vectorvein 0.2.76__py3-none-any.whl → 0.2.78__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -158,7 +158,7 @@ def get_token_counts(text: str | dict, model: str = "", use_token_server_first:
158
158
  return 1000
159
159
  result = response.json()
160
160
  return result["segments_num"]
161
- elif model.startswith("moonshot"):
161
+ elif model.startswith(("moonshot", "kimi")):
162
162
  backend_setting = settings.get_backend(BackendType.Moonshot).models[model]
163
163
  if len(backend_setting.endpoints) == 0:
164
164
  return len(get_gpt_35_encoding().encode(text))
@@ -1,6 +1,7 @@
1
1
  # @Author: Bi Ying
2
2
  # @Date: 2024-07-27 00:02:34
3
- from typing import Final, Dict, Any
3
+ from typing import Final, Dict
4
+ from typing_extensions import TypedDict, NotRequired
4
5
 
5
6
  from .enums import ContextLengthControlType
6
7
 
@@ -12,26 +13,39 @@ ENDPOINT_TPM: Final[int] = 300000
12
13
 
13
14
  MODEL_CONTEXT_LENGTH: Final[int] = 32768
14
15
 
16
+
17
+ class ModelSettingDict(TypedDict):
18
+ id: str
19
+ function_call_available: bool
20
+ response_format_available: bool
21
+ native_multimodal: bool
22
+ context_length: int
23
+ max_output_tokens: NotRequired[int]
24
+
25
+
15
26
  # Moonshot models
16
- MOONSHOT_DEFAULT_MODEL: Final[str] = "moonshot-v1-8k"
17
- MOONSHOT_MODELS: Final[Dict[str, Dict[str, Any]]] = {
27
+ MOONSHOT_DEFAULT_MODEL: Final[str] = "kimi-latest"
28
+ MOONSHOT_MODELS: Final[Dict[str, ModelSettingDict]] = {
18
29
  "moonshot-v1-8k": {
19
30
  "id": "moonshot-v1-8k",
20
31
  "context_length": 8192,
21
32
  "function_call_available": True,
22
33
  "response_format_available": True,
34
+ "native_multimodal": False,
23
35
  },
24
36
  "moonshot-v1-32k": {
25
37
  "id": "moonshot-v1-32k",
26
38
  "context_length": 32768,
27
39
  "function_call_available": True,
28
40
  "response_format_available": True,
41
+ "native_multimodal": False,
29
42
  },
30
43
  "moonshot-v1-128k": {
31
44
  "id": "moonshot-v1-128k",
32
45
  "context_length": 131072,
33
46
  "function_call_available": True,
34
47
  "response_format_available": True,
48
+ "native_multimodal": False,
35
49
  },
36
50
  "moonshot-v1-8k-vision-preview": {
37
51
  "id": "moonshot-v1-8k-vision-preview",
@@ -55,17 +69,25 @@ MOONSHOT_MODELS: Final[Dict[str, Dict[str, Any]]] = {
55
69
  "response_format_available": True,
56
70
  "native_multimodal": True,
57
71
  },
72
+ "kimi-latest": {
73
+ "id": "kimi-latest",
74
+ "context_length": 131072,
75
+ "function_call_available": True,
76
+ "response_format_available": True,
77
+ "native_multimodal": True,
78
+ },
58
79
  }
59
80
 
60
81
  # Deepseek models
61
82
  DEEPSEEK_DEFAULT_MODEL: Final[str] = "deepseek-chat"
62
- DEEPSEEK_MODELS: Final[Dict[str, Dict[str, Any]]] = {
83
+ DEEPSEEK_MODELS: Final[Dict[str, ModelSettingDict]] = {
63
84
  "deepseek-chat": {
64
85
  "id": "deepseek-chat",
65
86
  "context_length": 64000,
66
87
  "max_output_tokens": 8192,
67
88
  "function_call_available": True,
68
89
  "response_format_available": True,
90
+ "native_multimodal": False,
69
91
  },
70
92
  "deepseek-reasoner": {
71
93
  "id": "deepseek-reasoner",
@@ -73,18 +95,20 @@ DEEPSEEK_MODELS: Final[Dict[str, Dict[str, Any]]] = {
73
95
  "max_output_tokens": 8192,
74
96
  "function_call_available": False,
75
97
  "response_format_available": False,
98
+ "native_multimodal": False,
76
99
  },
77
100
  }
78
101
 
79
102
  # Baichuan models
80
103
  BAICHUAN_DEFAULT_MODEL: Final[str] = "Baichuan3-Turbo"
81
- BAICHUAN_MODELS: Final[Dict[str, Dict[str, Any]]] = {
104
+ BAICHUAN_MODELS: Final[Dict[str, ModelSettingDict]] = {
82
105
  "Baichuan4": {
83
106
  "id": "Baichuan4",
84
107
  "context_length": 32768,
85
108
  "max_output_tokens": 2048,
86
109
  "function_call_available": True,
87
110
  "response_format_available": True,
111
+ "native_multimodal": False,
88
112
  },
89
113
  "Baichuan3-Turbo": {
90
114
  "id": "Baichuan3-Turbo",
@@ -92,6 +116,7 @@ BAICHUAN_MODELS: Final[Dict[str, Dict[str, Any]]] = {
92
116
  "max_output_tokens": 2048,
93
117
  "function_call_available": True,
94
118
  "response_format_available": True,
119
+ "native_multimodal": False,
95
120
  },
96
121
  "Baichuan3-Turbo-128k": {
97
122
  "id": "Baichuan3-Turbo-128k",
@@ -99,6 +124,7 @@ BAICHUAN_MODELS: Final[Dict[str, Dict[str, Any]]] = {
99
124
  "max_output_tokens": 2048,
100
125
  "function_call_available": True,
101
126
  "response_format_available": True,
127
+ "native_multimodal": False,
102
128
  },
103
129
  "Baichuan2-Turbo": {
104
130
  "id": "Baichuan2-Turbo",
@@ -106,6 +132,7 @@ BAICHUAN_MODELS: Final[Dict[str, Dict[str, Any]]] = {
106
132
  "max_output_tokens": 2048,
107
133
  "function_call_available": True,
108
134
  "response_format_available": False,
135
+ "native_multimodal": False,
109
136
  },
110
137
  "Baichuan2-53B": {
111
138
  "id": "Baichuan2-53B",
@@ -113,75 +140,92 @@ BAICHUAN_MODELS: Final[Dict[str, Dict[str, Any]]] = {
113
140
  "max_output_tokens": 2048,
114
141
  "function_call_available": False,
115
142
  "response_format_available": False,
143
+ "native_multimodal": False,
116
144
  },
117
145
  }
118
146
 
119
147
  # Groq models
120
148
  GROQ_DEFAULT_MODEL: Final[str] = "llama3-70b-8192"
121
- GROQ_MODELS: Final[Dict[str, Dict[str, Any]]] = {
149
+ GROQ_MODELS: Final[Dict[str, ModelSettingDict]] = {
122
150
  "mixtral-8x7b-32768": {
123
151
  "id": "mixtral-8x7b-32768",
124
152
  "context_length": 32768,
125
153
  "function_call_available": True,
126
154
  "response_format_available": True,
155
+ "native_multimodal": False,
127
156
  },
128
157
  "llama3-70b-8192": {
129
158
  "id": "llama3-70b-8192",
130
159
  "context_length": 8192,
131
160
  "function_call_available": True,
132
161
  "response_format_available": True,
162
+ "native_multimodal": False,
133
163
  },
134
164
  "llama3-8b-8192": {
135
165
  "id": "llama3-8b-8192",
136
166
  "context_length": 8192,
137
167
  "function_call_available": True,
138
168
  "response_format_available": True,
169
+ "native_multimodal": False,
139
170
  },
140
171
  "gemma-7b-it": {
141
172
  "id": "gemma-7b-it",
142
173
  "context_length": 8192,
143
174
  "function_call_available": True,
144
175
  "response_format_available": True,
176
+ "native_multimodal": False,
145
177
  },
146
178
  "gemma2-9b-it": {
147
179
  "id": "gemma2-9b-it",
148
180
  "context_length": 8192,
181
+ "function_call_available": True,
182
+ "response_format_available": True,
183
+ "native_multimodal": False,
149
184
  },
150
185
  "llama3-groq-70b-8192-tool-use-preview": {
151
186
  "id": "llama3-groq-70b-8192-tool-use-preview",
152
187
  "context_length": 8192,
153
188
  "function_call_available": True,
189
+ "response_format_available": True,
154
190
  "max_output_tokens": 8000,
191
+ "native_multimodal": False,
155
192
  },
156
193
  "llama3-groq-8b-8192-tool-use-preview": {
157
194
  "id": "llama3-groq-8b-8192-tool-use-preview",
158
195
  "context_length": 8192,
159
196
  "function_call_available": True,
197
+ "response_format_available": True,
160
198
  "max_output_tokens": 8000,
199
+ "native_multimodal": False,
161
200
  },
162
201
  "llama-3.1-70b-versatile": {
163
202
  "id": "llama-3.1-70b-versatile",
164
203
  "context_length": 131072,
165
204
  "function_call_available": True,
205
+ "response_format_available": True,
166
206
  "max_output_tokens": 8000,
207
+ "native_multimodal": False,
167
208
  },
168
209
  "llama-3.1-8b-instant": {
169
210
  "id": "llama-3.1-8b-instant",
170
211
  "context_length": 131072,
171
212
  "function_call_available": True,
213
+ "response_format_available": True,
172
214
  "max_output_tokens": 8000,
215
+ "native_multimodal": False,
173
216
  },
174
217
  }
175
218
 
176
219
  # Qwen models
177
220
  QWEN_DEFAULT_MODEL: Final[str] = "qwen2.5-72b-instruct"
178
- QWEN_MODELS: Final[Dict[str, Dict[str, Any]]] = {
221
+ QWEN_MODELS: Final[Dict[str, ModelSettingDict]] = {
179
222
  "qwen2.5-7b-instruct": {
180
223
  "id": "qwen2.5-7b-instruct",
181
224
  "context_length": 131072,
182
225
  "max_output_tokens": 8192,
183
226
  "function_call_available": True,
184
227
  "response_format_available": True,
228
+ "native_multimodal": False,
185
229
  },
186
230
  "qwen2.5-14b-instruct": {
187
231
  "id": "qwen2.5-14b-instruct",
@@ -189,6 +233,7 @@ QWEN_MODELS: Final[Dict[str, Dict[str, Any]]] = {
189
233
  "max_output_tokens": 8192,
190
234
  "function_call_available": True,
191
235
  "response_format_available": True,
236
+ "native_multimodal": False,
192
237
  },
193
238
  "qwen2.5-32b-instruct": {
194
239
  "id": "qwen2.5-32b-instruct",
@@ -196,6 +241,7 @@ QWEN_MODELS: Final[Dict[str, Dict[str, Any]]] = {
196
241
  "max_output_tokens": 8192,
197
242
  "function_call_available": True,
198
243
  "response_format_available": True,
244
+ "native_multimodal": False,
199
245
  },
200
246
  "qwen2.5-coder-32b-instruct": {
201
247
  "id": "qwen2.5-coder-32b-instruct",
@@ -203,6 +249,7 @@ QWEN_MODELS: Final[Dict[str, Dict[str, Any]]] = {
203
249
  "max_output_tokens": 4096,
204
250
  "function_call_available": False,
205
251
  "response_format_available": False,
252
+ "native_multimodal": False,
206
253
  },
207
254
  "qwq-32b": {
208
255
  "id": "qwq-32b",
@@ -210,6 +257,7 @@ QWEN_MODELS: Final[Dict[str, Dict[str, Any]]] = {
210
257
  "max_output_tokens": 8192,
211
258
  "function_call_available": False,
212
259
  "response_format_available": False,
260
+ "native_multimodal": False,
213
261
  },
214
262
  "qwen2.5-72b-instruct": {
215
263
  "id": "qwen2.5-72b-instruct",
@@ -217,6 +265,7 @@ QWEN_MODELS: Final[Dict[str, Dict[str, Any]]] = {
217
265
  "max_output_tokens": 8192,
218
266
  "function_call_available": True,
219
267
  "response_format_available": True,
268
+ "native_multimodal": False,
220
269
  },
221
270
  "qwen2-vl-72b-instruct": {
222
271
  "id": "qwen2-vl-72b-instruct",
@@ -256,6 +305,7 @@ QWEN_MODELS: Final[Dict[str, Dict[str, Any]]] = {
256
305
  "max_output_tokens": 2048,
257
306
  "function_call_available": True,
258
307
  "response_format_available": True,
308
+ "native_multimodal": False,
259
309
  },
260
310
  "qwen-max-longcontext": {
261
311
  "id": "qwen-max-longcontext",
@@ -263,6 +313,7 @@ QWEN_MODELS: Final[Dict[str, Dict[str, Any]]] = {
263
313
  "max_output_tokens": 2048,
264
314
  "function_call_available": True,
265
315
  "response_format_available": True,
316
+ "native_multimodal": False,
266
317
  },
267
318
  "qwen-plus": {
268
319
  "id": "qwen-plus",
@@ -270,6 +321,7 @@ QWEN_MODELS: Final[Dict[str, Dict[str, Any]]] = {
270
321
  "max_output_tokens": 8096,
271
322
  "function_call_available": True,
272
323
  "response_format_available": True,
324
+ "native_multimodal": False,
273
325
  },
274
326
  "qwen-turbo": {
275
327
  "id": "qwen-turbo",
@@ -277,6 +329,7 @@ QWEN_MODELS: Final[Dict[str, Dict[str, Any]]] = {
277
329
  "max_output_tokens": 1500,
278
330
  "function_call_available": True,
279
331
  "response_format_available": True,
332
+ "native_multimodal": False,
280
333
  },
281
334
  "qvq-max": {
282
335
  "id": "qvq-max",
@@ -290,13 +343,14 @@ QWEN_MODELS: Final[Dict[str, Dict[str, Any]]] = {
290
343
 
291
344
  # Yi models
292
345
  YI_DEFAULT_MODEL: Final[str] = "yi-lightning"
293
- YI_MODELS: Final[Dict[str, Dict[str, Any]]] = {
346
+ YI_MODELS: Final[Dict[str, ModelSettingDict]] = {
294
347
  "yi-lightning": {
295
348
  "id": "yi-lightning",
296
349
  "context_length": 16000,
297
350
  "max_output_tokens": 4096,
298
351
  "function_call_available": False,
299
352
  "response_format_available": False,
353
+ "native_multimodal": False,
300
354
  },
301
355
  "yi-vision-v2": {
302
356
  "id": "yi-vision-v2",
@@ -310,13 +364,14 @@ YI_MODELS: Final[Dict[str, Dict[str, Any]]] = {
310
364
 
311
365
  # ZhiPuAI models
312
366
  ZHIPUAI_DEFAULT_MODEL: Final[str] = "glm-4-air"
313
- ZHIPUAI_MODELS: Final[Dict[str, Dict[str, Any]]] = {
367
+ ZHIPUAI_MODELS: Final[Dict[str, ModelSettingDict]] = {
314
368
  "glm-3-turbo": {
315
369
  "id": "glm-3-turbo",
316
370
  "context_length": 128000,
317
371
  "function_call_available": True,
318
372
  "response_format_available": False,
319
373
  "max_output_tokens": 4095,
374
+ "native_multimodal": False,
320
375
  },
321
376
  "glm-4": {
322
377
  "id": "glm-4",
@@ -324,6 +379,7 @@ ZHIPUAI_MODELS: Final[Dict[str, Dict[str, Any]]] = {
324
379
  "function_call_available": True,
325
380
  "response_format_available": False,
326
381
  "max_output_tokens": 4095,
382
+ "native_multimodal": False,
327
383
  },
328
384
  "glm-4-plus": {
329
385
  "id": "glm-4-plus",
@@ -331,6 +387,7 @@ ZHIPUAI_MODELS: Final[Dict[str, Dict[str, Any]]] = {
331
387
  "function_call_available": True,
332
388
  "response_format_available": False,
333
389
  "max_output_tokens": 4095,
390
+ "native_multimodal": False,
334
391
  },
335
392
  "glm-4-0520": {
336
393
  "id": "glm-4-0520",
@@ -338,6 +395,7 @@ ZHIPUAI_MODELS: Final[Dict[str, Dict[str, Any]]] = {
338
395
  "function_call_available": True,
339
396
  "response_format_available": False,
340
397
  "max_output_tokens": 4095,
398
+ "native_multimodal": False,
341
399
  },
342
400
  "glm-4-air": {
343
401
  "id": "glm-4-air",
@@ -345,6 +403,7 @@ ZHIPUAI_MODELS: Final[Dict[str, Dict[str, Any]]] = {
345
403
  "function_call_available": True,
346
404
  "response_format_available": False,
347
405
  "max_output_tokens": 4095,
406
+ "native_multimodal": False,
348
407
  },
349
408
  "glm-4-airx": {
350
409
  "id": "glm-4-airx",
@@ -352,6 +411,7 @@ ZHIPUAI_MODELS: Final[Dict[str, Dict[str, Any]]] = {
352
411
  "function_call_available": True,
353
412
  "response_format_available": False,
354
413
  "max_output_tokens": 4095,
414
+ "native_multimodal": False,
355
415
  },
356
416
  "glm-4-flash": {
357
417
  "id": "glm-4-flash",
@@ -359,6 +419,7 @@ ZHIPUAI_MODELS: Final[Dict[str, Dict[str, Any]]] = {
359
419
  "function_call_available": True,
360
420
  "response_format_available": False,
361
421
  "max_output_tokens": 4095,
422
+ "native_multimodal": False,
362
423
  },
363
424
  "glm-4-long": {
364
425
  "id": "glm-4-long",
@@ -366,6 +427,7 @@ ZHIPUAI_MODELS: Final[Dict[str, Dict[str, Any]]] = {
366
427
  "function_call_available": True,
367
428
  "response_format_available": False,
368
429
  "max_output_tokens": 4095,
430
+ "native_multimodal": False,
369
431
  },
370
432
  "glm-4v": {
371
433
  "id": "glm-4v",
@@ -411,66 +473,75 @@ ZHIPUAI_MODELS: Final[Dict[str, Dict[str, Any]]] = {
411
473
 
412
474
  # Mistral models
413
475
  MISTRAL_DEFAULT_MODEL: Final[str] = "mistral-small"
414
- MISTRAL_MODELS: Final[Dict[str, Dict[str, Any]]] = {
476
+ MISTRAL_MODELS: Final[Dict[str, ModelSettingDict]] = {
415
477
  "open-mistral-7b": {
416
478
  "id": "open-mistral-7b",
417
479
  "context_length": 32000,
418
480
  "function_call_available": False,
419
481
  "response_format_available": True,
482
+ "native_multimodal": False,
420
483
  },
421
484
  "open-mixtral-8x7b": {
422
485
  "id": "open-mixtral-8x7b",
423
486
  "context_length": 32000,
424
487
  "function_call_available": False,
425
488
  "response_format_available": True,
489
+ "native_multimodal": False,
426
490
  },
427
491
  "open-mixtral-8x22b": {
428
492
  "id": "open-mixtral-8x22b",
429
493
  "context_length": 64000,
430
494
  "function_call_available": True,
431
495
  "response_format_available": True,
496
+ "native_multimodal": False,
432
497
  },
433
498
  "open-mistral-nemo": {
434
499
  "id": "open-mistral-nemo",
435
500
  "context_length": 128000,
436
501
  "function_call_available": False,
437
502
  "response_format_available": True,
503
+ "native_multimodal": False,
438
504
  },
439
505
  "codestral-latest": {
440
506
  "id": "codestral-latest",
441
507
  "context_length": 32000,
442
508
  "function_call_available": False,
443
509
  "response_format_available": True,
510
+ "native_multimodal": False,
444
511
  },
445
512
  "mistral-small-latest": {
446
513
  "id": "mistral-small-latest",
447
514
  "context_length": 30000,
448
515
  "function_call_available": True,
449
516
  "response_format_available": True,
517
+ "native_multimodal": False,
450
518
  },
451
519
  "mistral-medium-latest": {
452
520
  "id": "mistral-medium-latest",
453
521
  "context_length": 30000,
454
522
  "function_call_available": False,
455
523
  "response_format_available": True,
524
+ "native_multimodal": False,
456
525
  },
457
526
  "mistral-large-latest": {
458
527
  "id": "mistral-large-latest",
459
528
  "context_length": 128000,
460
529
  "function_call_available": True,
461
530
  "response_format_available": True,
531
+ "native_multimodal": False,
462
532
  },
463
533
  }
464
534
 
465
535
  # OpenAI models
466
536
  OPENAI_DEFAULT_MODEL: Final[str] = "gpt-4o"
467
- OPENAI_MODELS: Final[Dict[str, Dict[str, Any]]] = {
537
+ OPENAI_MODELS: Final[Dict[str, ModelSettingDict]] = {
468
538
  "gpt-35-turbo": {
469
539
  "id": "gpt-35-turbo",
470
540
  "context_length": 16385,
471
541
  "function_call_available": True,
472
542
  "response_format_available": True,
473
543
  "max_output_tokens": 4096,
544
+ "native_multimodal": False,
474
545
  },
475
546
  "gpt-4-turbo": {
476
547
  "id": "gpt-4-turbo",
@@ -478,6 +549,7 @@ OPENAI_MODELS: Final[Dict[str, Dict[str, Any]]] = {
478
549
  "max_output_tokens": 4096,
479
550
  "function_call_available": True,
480
551
  "response_format_available": True,
552
+ "native_multimodal": False,
481
553
  },
482
554
  "gpt-4": {
483
555
  "id": "gpt-4",
@@ -485,6 +557,7 @@ OPENAI_MODELS: Final[Dict[str, Dict[str, Any]]] = {
485
557
  "max_output_tokens": 4096,
486
558
  "function_call_available": True,
487
559
  "response_format_available": True,
560
+ "native_multimodal": False,
488
561
  },
489
562
  "gpt-4o": {
490
563
  "id": "gpt-4o",
@@ -508,6 +581,7 @@ OPENAI_MODELS: Final[Dict[str, Dict[str, Any]]] = {
508
581
  "max_output_tokens": 4096,
509
582
  "function_call_available": True,
510
583
  "response_format_available": True,
584
+ "native_multimodal": True,
511
585
  },
512
586
  "o1-mini": {
513
587
  "id": "o1-mini",
@@ -536,8 +610,8 @@ OPENAI_MODELS: Final[Dict[str, Dict[str, Any]]] = {
536
610
  }
537
611
 
538
612
  # Anthropic models
539
- ANTHROPIC_DEFAULT_MODEL: Final[str] = "claude-3-5-sonnet-20241022"
540
- ANTHROPIC_MODELS: Final[Dict[str, Dict[str, Any]]] = {
613
+ ANTHROPIC_DEFAULT_MODEL: Final[str] = "claude-3-7-sonnet-20250219"
614
+ ANTHROPIC_MODELS: Final[Dict[str, ModelSettingDict]] = {
541
615
  "claude-3-opus-20240229": {
542
616
  "id": "claude-3-opus-20240229",
543
617
  "context_length": 200000,
@@ -598,13 +672,14 @@ ANTHROPIC_MODELS: Final[Dict[str, Dict[str, Any]]] = {
598
672
 
599
673
  # Minimax models
600
674
  MINIMAX_DEFAULT_MODEL: Final[str] = "MiniMax-Text-01"
601
- MINIMAX_MODELS: Final[Dict[str, Dict[str, Any]]] = {
675
+ MINIMAX_MODELS: Final[Dict[str, ModelSettingDict]] = {
602
676
  "abab5-chat": {
603
677
  "id": "abab5-chat",
604
678
  "context_length": 6144,
605
679
  "max_output_tokens": 6144,
606
680
  "function_call_available": True,
607
681
  "response_format_available": True,
682
+ "native_multimodal": False,
608
683
  },
609
684
  "abab5.5-chat": {
610
685
  "id": "abab5.5-chat",
@@ -612,6 +687,7 @@ MINIMAX_MODELS: Final[Dict[str, Dict[str, Any]]] = {
612
687
  "max_output_tokens": 16384,
613
688
  "function_call_available": True,
614
689
  "response_format_available": True,
690
+ "native_multimodal": False,
615
691
  },
616
692
  "abab6-chat": {
617
693
  "id": "abab6-chat",
@@ -619,6 +695,7 @@ MINIMAX_MODELS: Final[Dict[str, Dict[str, Any]]] = {
619
695
  "max_output_tokens": 32768,
620
696
  "function_call_available": True,
621
697
  "response_format_available": True,
698
+ "native_multimodal": False,
622
699
  },
623
700
  "abab6.5s-chat": {
624
701
  "id": "abab6.5s-chat",
@@ -626,6 +703,7 @@ MINIMAX_MODELS: Final[Dict[str, Dict[str, Any]]] = {
626
703
  "max_output_tokens": 245760,
627
704
  "function_call_available": True,
628
705
  "response_format_available": True,
706
+ "native_multimodal": False,
629
707
  },
630
708
  "abab7-preview": {
631
709
  "id": "abab7-preview",
@@ -633,6 +711,7 @@ MINIMAX_MODELS: Final[Dict[str, Dict[str, Any]]] = {
633
711
  "max_output_tokens": 245760,
634
712
  "function_call_available": True,
635
713
  "response_format_available": True,
714
+ "native_multimodal": False,
636
715
  },
637
716
  "MiniMax-Text-01": {
638
717
  "id": "MiniMax-Text-01",
@@ -640,12 +719,13 @@ MINIMAX_MODELS: Final[Dict[str, Dict[str, Any]]] = {
640
719
  "max_output_tokens": 1000192,
641
720
  "function_call_available": True,
642
721
  "response_format_available": True,
722
+ "native_multimodal": False,
643
723
  },
644
724
  }
645
725
 
646
726
  # Gemini models
647
727
  GEMINI_DEFAULT_MODEL: Final[str] = "gemini-2.0-flash"
648
- GEMINI_MODELS: Final[Dict[str, Dict[str, Any]]] = {
728
+ GEMINI_MODELS: Final[Dict[str, ModelSettingDict]] = {
649
729
  "gemini-1.5-pro": {
650
730
  "id": "gemini-1.5-pro",
651
731
  "context_length": 2097152,
@@ -737,13 +817,14 @@ GEMINI_MODELS: Final[Dict[str, Dict[str, Any]]] = {
737
817
 
738
818
  # 百度文心一言 ERNIE 模型
739
819
  ERNIE_DEFAULT_MODEL: Final[str] = "ernie-lite"
740
- ERNIE_MODELS: Final[Dict[str, Dict[str, Any]]] = {
820
+ ERNIE_MODELS: Final[Dict[str, ModelSettingDict]] = {
741
821
  "ernie-lite": {
742
822
  "id": "ernie-lite",
743
823
  "context_length": 6144,
744
824
  "max_output_tokens": 2048,
745
825
  "function_call_available": False,
746
826
  "response_format_available": False,
827
+ "native_multimodal": False,
747
828
  },
748
829
  "ernie-speed": {
749
830
  "id": "ernie-speed",
@@ -751,6 +832,7 @@ ERNIE_MODELS: Final[Dict[str, Dict[str, Any]]] = {
751
832
  "max_output_tokens": 4096,
752
833
  "function_call_available": False,
753
834
  "response_format_available": False,
835
+ "native_multimodal": False,
754
836
  },
755
837
  "ernie-speed-pro-128k": {
756
838
  "id": "ernie-speed-pro-128k",
@@ -758,6 +840,7 @@ ERNIE_MODELS: Final[Dict[str, Dict[str, Any]]] = {
758
840
  "max_output_tokens": 4096,
759
841
  "function_call_available": False,
760
842
  "response_format_available": False,
843
+ "native_multimodal": False,
761
844
  },
762
845
  "ernie-3.5-8k": {
763
846
  "id": "ernie-3.5-8k",
@@ -765,6 +848,7 @@ ERNIE_MODELS: Final[Dict[str, Dict[str, Any]]] = {
765
848
  "max_output_tokens": 2048,
766
849
  "function_call_available": True,
767
850
  "response_format_available": True,
851
+ "native_multimodal": False,
768
852
  },
769
853
  "ernie-3.5-128k": {
770
854
  "id": "ernie-3.5-128k",
@@ -772,6 +856,7 @@ ERNIE_MODELS: Final[Dict[str, Dict[str, Any]]] = {
772
856
  "max_output_tokens": 8192,
773
857
  "function_call_available": True,
774
858
  "response_format_available": True,
859
+ "native_multimodal": False,
775
860
  },
776
861
  "ernie-4.0-8k-latest": {
777
862
  "id": "ernie-4.0-8k-latest",
@@ -779,6 +864,7 @@ ERNIE_MODELS: Final[Dict[str, Dict[str, Any]]] = {
779
864
  "max_output_tokens": 2048,
780
865
  "function_call_available": True,
781
866
  "response_format_available": True,
867
+ "native_multimodal": False,
782
868
  },
783
869
  "ernie-4.0-8k": {
784
870
  "id": "ernie-4.0-8k",
@@ -786,6 +872,7 @@ ERNIE_MODELS: Final[Dict[str, Dict[str, Any]]] = {
786
872
  "max_output_tokens": 2048,
787
873
  "function_call_available": True,
788
874
  "response_format_available": True,
875
+ "native_multimodal": False,
789
876
  },
790
877
  "ernie-4.0-turbo-8k": {
791
878
  "id": "ernie-4.0-turbo-8k",
@@ -793,6 +880,7 @@ ERNIE_MODELS: Final[Dict[str, Dict[str, Any]]] = {
793
880
  "max_output_tokens": 2048,
794
881
  "function_call_available": False,
795
882
  "response_format_available": True,
883
+ "native_multimodal": False,
796
884
  },
797
885
  "ernie-4.5-8k-preview": {
798
886
  "id": "ernie-4.5-8k-preview",
@@ -800,47 +888,54 @@ ERNIE_MODELS: Final[Dict[str, Dict[str, Any]]] = {
800
888
  "max_output_tokens": 2048,
801
889
  "function_call_available": False,
802
890
  "response_format_available": True,
891
+ "native_multimodal": False,
803
892
  },
804
893
  }
805
894
 
806
895
 
807
896
  STEPFUN_DEFAULT_MODEL: Final[str] = "step-1-8k"
808
- STEPFUN_MODELS: Final[Dict[str, Dict[str, Any]]] = {
897
+ STEPFUN_MODELS: Final[Dict[str, ModelSettingDict]] = {
809
898
  "step-1-8k": {
810
899
  "id": "step-1-8k",
811
900
  "context_length": 8192,
812
901
  "function_call_available": True,
813
902
  "response_format_available": True,
903
+ "native_multimodal": False,
814
904
  },
815
905
  "step-1-32k": {
816
906
  "id": "step-1-32k",
817
907
  "context_length": 32000,
818
908
  "function_call_available": True,
819
909
  "response_format_available": True,
910
+ "native_multimodal": False,
820
911
  },
821
912
  "step-1-128k": {
822
913
  "id": "step-1-128k",
823
914
  "context_length": 128000,
824
915
  "function_call_available": True,
825
916
  "response_format_available": True,
917
+ "native_multimodal": False,
826
918
  },
827
919
  "step-1-256k": {
828
920
  "id": "step-1-256k",
829
921
  "context_length": 256000,
830
922
  "function_call_available": True,
831
923
  "response_format_available": True,
924
+ "native_multimodal": False,
832
925
  },
833
926
  "step-2-16k": {
834
927
  "id": "step-2-16k",
835
928
  "context_length": 16384,
836
929
  "function_call_available": True,
837
930
  "response_format_available": True,
931
+ "native_multimodal": False,
838
932
  },
839
933
  "step-1-flash": {
840
934
  "id": "step-1-flash",
841
935
  "context_length": 8192,
842
936
  "function_call_available": True,
843
937
  "response_format_available": True,
938
+ "native_multimodal": False,
844
939
  },
845
940
  "step-1v-8k": {
846
941
  "id": "step-1v-8k",
@@ -860,18 +955,20 @@ STEPFUN_MODELS: Final[Dict[str, Dict[str, Any]]] = {
860
955
 
861
956
 
862
957
  XAI_DEFAULT_MODEL: Final[str] = "grok-2-latest"
863
- XAI_MODELS: Final[Dict[str, Dict[str, Any]]] = {
958
+ XAI_MODELS: Final[Dict[str, ModelSettingDict]] = {
864
959
  "grok-beta": {
865
960
  "id": "grok-beta",
866
961
  "context_length": 131072,
867
962
  "function_call_available": True,
868
963
  "response_format_available": True,
964
+ "native_multimodal": False,
869
965
  },
870
966
  "grok-2-latest": {
871
967
  "id": "grok-2-latest",
872
968
  "context_length": 131072,
873
969
  "function_call_available": True,
874
970
  "response_format_available": True,
971
+ "native_multimodal": False,
875
972
  },
876
973
  "grok-2-vision-latest": {
877
974
  "id": "grok-2-vision-latest",
@@ -880,4 +977,32 @@ XAI_MODELS: Final[Dict[str, Dict[str, Any]]] = {
880
977
  "response_format_available": True,
881
978
  "native_multimodal": True,
882
979
  },
980
+ "grok-3-beta": {
981
+ "id": "grok-beta",
982
+ "context_length": 131072,
983
+ "function_call_available": True,
984
+ "response_format_available": True,
985
+ "native_multimodal": False,
986
+ },
987
+ "grok-3-fast-beta": {
988
+ "id": "grok-beta",
989
+ "context_length": 131072,
990
+ "function_call_available": True,
991
+ "response_format_available": True,
992
+ "native_multimodal": False,
993
+ },
994
+ "grok-3-mini-beta": {
995
+ "id": "grok-beta",
996
+ "context_length": 131072,
997
+ "function_call_available": True,
998
+ "response_format_available": True,
999
+ "native_multimodal": False,
1000
+ },
1001
+ "grok-3-mini-fast-beta": {
1002
+ "id": "grok-beta",
1003
+ "context_length": 131072,
1004
+ "function_call_available": True,
1005
+ "response_format_available": True,
1006
+ "native_multimodal": False,
1007
+ },
883
1008
  }
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: vectorvein
3
- Version: 0.2.76
3
+ Version: 0.2.78
4
4
  Summary: VectorVein Python SDK
5
5
  Author-Email: Anderson <andersonby@163.com>
6
6
  License: MIT
@@ -1,6 +1,6 @@
1
- vectorvein-0.2.76.dist-info/METADATA,sha256=cFu9iUHyoeR_EjmbcI-Soe2wxaOndkvK-hgDjTExzWE,4567
2
- vectorvein-0.2.76.dist-info/WHEEL,sha256=tSfRZzRHthuv7vxpI4aehrdN9scLjk-dCJkPLzkHxGg,90
3
- vectorvein-0.2.76.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
1
+ vectorvein-0.2.78.dist-info/METADATA,sha256=O7gLy0AVtRV5XY5Pm7lPGE49Iii0mCt6oo1E-fXj6L0,4567
2
+ vectorvein-0.2.78.dist-info/WHEEL,sha256=tSfRZzRHthuv7vxpI4aehrdN9scLjk-dCJkPLzkHxGg,90
3
+ vectorvein-0.2.78.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
4
4
  vectorvein/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
5
  vectorvein/api/__init__.py,sha256=lfY-XA46fgD2iIZTU0VYP8i07AwA03Egj4Qua0vUKrQ,738
6
6
  vectorvein/api/client.py,sha256=xF-leKDQzVyyy9FnIRaz0k4eElYW1XbbzeRLcpnyk90,33047
@@ -23,7 +23,7 @@ vectorvein/chat_clients/openai_compatible_client.py,sha256=_vt-yMC62MygFLVuMuWij
23
23
  vectorvein/chat_clients/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
24
24
  vectorvein/chat_clients/qwen_client.py,sha256=-ryh-m9PgsO0fc4ulcCmPTy1155J8YUy15uPoJQOHA0,513
25
25
  vectorvein/chat_clients/stepfun_client.py,sha256=zsD2W5ahmR4DD9cqQTXmJr3txrGuvxbRWhFlRdwNijI,519
26
- vectorvein/chat_clients/utils.py,sha256=G2GBFfDHBf5Z_vR2tXNVb1di5G8KKm2RoYlJpey2oxU,29481
26
+ vectorvein/chat_clients/utils.py,sha256=ivfnadNH4vTP_kdB10sKQIVa7SMcIKc7KzmLjKPG3qU,29491
27
27
  vectorvein/chat_clients/xai_client.py,sha256=eLFJJrNRJ-ni3DpshODcr3S1EJQLbhVwxyO1E54LaqM,491
28
28
  vectorvein/chat_clients/yi_client.py,sha256=RNf4CRuPJfixrwLZ3-DEc3t25QDe1mvZeb9sku2f8Bc,484
29
29
  vectorvein/chat_clients/zhipuai_client.py,sha256=Ys5DSeLCuedaDXr3PfG1EW2zKXopt-awO2IylWSwY0s,519
@@ -32,7 +32,7 @@ vectorvein/server/token_server.py,sha256=36F9PKSNOX8ZtYBXY_l-76GQTpUSmQ2Y8EMy1H7
32
32
  vectorvein/settings/__init__.py,sha256=3Kw3hbvqcIQepAR6Q2m2UXbBnwyJTUm8yAz-aHmbUTg,11163
33
33
  vectorvein/settings/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
34
34
  vectorvein/types/__init__.py,sha256=ypg8c8AwF49FrFBMqmgH_eIBH4LFf0KN4kjqQa7zrvM,3376
35
- vectorvein/types/defaults.py,sha256=qNvqlCT-aTYiqx3ywyoO9SnQn8GlV_eDJ9Oct2Jovts,28090
35
+ vectorvein/types/defaults.py,sha256=zjc26XykhpZH9VwdFnJ0SvERflamAbM7NYQsYUN7tFQ,32451
36
36
  vectorvein/types/enums.py,sha256=LplSVkXLBK-t8TWtJKj_f7ktWTd6CSHWRLb67XKMm54,1716
37
37
  vectorvein/types/exception.py,sha256=KtnqZ-1DstHm95SZAyZdHhkGq1bJ4A9Aw3Zfdu-VIFo,130
38
38
  vectorvein/types/llm_parameters.py,sha256=Bdz9E_x0G96rvJ5TnEFPrU5QV4I2y0YFv7dY4Pq-MuU,7933
@@ -65,4 +65,4 @@ vectorvein/workflow/utils/analyse.py,sha256=msmvyz35UTYTwqQR5sg9H0sm1vxmGDSmep9X
65
65
  vectorvein/workflow/utils/check.py,sha256=B_NdwqIqnc7Ko2HHqFpfOmWVaAu21tPITe0szKfiZKc,11414
66
66
  vectorvein/workflow/utils/json_to_code.py,sha256=P8dhhSNgKhTnW17qXNjLO2aLdb0rA8qMAWxhObol2TU,7295
67
67
  vectorvein/workflow/utils/layout.py,sha256=j0bRD3uaXu40xCS6U6BGahBI8FrHa5MiF55GbTrZ1LM,4565
68
- vectorvein-0.2.76.dist-info/RECORD,,
68
+ vectorvein-0.2.78.dist-info/RECORD,,