vectorvein 0.2.50__py3-none-any.whl → 0.2.52__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vectorvein/chat_clients/openai_compatible_client.py +0 -15
- vectorvein/chat_clients/utils.py +16 -17
- vectorvein/workflow/graph/node.py +2 -6
- vectorvein/workflow/graph/workflow.py +5 -156
- vectorvein/workflow/utils/check.py +159 -0
- {vectorvein-0.2.50.dist-info → vectorvein-0.2.52.dist-info}/METADATA +1 -1
- {vectorvein-0.2.50.dist-info → vectorvein-0.2.52.dist-info}/RECORD +9 -8
- {vectorvein-0.2.50.dist-info → vectorvein-0.2.52.dist-info}/WHEEL +0 -0
- {vectorvein-0.2.50.dist-info → vectorvein-0.2.52.dist-info}/entry_points.txt +0 -0
@@ -331,11 +331,6 @@ class OpenAICompatibleChatClient(BaseChatClient):
|
|
331
331
|
else:
|
332
332
|
max_tokens = self.model_setting.context_length - token_counts - 64
|
333
333
|
|
334
|
-
if response_format and self.model_setting.response_format_available:
|
335
|
-
self.response_format = {"response_format": response_format}
|
336
|
-
else:
|
337
|
-
self.response_format = {}
|
338
|
-
|
339
334
|
self._acquire_rate_limit(self.endpoint, self.model, messages)
|
340
335
|
|
341
336
|
if self.stream:
|
@@ -797,16 +792,6 @@ class AsyncOpenAICompatibleChatClient(BaseAsyncChatClient):
|
|
797
792
|
else:
|
798
793
|
tools_params = {}
|
799
794
|
|
800
|
-
if response_format and self.model_setting.response_format_available:
|
801
|
-
self.response_format = {"response_format": response_format}
|
802
|
-
else:
|
803
|
-
self.response_format = {}
|
804
|
-
|
805
|
-
if stream_options:
|
806
|
-
_stream_options_params = {"stream_options": stream_options}
|
807
|
-
else:
|
808
|
-
_stream_options_params = {}
|
809
|
-
|
810
795
|
if max_tokens is None:
|
811
796
|
max_output_tokens = self.model_setting.max_output_tokens
|
812
797
|
token_counts = get_message_token_counts(messages=messages, tools=tools, model=self.model)
|
vectorvein/chat_clients/utils.py
CHANGED
@@ -55,30 +55,29 @@ class ToolCallContentProcessor:
|
|
55
55
|
return {}
|
56
56
|
tool_calls_matches = re.findall(self.tool_use_re, self.content)
|
57
57
|
if tool_calls_matches:
|
58
|
-
|
59
|
-
for match in tool_calls_matches:
|
58
|
+
tool_calls = []
|
59
|
+
for idx, match in enumerate(tool_calls_matches):
|
60
60
|
try:
|
61
61
|
tool_call_data = json.loads(match)
|
62
|
+
arguments = json.dumps(tool_call_data["arguments"], ensure_ascii=False)
|
63
|
+
tool_calls.append(
|
64
|
+
{
|
65
|
+
"index": idx,
|
66
|
+
"id": f"call_{idx}",
|
67
|
+
"function": {
|
68
|
+
"arguments": arguments,
|
69
|
+
"name": tool_call_data["name"],
|
70
|
+
},
|
71
|
+
"type": "function",
|
72
|
+
}
|
73
|
+
)
|
62
74
|
except json.JSONDecodeError:
|
63
75
|
print(f"Failed to parse tool call data:\nContent: {self.content}\nMatch: {match}")
|
64
76
|
|
65
|
-
if not
|
77
|
+
if not tool_calls:
|
66
78
|
return {}
|
67
79
|
|
68
|
-
|
69
|
-
return {
|
70
|
-
"tool_calls": [
|
71
|
-
{
|
72
|
-
"index": 0,
|
73
|
-
"id": "call_0",
|
74
|
-
"function": {
|
75
|
-
"arguments": arguments,
|
76
|
-
"name": tool_call_data["name"],
|
77
|
-
},
|
78
|
-
"type": "function",
|
79
|
-
}
|
80
|
-
]
|
81
|
-
}
|
80
|
+
return {"tool_calls": tool_calls}
|
82
81
|
else:
|
83
82
|
return {}
|
84
83
|
|
@@ -10,15 +10,13 @@ class PortsDict(Dict[str, Port]):
|
|
10
10
|
def __init__(self, owner_node: "Node", *args, **kwargs):
|
11
11
|
super().__init__(*args, **kwargs)
|
12
12
|
self._owner_node = owner_node
|
13
|
-
self._initializing = True
|
13
|
+
self._initializing = True
|
14
14
|
|
15
15
|
def __setitem__(self, key: str, value: Port) -> None:
|
16
|
-
# 初始化阶段或端口已存在时,允许直接添加/更新
|
17
16
|
if self._initializing or key in self:
|
18
17
|
super().__setitem__(key, value)
|
19
18
|
return
|
20
19
|
|
21
|
-
# 对于新端口,检查添加权限
|
22
20
|
if isinstance(value, OutputPort) and not self._owner_node.can_add_output_ports:
|
23
21
|
raise ValueError(
|
24
22
|
f"Node<{self._owner_node.id}> '{self._owner_node.type}' does not allow adding output ports"
|
@@ -58,13 +56,11 @@ class Node:
|
|
58
56
|
self.description: str = description
|
59
57
|
self.can_add_input_ports: bool = can_add_input_ports
|
60
58
|
self.can_add_output_ports: bool = can_add_output_ports
|
61
|
-
|
59
|
+
|
62
60
|
self.ports = PortsDict(self)
|
63
|
-
# 如果提供了初始端口,将它们添加到字典中
|
64
61
|
if ports:
|
65
62
|
for name, port in ports.items():
|
66
63
|
self.ports[name] = port
|
67
|
-
# 结束初始化阶段
|
68
64
|
self.ports.finish_initialization()
|
69
65
|
|
70
66
|
self.position: Dict[str, float] = position or {"x": 0, "y": 0}
|
@@ -1,26 +1,10 @@
|
|
1
1
|
import json
|
2
|
-
from typing import List, Union,
|
2
|
+
from typing import List, Union, Dict, Any, Optional
|
3
3
|
|
4
4
|
from .node import Node
|
5
5
|
from .edge import Edge
|
6
|
-
from .port import InputPort
|
7
6
|
from ..utils.layout import layout
|
8
|
-
|
9
|
-
|
10
|
-
class UIWarning(TypedDict, total=False):
|
11
|
-
"""UI警告类型。"""
|
12
|
-
|
13
|
-
input_ports_shown_but_connected: list[dict] # 显示的输入端口但被连接
|
14
|
-
has_shown_input_ports: bool # 是否存在显示的输入端口
|
15
|
-
has_output_nodes: bool # 是否存在输出节点
|
16
|
-
|
17
|
-
|
18
|
-
class WorkflowCheckResult(TypedDict, total=False):
|
19
|
-
"""工作流检查结果类型。"""
|
20
|
-
|
21
|
-
no_cycle: bool # 工作流是否不包含环
|
22
|
-
no_isolated_nodes: bool # 工作流是否不包含孤立节点
|
23
|
-
ui_warnings: UIWarning # UI相关警告
|
7
|
+
from ..utils.check import WorkflowCheckResult, check_dag, check_ui
|
24
8
|
|
25
9
|
|
26
10
|
class Workflow:
|
@@ -135,152 +119,17 @@ class Workflow:
|
|
135
119
|
|
136
120
|
return "\n".join(lines)
|
137
121
|
|
138
|
-
def _check_dag(self) -> WorkflowCheckResult:
|
139
|
-
"""检查流程图是否为有向无环图,并检测是否存在孤立节点。
|
140
|
-
|
141
|
-
Returns:
|
142
|
-
WorkflowCheckResult: 包含检查结果的字典
|
143
|
-
- no_cycle (bool): 如果流程图是有向无环图返回 True,否则返回 False
|
144
|
-
- no_isolated_nodes (bool): 如果不存在孤立节点返回 True,否则返回 False
|
145
|
-
"""
|
146
|
-
result: WorkflowCheckResult = {"no_cycle": True, "no_isolated_nodes": True}
|
147
|
-
|
148
|
-
# 过滤掉触发器节点和辅助节点
|
149
|
-
trigger_nodes = [
|
150
|
-
node.id
|
151
|
-
for node in self.nodes
|
152
|
-
if hasattr(node, "category") and (node.category == "triggers" or node.category == "assistedNodes")
|
153
|
-
]
|
154
|
-
|
155
|
-
# 获取需要检查的节点和边
|
156
|
-
regular_nodes = [node.id for node in self.nodes if node.id not in trigger_nodes]
|
157
|
-
regular_edges = [
|
158
|
-
edge for edge in self.edges if edge.source not in trigger_nodes and edge.target not in trigger_nodes
|
159
|
-
]
|
160
|
-
|
161
|
-
# ---------- 检查有向图是否有环 ----------
|
162
|
-
# 构建邻接表
|
163
|
-
adjacency = {node_id: [] for node_id in regular_nodes}
|
164
|
-
for edge in regular_edges:
|
165
|
-
if edge.source in adjacency: # 确保节点在字典中
|
166
|
-
adjacency[edge.source].append(edge.target)
|
167
|
-
|
168
|
-
# 三种状态: 0 = 未访问, 1 = 正在访问, 2 = 已访问完成
|
169
|
-
visited = {node_id: 0 for node_id in regular_nodes}
|
170
|
-
|
171
|
-
def dfs_cycle_detection(node_id):
|
172
|
-
# 如果节点正在被访问,说明找到了环
|
173
|
-
if visited[node_id] == 1:
|
174
|
-
return False
|
175
|
-
|
176
|
-
# 如果节点已经访问完成,无需再次访问
|
177
|
-
if visited[node_id] == 2:
|
178
|
-
return True
|
179
|
-
|
180
|
-
# 标记为正在访问
|
181
|
-
visited[node_id] = 1
|
182
|
-
|
183
|
-
# 访问所有邻居
|
184
|
-
for neighbor in adjacency[node_id]:
|
185
|
-
if neighbor in visited and not dfs_cycle_detection(neighbor):
|
186
|
-
return False
|
187
|
-
|
188
|
-
# 标记为已访问完成
|
189
|
-
visited[node_id] = 2
|
190
|
-
return True
|
191
|
-
|
192
|
-
# 对每个未访问的节点进行 DFS 检测环
|
193
|
-
for node_id in regular_nodes:
|
194
|
-
if visited[node_id] == 0:
|
195
|
-
if not dfs_cycle_detection(node_id):
|
196
|
-
result["no_cycle"] = False
|
197
|
-
break
|
198
|
-
|
199
|
-
# ---------- 检查是否存在孤立节点 ----------
|
200
|
-
# 构建无向图邻接表
|
201
|
-
undirected_adjacency = {node_id: [] for node_id in regular_nodes}
|
202
|
-
for edge in regular_edges:
|
203
|
-
if edge.source in undirected_adjacency and edge.target in undirected_adjacency:
|
204
|
-
undirected_adjacency[edge.source].append(edge.target)
|
205
|
-
undirected_adjacency[edge.target].append(edge.source)
|
206
|
-
|
207
|
-
# 深度优先搜索来检测连通分量
|
208
|
-
undirected_visited = set()
|
209
|
-
|
210
|
-
def dfs_connected_components(node_id):
|
211
|
-
undirected_visited.add(node_id)
|
212
|
-
for neighbor in undirected_adjacency[node_id]:
|
213
|
-
if neighbor not in undirected_visited:
|
214
|
-
dfs_connected_components(neighbor)
|
215
|
-
|
216
|
-
# 计算连通分量数量
|
217
|
-
connected_components_count = 0
|
218
|
-
for node_id in regular_nodes:
|
219
|
-
if node_id not in undirected_visited:
|
220
|
-
connected_components_count += 1
|
221
|
-
dfs_connected_components(node_id)
|
222
|
-
|
223
|
-
# 如果连通分量数量大于1,说明存在孤立节点
|
224
|
-
if connected_components_count > 1 and len(regular_nodes) > 0:
|
225
|
-
result["no_isolated_nodes"] = False
|
226
|
-
|
227
|
-
return result
|
228
|
-
|
229
|
-
def _check_ui(self) -> UIWarning:
|
230
|
-
"""
|
231
|
-
检查工作流的 UI 情况。
|
232
|
-
以下情况会警告:
|
233
|
-
1. 某个输入端口的 show=True,但是又有连线连接到该端口(实际运行时会被覆盖)。
|
234
|
-
2. 整个工作流没有任何输入端口是 show=True 的,说明没有让用户输入的地方。
|
235
|
-
3. 整个工作流没有任何输出节点,这样工作流结果无法呈现。
|
236
|
-
"""
|
237
|
-
warnings: UIWarning = {
|
238
|
-
"input_ports_shown_but_connected": [],
|
239
|
-
"has_shown_input_ports": False,
|
240
|
-
"has_output_nodes": False,
|
241
|
-
}
|
242
|
-
|
243
|
-
# 检查是否有任何显示的输入端口
|
244
|
-
has_shown_input_ports = False
|
245
|
-
|
246
|
-
# 找出所有连接的目标端口
|
247
|
-
connected_ports = {(edge.target, edge.target_handle) for edge in self.edges}
|
248
|
-
|
249
|
-
# 遍历所有节点
|
250
|
-
for node in self.nodes:
|
251
|
-
# 检查是否为输出节点
|
252
|
-
if hasattr(node, "category") and node.category == "outputs":
|
253
|
-
warnings["has_output_nodes"] = True
|
254
|
-
|
255
|
-
# 检查节点的输入端口
|
256
|
-
for port_name in node.ports.keys() if hasattr(node, "ports") else []:
|
257
|
-
port = node.ports.get(port_name)
|
258
|
-
# 确保是输入端口且设置为显示
|
259
|
-
if hasattr(port, "show") and getattr(port, "show", False) and isinstance(port, InputPort):
|
260
|
-
has_shown_input_ports = True
|
261
|
-
|
262
|
-
# 检查显示的端口是否也被连接
|
263
|
-
if (node.id, port_name) in connected_ports:
|
264
|
-
warnings["input_ports_shown_but_connected"].append(
|
265
|
-
{"node_id": node.id, "node_type": node.type, "port_name": port_name}
|
266
|
-
)
|
267
|
-
|
268
|
-
# 如果没有任何显示的输入端口
|
269
|
-
warnings["has_shown_input_ports"] = has_shown_input_ports
|
270
|
-
|
271
|
-
return warnings
|
272
|
-
|
273
122
|
def check(self) -> WorkflowCheckResult:
|
274
123
|
"""检查流程图的有效性。
|
275
124
|
|
276
125
|
Returns:
|
277
126
|
WorkflowCheckResult: 包含各种检查结果的字典
|
278
127
|
"""
|
279
|
-
dag_check = self
|
280
|
-
ui_check = self
|
128
|
+
dag_check = check_dag(self) # 检查流程图是否为有向无环图,并检测是否存在孤立节点。
|
129
|
+
ui_check = check_ui(self)
|
281
130
|
|
282
131
|
# 合并结果
|
283
|
-
result
|
132
|
+
result = dag_check
|
284
133
|
result["ui_warnings"] = ui_check
|
285
134
|
|
286
135
|
return result
|
@@ -0,0 +1,159 @@
|
|
1
|
+
from typing import TypedDict, TYPE_CHECKING
|
2
|
+
|
3
|
+
from ..graph.port import InputPort
|
4
|
+
|
5
|
+
if TYPE_CHECKING:
|
6
|
+
from ..graph.workflow import Workflow
|
7
|
+
|
8
|
+
|
9
|
+
class UIWarning(TypedDict, total=False):
|
10
|
+
"""UI警告类型。"""
|
11
|
+
|
12
|
+
input_ports_shown_but_connected: list[dict] # 显示的输入端口但被连接
|
13
|
+
has_shown_input_ports: bool # 是否存在显示的输入端口
|
14
|
+
has_output_nodes: bool # 是否存在输出节点
|
15
|
+
|
16
|
+
|
17
|
+
class WorkflowCheckResult(TypedDict, total=False):
|
18
|
+
"""工作流检查结果类型。"""
|
19
|
+
|
20
|
+
no_cycle: bool # 工作流是否不包含环
|
21
|
+
no_isolated_nodes: bool # 工作流是否不包含孤立节点
|
22
|
+
ui_warnings: UIWarning # UI相关警告
|
23
|
+
|
24
|
+
|
25
|
+
def check_dag(workflow: "Workflow") -> WorkflowCheckResult:
|
26
|
+
"""检查流程图是否为有向无环图,并检测是否存在孤立节点。
|
27
|
+
|
28
|
+
Returns:
|
29
|
+
WorkflowCheckResult: 包含检查结果的字典
|
30
|
+
- no_cycle (bool): 如果流程图是有向无环图返回 True,否则返回 False
|
31
|
+
- no_isolated_nodes (bool): 如果不存在孤立节点返回 True,否则返回 False
|
32
|
+
"""
|
33
|
+
result: WorkflowCheckResult = {"no_cycle": True, "no_isolated_nodes": True}
|
34
|
+
|
35
|
+
# 过滤掉触发器节点和辅助节点
|
36
|
+
trigger_nodes = [
|
37
|
+
node.id
|
38
|
+
for node in workflow.nodes
|
39
|
+
if hasattr(node, "category") and (node.category == "triggers" or node.category == "assistedNodes")
|
40
|
+
]
|
41
|
+
|
42
|
+
# 获取需要检查的节点和边
|
43
|
+
regular_nodes = [node.id for node in workflow.nodes if node.id not in trigger_nodes]
|
44
|
+
regular_edges = [
|
45
|
+
edge for edge in workflow.edges if edge.source not in trigger_nodes and edge.target not in trigger_nodes
|
46
|
+
]
|
47
|
+
|
48
|
+
# ---------- 检查有向图是否有环 ----------
|
49
|
+
# 构建邻接表
|
50
|
+
adjacency = {node_id: [] for node_id in regular_nodes}
|
51
|
+
for edge in regular_edges:
|
52
|
+
if edge.source in adjacency: # 确保节点在字典中
|
53
|
+
adjacency[edge.source].append(edge.target)
|
54
|
+
|
55
|
+
# 三种状态: 0 = 未访问, 1 = 正在访问, 2 = 已访问完成
|
56
|
+
visited = {node_id: 0 for node_id in regular_nodes}
|
57
|
+
|
58
|
+
def dfs_cycle_detection(node_id):
|
59
|
+
# 如果节点正在被访问,说明找到了环
|
60
|
+
if visited[node_id] == 1:
|
61
|
+
return False
|
62
|
+
|
63
|
+
# 如果节点已经访问完成,无需再次访问
|
64
|
+
if visited[node_id] == 2:
|
65
|
+
return True
|
66
|
+
|
67
|
+
# 标记为正在访问
|
68
|
+
visited[node_id] = 1
|
69
|
+
|
70
|
+
# 访问所有邻居
|
71
|
+
for neighbor in adjacency[node_id]:
|
72
|
+
if neighbor in visited and not dfs_cycle_detection(neighbor):
|
73
|
+
return False
|
74
|
+
|
75
|
+
# 标记为已访问完成
|
76
|
+
visited[node_id] = 2
|
77
|
+
return True
|
78
|
+
|
79
|
+
# 对每个未访问的节点进行 DFS 检测环
|
80
|
+
for node_id in regular_nodes:
|
81
|
+
if visited[node_id] == 0:
|
82
|
+
if not dfs_cycle_detection(node_id):
|
83
|
+
result["no_cycle"] = False
|
84
|
+
break
|
85
|
+
|
86
|
+
# ---------- 检查是否存在孤立节点 ----------
|
87
|
+
# 构建无向图邻接表
|
88
|
+
undirected_adjacency = {node_id: [] for node_id in regular_nodes}
|
89
|
+
for edge in regular_edges:
|
90
|
+
if edge.source in undirected_adjacency and edge.target in undirected_adjacency:
|
91
|
+
undirected_adjacency[edge.source].append(edge.target)
|
92
|
+
undirected_adjacency[edge.target].append(edge.source)
|
93
|
+
|
94
|
+
# 深度优先搜索来检测连通分量
|
95
|
+
undirected_visited = set()
|
96
|
+
|
97
|
+
def dfs_connected_components(node_id):
|
98
|
+
undirected_visited.add(node_id)
|
99
|
+
for neighbor in undirected_adjacency[node_id]:
|
100
|
+
if neighbor not in undirected_visited:
|
101
|
+
dfs_connected_components(neighbor)
|
102
|
+
|
103
|
+
# 计算连通分量数量
|
104
|
+
connected_components_count = 0
|
105
|
+
for node_id in regular_nodes:
|
106
|
+
if node_id not in undirected_visited:
|
107
|
+
connected_components_count += 1
|
108
|
+
dfs_connected_components(node_id)
|
109
|
+
|
110
|
+
# 如果连通分量数量大于1,说明存在孤立节点
|
111
|
+
if connected_components_count > 1 and len(regular_nodes) > 0:
|
112
|
+
result["no_isolated_nodes"] = False
|
113
|
+
|
114
|
+
return result
|
115
|
+
|
116
|
+
|
117
|
+
def check_ui(workflow: "Workflow") -> UIWarning:
|
118
|
+
"""
|
119
|
+
检查工作流的 UI 情况。
|
120
|
+
以下情况会警告:
|
121
|
+
1. 某个输入端口的 show=True,但是又有连线连接到该端口(实际运行时会被覆盖)。
|
122
|
+
2. 整个工作流没有任何输入端口是 show=True 的,说明没有让用户输入的地方。
|
123
|
+
3. 整个工作流没有任何输出节点,这样工作流结果无法呈现。
|
124
|
+
"""
|
125
|
+
warnings: UIWarning = {
|
126
|
+
"input_ports_shown_but_connected": [],
|
127
|
+
"has_shown_input_ports": False,
|
128
|
+
"has_output_nodes": False,
|
129
|
+
}
|
130
|
+
|
131
|
+
# 检查是否有任何显示的输入端口
|
132
|
+
has_shown_input_ports = False
|
133
|
+
|
134
|
+
# 找出所有连接的目标端口
|
135
|
+
connected_ports = {(edge.target, edge.target_handle) for edge in workflow.edges}
|
136
|
+
|
137
|
+
# 遍历所有节点
|
138
|
+
for node in workflow.nodes:
|
139
|
+
# 检查是否为输出节点
|
140
|
+
if hasattr(node, "category") and node.category == "outputs":
|
141
|
+
warnings["has_output_nodes"] = True
|
142
|
+
|
143
|
+
# 检查节点的输入端口
|
144
|
+
for port_name in node.ports.keys() if hasattr(node, "ports") else []:
|
145
|
+
port = node.ports.get(port_name)
|
146
|
+
# 确保是输入端口且设置为显示
|
147
|
+
if hasattr(port, "show") and getattr(port, "show", False) and isinstance(port, InputPort):
|
148
|
+
has_shown_input_ports = True
|
149
|
+
|
150
|
+
# 检查显示的端口是否也被连接
|
151
|
+
if (node.id, port_name) in connected_ports:
|
152
|
+
warnings["input_ports_shown_but_connected"].append(
|
153
|
+
{"node_id": node.id, "node_type": node.type, "port_name": port_name}
|
154
|
+
)
|
155
|
+
|
156
|
+
# 如果没有任何显示的输入端口
|
157
|
+
warnings["has_shown_input_ports"] = has_shown_input_ports
|
158
|
+
|
159
|
+
return warnings
|
@@ -1,6 +1,6 @@
|
|
1
|
-
vectorvein-0.2.
|
2
|
-
vectorvein-0.2.
|
3
|
-
vectorvein-0.2.
|
1
|
+
vectorvein-0.2.52.dist-info/METADATA,sha256=duh92n055q4yiufJHbzO9O1LFwwrxyhIWOkAkkbMgUw,4570
|
2
|
+
vectorvein-0.2.52.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
|
3
|
+
vectorvein-0.2.52.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
|
4
4
|
vectorvein/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
5
5
|
vectorvein/api/__init__.py,sha256=lfY-XA46fgD2iIZTU0VYP8i07AwA03Egj4Qua0vUKrQ,738
|
6
6
|
vectorvein/api/client.py,sha256=xF-leKDQzVyyy9FnIRaz0k4eElYW1XbbzeRLcpnyk90,33047
|
@@ -19,11 +19,11 @@ vectorvein/chat_clients/minimax_client.py,sha256=YOILWcsHsN5tihLTMbKJIyJr9TJREMI
|
|
19
19
|
vectorvein/chat_clients/mistral_client.py,sha256=1aKSylzBDaLYcFnaBIL4-sXSzWmXfBeON9Q0rq-ziWw,534
|
20
20
|
vectorvein/chat_clients/moonshot_client.py,sha256=gbu-6nGxx8uM_U2WlI4Wus881rFRotzHtMSoYOcruGU,526
|
21
21
|
vectorvein/chat_clients/openai_client.py,sha256=Nz6tV45pWcsOupxjnsRsGTicbQNJWIZyxuJoJ5DGMpg,527
|
22
|
-
vectorvein/chat_clients/openai_compatible_client.py,sha256=
|
22
|
+
vectorvein/chat_clients/openai_compatible_client.py,sha256=3MEyKqlf1BtzbNpmqAHQq0JcYwlWxEzM0pOn0XNauas,47999
|
23
23
|
vectorvein/chat_clients/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
24
24
|
vectorvein/chat_clients/qwen_client.py,sha256=-ryh-m9PgsO0fc4ulcCmPTy1155J8YUy15uPoJQOHA0,513
|
25
25
|
vectorvein/chat_clients/stepfun_client.py,sha256=zsD2W5ahmR4DD9cqQTXmJr3txrGuvxbRWhFlRdwNijI,519
|
26
|
-
vectorvein/chat_clients/utils.py,sha256=
|
26
|
+
vectorvein/chat_clients/utils.py,sha256=k9Y-sZvBSqZvWhN7oGIYeE7xV2cGRvgITB_DUtB04_4,29474
|
27
27
|
vectorvein/chat_clients/xai_client.py,sha256=eLFJJrNRJ-ni3DpshODcr3S1EJQLbhVwxyO1E54LaqM,491
|
28
28
|
vectorvein/chat_clients/yi_client.py,sha256=RNf4CRuPJfixrwLZ3-DEc3t25QDe1mvZeb9sku2f8Bc,484
|
29
29
|
vectorvein/chat_clients/zhipuai_client.py,sha256=Ys5DSeLCuedaDXr3PfG1EW2zKXopt-awO2IylWSwY0s,519
|
@@ -42,9 +42,9 @@ vectorvein/utilities/media_processing.py,sha256=7KtbLFzOYIn1e9QTN9G6C76NH8CBlV9k
|
|
42
42
|
vectorvein/utilities/rate_limiter.py,sha256=dwolIUVw2wP83Odqpx0AAaE77de1GzxkYDGH4tM_u_4,10300
|
43
43
|
vectorvein/utilities/retry.py,sha256=6KFS9R2HdhqM3_9jkjD4F36ZSpEx2YNFGOVlpOsUetM,2208
|
44
44
|
vectorvein/workflow/graph/edge.py,sha256=1ckyyjCue_PLm7P1ItUfKOy6AKkemOpZ9m1WJ8UXIHQ,1072
|
45
|
-
vectorvein/workflow/graph/node.py,sha256=
|
45
|
+
vectorvein/workflow/graph/node.py,sha256=6W9czon4JpWPcjwfN1B5-igEbifRsMemjGByZxa68RY,5047
|
46
46
|
vectorvein/workflow/graph/port.py,sha256=_QpHCBGAu657VhYAh0Wzjri3ZZ8-WYJp99J465mqmwo,6492
|
47
|
-
vectorvein/workflow/graph/workflow.py,sha256=
|
47
|
+
vectorvein/workflow/graph/workflow.py,sha256=W2ucuclAjtqjHOmvhLx1lWmFw1xMKMCKaYSV66NdDwo,5835
|
48
48
|
vectorvein/workflow/nodes/__init__.py,sha256=dWrWtL3q0Vsn-MLgJ7gNgLCrwZ5BrqjrN2QFPNeBMuc,3240
|
49
49
|
vectorvein/workflow/nodes/audio_generation.py,sha256=ZRFZ_ycMTSJ2LKmekctagQdJYTl-3q4TNOIKETpS9AM,5870
|
50
50
|
vectorvein/workflow/nodes/control_flows.py,sha256=l8CjFQlsGV3fNGM6SVzS1Kz361K1xDv1fGT7acuDXuU,6613
|
@@ -61,6 +61,7 @@ vectorvein/workflow/nodes/triggers.py,sha256=BolH4X6S8HSuU2kwHmYKr-ozHbgKBmdZRcn
|
|
61
61
|
vectorvein/workflow/nodes/vector_db.py,sha256=t6I17q6iR3yQreiDHpRrksMdWDPIvgqJs076z-7dlQQ,5712
|
62
62
|
vectorvein/workflow/nodes/video_generation.py,sha256=qmdg-t_idpxq1veukd-jv_ChICMOoInKxprV9Z4Vi2w,4118
|
63
63
|
vectorvein/workflow/nodes/web_crawlers.py,sha256=BhJBX1AZH7-22Gu95Ox4qJqmH5DU-m4dbUb5N5DTA-M,5559
|
64
|
+
vectorvein/workflow/utils/check.py,sha256=BJ-Di_6UROoeu_1KQB1AaBi0xdegSBT93VdB-RqI5eY,6085
|
64
65
|
vectorvein/workflow/utils/json_to_code.py,sha256=F7dhDy8kGc8ndOeihGLRLGFGlquoxVlb02ENtxnQ0C8,5914
|
65
66
|
vectorvein/workflow/utils/layout.py,sha256=j0bRD3uaXu40xCS6U6BGahBI8FrHa5MiF55GbTrZ1LM,4565
|
66
|
-
vectorvein-0.2.
|
67
|
+
vectorvein-0.2.52.dist-info/RECORD,,
|
File without changes
|
File without changes
|