RPET-k,22
|
|
7
|
+
vegas/__init__.pxd,sha256=MzfsI-0xD0rFnyHl1UFXz-2wSvGjfGA9QFKuCTr5nhs,646
|
|
8
|
+
vegas/_vegas.cpython-311-darwin.so,sha256=NaMYrm9d9uzH_2nT0nXmNpP2vS_r-hPb-cAA9LcIvsc,1274240
|
|
9
|
+
vegas/__init__.py,sha256=TWzA9zsS_xiNa_K3nC1NZZ4MlU7Vwaz0YtGJatzn3Jw,55840
|
|
10
|
+
vegas/_vegas.pyx,sha256=WxoUQGO9--QBOy3W-MTGOzxNGjvDwx9Eyrj9JyoVWPU,141246
|
|
11
|
+
vegas/_vegas.pxd,sha256=Qe0-Zuep8t9OXUq8yLLZ1T_e-7zABM4aN2inX6N4BX4,3035
|
|
12
|
+
vegas/_vegas.c,sha256=UmJEQzoo9uDne9f3rZoF5Nq5ZcLTUP89SsrLuBHacIg,5499712
|
vegas-6.1.2.dist-info/RECORD
DELETED
|
@@ -1,12 +0,0 @@
|
|
|
1
|
-
vegas-6.1.2.dist-info/RECORD,,
|
|
2
|
-
vegas-6.1.2.dist-info/WHEEL,sha256=sieEctgmsyAnWfDYOiunmkigyyjGmYuUaApm_YItwoI,110
|
|
3
|
-
vegas-6.1.2.dist-info/top_level.txt,sha256=rnAmsIvsHyplln9ev-uw4hM7slW7VUdBQu9VgX8knkE,6
|
|
4
|
-
vegas-6.1.2.dist-info/LICENSE.txt,sha256=YQSKRpj-PNC7SScHem3AECgwVONM-whKrs74SDueZxM,31996
|
|
5
|
-
vegas-6.1.2.dist-info/METADATA,sha256=kL6jNelQ5SZFzJY3F8WlI6MsbskzBWxD7muxn6WQxUM,1841
|
|
6
|
-
vegas/_version.py,sha256=Uej179rJLsiLVamUZe0A6Q6mYkLR6ugvUdzQjDyWjdU,22
|
|
7
|
-
vegas/__init__.pxd,sha256=MzfsI-0xD0rFnyHl1UFXz-2wSvGjfGA9QFKuCTr5nhs,646
|
|
8
|
-
vegas/_vegas.cpython-311-darwin.so,sha256=jPMJId8d5q9qu8WQ81Onf0p55OVu6Yx7etwpWzBeE2s,1290560
|
|
9
|
-
vegas/__init__.py,sha256=TWzA9zsS_xiNa_K3nC1NZZ4MlU7Vwaz0YtGJatzn3Jw,55840
|
|
10
|
-
vegas/_vegas.pyx,sha256=jc9SbG7IUP4c16Sn65zb-avP3Hdjz3S7LMunbVVEpe8,141213
|
|
11
|
-
vegas/_vegas.pxd,sha256=Qe0-Zuep8t9OXUq8yLLZ1T_e-7zABM4aN2inX6N4BX4,3035
|
|
12
|
-
vegas/_vegas.c,sha256=9TxLr6vSRFu07DQnRn6SYGDix5SrnwmcbcljhsrwYbQ,5460149
|
|
File without changes
|
|
File without changes
|