vectorvein 0.2.49__py3-none-any.whl → 0.2.51__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -10,15 +10,13 @@ class PortsDict(Dict[str, Port]):
10
10
  def __init__(self, owner_node: "Node", *args, **kwargs):
11
11
  super().__init__(*args, **kwargs)
12
12
  self._owner_node = owner_node
13
- self._initializing = True # 初始化标志
13
+ self._initializing = True
14
14
 
15
15
  def __setitem__(self, key: str, value: Port) -> None:
16
- # 初始化阶段或端口已存在时,允许直接添加/更新
17
16
  if self._initializing or key in self:
18
17
  super().__setitem__(key, value)
19
18
  return
20
19
 
21
- # 对于新端口,检查添加权限
22
20
  if isinstance(value, OutputPort) and not self._owner_node.can_add_output_ports:
23
21
  raise ValueError(
24
22
  f"Node<{self._owner_node.id}> '{self._owner_node.type}' does not allow adding output ports"
@@ -58,13 +56,11 @@ class Node:
58
56
  self.description: str = description
59
57
  self.can_add_input_ports: bool = can_add_input_ports
60
58
  self.can_add_output_ports: bool = can_add_output_ports
61
- # 初始化自定义PortsDict
59
+
62
60
  self.ports = PortsDict(self)
63
- # 如果提供了初始端口,将它们添加到字典中
64
61
  if ports:
65
62
  for name, port in ports.items():
66
63
  self.ports[name] = port
67
- # 结束初始化阶段
68
64
  self.ports.finish_initialization()
69
65
 
70
66
  self.position: Dict[str, float] = position or {"x": 0, "y": 0}
@@ -1,25 +1,10 @@
1
1
  import json
2
- from typing import List, Union, TypedDict
2
+ from typing import List, Union, Dict, Any, Optional
3
3
 
4
4
  from .node import Node
5
5
  from .edge import Edge
6
- from .port import InputPort
7
-
8
-
9
- class UIWarning(TypedDict, total=False):
10
- """UI警告类型。"""
11
-
12
- input_ports_shown_but_connected: list[dict] # 显示的输入端口但被连接
13
- has_shown_input_ports: bool # 是否存在显示的输入端口
14
- has_output_nodes: bool # 是否存在输出节点
15
-
16
-
17
- class WorkflowCheckResult(TypedDict, total=False):
18
- """工作流检查结果类型。"""
19
-
20
- no_cycle: bool # 工作流是否不包含环
21
- no_isolated_nodes: bool # 工作流是否不包含孤立节点
22
- ui_warnings: UIWarning # UI相关警告
6
+ from ..utils.layout import layout
7
+ from ..utils.check import WorkflowCheckResult, check_dag, check_ui
23
8
 
24
9
 
25
10
  class Workflow:
@@ -134,152 +119,36 @@ class Workflow:
134
119
 
135
120
  return "\n".join(lines)
136
121
 
137
- def _check_dag(self) -> WorkflowCheckResult:
138
- """检查流程图是否为有向无环图,并检测是否存在孤立节点。
139
-
140
- Returns:
141
- WorkflowCheckResult: 包含检查结果的字典
142
- - no_cycle (bool): 如果流程图是有向无环图返回 True,否则返回 False
143
- - no_isolated_nodes (bool): 如果不存在孤立节点返回 True,否则返回 False
144
- """
145
- result: WorkflowCheckResult = {"no_cycle": True, "no_isolated_nodes": True}
146
-
147
- # 过滤掉触发器节点和辅助节点
148
- trigger_nodes = [
149
- node.id
150
- for node in self.nodes
151
- if hasattr(node, "category") and (node.category == "triggers" or node.category == "assistedNodes")
152
- ]
153
-
154
- # 获取需要检查的节点和边
155
- regular_nodes = [node.id for node in self.nodes if node.id not in trigger_nodes]
156
- regular_edges = [
157
- edge for edge in self.edges if edge.source not in trigger_nodes and edge.target not in trigger_nodes
158
- ]
159
-
160
- # ---------- 检查有向图是否有环 ----------
161
- # 构建邻接表
162
- adjacency = {node_id: [] for node_id in regular_nodes}
163
- for edge in regular_edges:
164
- if edge.source in adjacency: # 确保节点在字典中
165
- adjacency[edge.source].append(edge.target)
166
-
167
- # 三种状态: 0 = 未访问, 1 = 正在访问, 2 = 已访问完成
168
- visited = {node_id: 0 for node_id in regular_nodes}
169
-
170
- def dfs_cycle_detection(node_id):
171
- # 如果节点正在被访问,说明找到了环
172
- if visited[node_id] == 1:
173
- return False
174
-
175
- # 如果节点已经访问完成,无需再次访问
176
- if visited[node_id] == 2:
177
- return True
178
-
179
- # 标记为正在访问
180
- visited[node_id] = 1
181
-
182
- # 访问所有邻居
183
- for neighbor in adjacency[node_id]:
184
- if neighbor in visited and not dfs_cycle_detection(neighbor):
185
- return False
186
-
187
- # 标记为已访问完成
188
- visited[node_id] = 2
189
- return True
190
-
191
- # 对每个未访问的节点进行 DFS 检测环
192
- for node_id in regular_nodes:
193
- if visited[node_id] == 0:
194
- if not dfs_cycle_detection(node_id):
195
- result["no_cycle"] = False
196
- break
197
-
198
- # ---------- 检查是否存在孤立节点 ----------
199
- # 构建无向图邻接表
200
- undirected_adjacency = {node_id: [] for node_id in regular_nodes}
201
- for edge in regular_edges:
202
- if edge.source in undirected_adjacency and edge.target in undirected_adjacency:
203
- undirected_adjacency[edge.source].append(edge.target)
204
- undirected_adjacency[edge.target].append(edge.source)
205
-
206
- # 深度优先搜索来检测连通分量
207
- undirected_visited = set()
208
-
209
- def dfs_connected_components(node_id):
210
- undirected_visited.add(node_id)
211
- for neighbor in undirected_adjacency[node_id]:
212
- if neighbor not in undirected_visited:
213
- dfs_connected_components(neighbor)
214
-
215
- # 计算连通分量数量
216
- connected_components_count = 0
217
- for node_id in regular_nodes:
218
- if node_id not in undirected_visited:
219
- connected_components_count += 1
220
- dfs_connected_components(node_id)
221
-
222
- # 如果连通分量数量大于1,说明存在孤立节点
223
- if connected_components_count > 1 and len(regular_nodes) > 0:
224
- result["no_isolated_nodes"] = False
225
-
226
- return result
227
-
228
- def _check_ui(self) -> UIWarning:
229
- """
230
- 检查工作流的 UI 情况。
231
- 以下情况会警告:
232
- 1. 某个输入端口的 show=True,但是又有连线连接到该端口(实际运行时会被覆盖)。
233
- 2. 整个工作流没有任何输入端口是 show=True 的,说明没有让用户输入的地方。
234
- 3. 整个工作流没有任何输出节点,这样工作流结果无法呈现。
235
- """
236
- warnings: UIWarning = {
237
- "input_ports_shown_but_connected": [],
238
- "has_shown_input_ports": False,
239
- "has_output_nodes": False,
240
- }
241
-
242
- # 检查是否有任何显示的输入端口
243
- has_shown_input_ports = False
244
-
245
- # 找出所有连接的目标端口
246
- connected_ports = {(edge.target, edge.target_handle) for edge in self.edges}
247
-
248
- # 遍历所有节点
249
- for node in self.nodes:
250
- # 检查是否为输出节点
251
- if hasattr(node, "category") and node.category == "outputs":
252
- warnings["has_output_nodes"] = True
253
-
254
- # 检查节点的输入端口
255
- for port_name in node.ports.keys() if hasattr(node, "ports") else []:
256
- port = node.ports.get(port_name)
257
- # 确保是输入端口且设置为显示
258
- if hasattr(port, "show") and getattr(port, "show", False) and isinstance(port, InputPort):
259
- has_shown_input_ports = True
260
-
261
- # 检查显示的端口是否也被连接
262
- if (node.id, port_name) in connected_ports:
263
- warnings["input_ports_shown_but_connected"].append(
264
- {"node_id": node.id, "node_type": node.type, "port_name": port_name}
265
- )
266
-
267
- # 如果没有任何显示的输入端口
268
- warnings["has_shown_input_ports"] = has_shown_input_ports
269
-
270
- return warnings
271
-
272
122
  def check(self) -> WorkflowCheckResult:
273
123
  """检查流程图的有效性。
274
124
 
275
125
  Returns:
276
126
  WorkflowCheckResult: 包含各种检查结果的字典
277
127
  """
278
- dag_check = self._check_dag()
279
- ui_check = self._check_ui()
128
+ dag_check = check_dag(self) # 检查流程图是否为有向无环图,并检测是否存在孤立节点。
129
+ ui_check = check_ui(self)
280
130
 
281
131
  # 合并结果
282
- result: WorkflowCheckResult = dag_check
132
+ result = dag_check
283
133
  result["ui_warnings"] = ui_check
284
134
 
285
135
  return result
136
+
137
+ def layout(self, options: Optional[Dict[str, Any]] = None) -> "Workflow":
138
+ """对工作流中的节点进行自动布局,计算并更新每个节点的位置。
139
+
140
+ 此方法实现了一个简单的分层布局算法,将节点按照有向图的拓扑结构进行排列。
141
+
142
+ Args:
143
+ options: 布局选项,包括:
144
+ - direction: 布局方向 ('TB', 'BT', 'LR', 'RL'),默认 'LR'
145
+ - node_spacing: 同一层级节点间的间距,默认 500
146
+ - layer_spacing: 不同层级间的间距,默认 400
147
+ - margin_x: 图形左右边距,默认 20
148
+ - margin_y: 图形上下边距,默认 20
149
+
150
+ Returns:
151
+ 布局后的工作流对象
152
+ """
153
+ layout(self.nodes, self.edges, options)
154
+ return self
@@ -0,0 +1,159 @@
1
+ from typing import TypedDict, TYPE_CHECKING
2
+
3
+ from ..graph.port import InputPort
4
+
5
+ if TYPE_CHECKING:
6
+ from ..graph.workflow import Workflow
7
+
8
+
9
+ class UIWarning(TypedDict, total=False):
10
+ """UI警告类型。"""
11
+
12
+ input_ports_shown_but_connected: list[dict] # 显示的输入端口但被连接
13
+ has_shown_input_ports: bool # 是否存在显示的输入端口
14
+ has_output_nodes: bool # 是否存在输出节点
15
+
16
+
17
+ class WorkflowCheckResult(TypedDict, total=False):
18
+ """工作流检查结果类型。"""
19
+
20
+ no_cycle: bool # 工作流是否不包含环
21
+ no_isolated_nodes: bool # 工作流是否不包含孤立节点
22
+ ui_warnings: UIWarning # UI相关警告
23
+
24
+
25
+ def check_dag(workflow: "Workflow") -> WorkflowCheckResult:
26
+ """检查流程图是否为有向无环图,并检测是否存在孤立节点。
27
+
28
+ Returns:
29
+ WorkflowCheckResult: 包含检查结果的字典
30
+ - no_cycle (bool): 如果流程图是有向无环图返回 True,否则返回 False
31
+ - no_isolated_nodes (bool): 如果不存在孤立节点返回 True,否则返回 False
32
+ """
33
+ result: WorkflowCheckResult = {"no_cycle": True, "no_isolated_nodes": True}
34
+
35
+ # 过滤掉触发器节点和辅助节点
36
+ trigger_nodes = [
37
+ node.id
38
+ for node in workflow.nodes
39
+ if hasattr(node, "category") and (node.category == "triggers" or node.category == "assistedNodes")
40
+ ]
41
+
42
+ # 获取需要检查的节点和边
43
+ regular_nodes = [node.id for node in workflow.nodes if node.id not in trigger_nodes]
44
+ regular_edges = [
45
+ edge for edge in workflow.edges if edge.source not in trigger_nodes and edge.target not in trigger_nodes
46
+ ]
47
+
48
+ # ---------- 检查有向图是否有环 ----------
49
+ # 构建邻接表
50
+ adjacency = {node_id: [] for node_id in regular_nodes}
51
+ for edge in regular_edges:
52
+ if edge.source in adjacency: # 确保节点在字典中
53
+ adjacency[edge.source].append(edge.target)
54
+
55
+ # 三种状态: 0 = 未访问, 1 = 正在访问, 2 = 已访问完成
56
+ visited = {node_id: 0 for node_id in regular_nodes}
57
+
58
+ def dfs_cycle_detection(node_id):
59
+ # 如果节点正在被访问,说明找到了环
60
+ if visited[node_id] == 1:
61
+ return False
62
+
63
+ # 如果节点已经访问完成,无需再次访问
64
+ if visited[node_id] == 2:
65
+ return True
66
+
67
+ # 标记为正在访问
68
+ visited[node_id] = 1
69
+
70
+ # 访问所有邻居
71
+ for neighbor in adjacency[node_id]:
72
+ if neighbor in visited and not dfs_cycle_detection(neighbor):
73
+ return False
74
+
75
+ # 标记为已访问完成
76
+ visited[node_id] = 2
77
+ return True
78
+
79
+ # 对每个未访问的节点进行 DFS 检测环
80
+ for node_id in regular_nodes:
81
+ if visited[node_id] == 0:
82
+ if not dfs_cycle_detection(node_id):
83
+ result["no_cycle"] = False
84
+ break
85
+
86
+ # ---------- 检查是否存在孤立节点 ----------
87
+ # 构建无向图邻接表
88
+ undirected_adjacency = {node_id: [] for node_id in regular_nodes}
89
+ for edge in regular_edges:
90
+ if edge.source in undirected_adjacency and edge.target in undirected_adjacency:
91
+ undirected_adjacency[edge.source].append(edge.target)
92
+ undirected_adjacency[edge.target].append(edge.source)
93
+
94
+ # 深度优先搜索来检测连通分量
95
+ undirected_visited = set()
96
+
97
+ def dfs_connected_components(node_id):
98
+ undirected_visited.add(node_id)
99
+ for neighbor in undirected_adjacency[node_id]:
100
+ if neighbor not in undirected_visited:
101
+ dfs_connected_components(neighbor)
102
+
103
+ # 计算连通分量数量
104
+ connected_components_count = 0
105
+ for node_id in regular_nodes:
106
+ if node_id not in undirected_visited:
107
+ connected_components_count += 1
108
+ dfs_connected_components(node_id)
109
+
110
+ # 如果连通分量数量大于1,说明存在孤立节点
111
+ if connected_components_count > 1 and len(regular_nodes) > 0:
112
+ result["no_isolated_nodes"] = False
113
+
114
+ return result
115
+
116
+
117
+ def check_ui(workflow: "Workflow") -> UIWarning:
118
+ """
119
+ 检查工作流的 UI 情况。
120
+ 以下情况会警告:
121
+ 1. 某个输入端口的 show=True,但是又有连线连接到该端口(实际运行时会被覆盖)。
122
+ 2. 整个工作流没有任何输入端口是 show=True 的,说明没有让用户输入的地方。
123
+ 3. 整个工作流没有任何输出节点,这样工作流结果无法呈现。
124
+ """
125
+ warnings: UIWarning = {
126
+ "input_ports_shown_but_connected": [],
127
+ "has_shown_input_ports": False,
128
+ "has_output_nodes": False,
129
+ }
130
+
131
+ # 检查是否有任何显示的输入端口
132
+ has_shown_input_ports = False
133
+
134
+ # 找出所有连接的目标端口
135
+ connected_ports = {(edge.target, edge.target_handle) for edge in workflow.edges}
136
+
137
+ # 遍历所有节点
138
+ for node in workflow.nodes:
139
+ # 检查是否为输出节点
140
+ if hasattr(node, "category") and node.category == "outputs":
141
+ warnings["has_output_nodes"] = True
142
+
143
+ # 检查节点的输入端口
144
+ for port_name in node.ports.keys() if hasattr(node, "ports") else []:
145
+ port = node.ports.get(port_name)
146
+ # 确保是输入端口且设置为显示
147
+ if hasattr(port, "show") and getattr(port, "show", False) and isinstance(port, InputPort):
148
+ has_shown_input_ports = True
149
+
150
+ # 检查显示的端口是否也被连接
151
+ if (node.id, port_name) in connected_ports:
152
+ warnings["input_ports_shown_but_connected"].append(
153
+ {"node_id": node.id, "node_type": node.type, "port_name": port_name}
154
+ )
155
+
156
+ # 如果没有任何显示的输入端口
157
+ warnings["has_shown_input_ports"] = has_shown_input_ports
158
+
159
+ return warnings
@@ -0,0 +1,114 @@
1
+ from typing import Optional, Dict, Any, List, TYPE_CHECKING
2
+
3
+
4
+ if TYPE_CHECKING:
5
+ from vectorvein.workflow.graph.node import Node
6
+ from vectorvein.workflow.graph.edge import Edge
7
+
8
+
9
+ def layout(nodes: List["Node"], edges: List["Edge"], options: Optional[Dict[str, Any]] = None):
10
+ """对工作流中的节点进行自动布局,计算并更新每个节点的位置。
11
+
12
+ 此方法实现了一个简单的分层布局算法,将节点按照有向图的拓扑结构进行排列。
13
+
14
+ Args:
15
+ options: 布局选项,包括:
16
+ - direction: 布局方向 ('TB', 'BT', 'LR', 'RL'),默认 'TB'
17
+ - node_spacing: 同一层级节点间的间距,默认 150
18
+ - layer_spacing: 不同层级间的间距,默认 100
19
+ - margin_x: 图形左右边距,默认 20
20
+ - margin_y: 图形上下边距,默认 20
21
+
22
+ Returns:
23
+ 布局后的工作流对象
24
+ """
25
+ # 设置默认选项
26
+ default_options = {
27
+ "direction": "LR", # 从上到下的布局
28
+ "node_spacing": 400, # 同一层级节点间的间距
29
+ "layer_spacing": 500, # 不同层级间的间距
30
+ "margin_x": 20, # 图形左右边距
31
+ "margin_y": 20, # 图形上下边距
32
+ }
33
+
34
+ # 合并用户提供的选项
35
+ if options:
36
+ default_options.update(options)
37
+
38
+ # 构建邻接表
39
+ adjacency = {node.id: [] for node in nodes}
40
+ in_degree = {node.id: 0 for node in nodes}
41
+
42
+ for edge in edges:
43
+ if edge.source in adjacency:
44
+ adjacency[edge.source].append(edge.target)
45
+ in_degree[edge.target] = in_degree.get(edge.target, 0) + 1
46
+
47
+ # 找出所有入度为0的节点(根节点)
48
+ roots = [node_id for node_id, degree in in_degree.items() if degree == 0]
49
+
50
+ # 如果没有根节点,选择第一个节点作为起点
51
+ if not roots and nodes:
52
+ roots = [nodes[0].id]
53
+
54
+ # 按层级排列节点
55
+ layers = []
56
+ visited = set()
57
+
58
+ current_layer = roots
59
+ while current_layer:
60
+ layers.append(current_layer)
61
+ next_layer = []
62
+ for node_id in current_layer:
63
+ visited.add(node_id)
64
+ for neighbor in adjacency.get(node_id, []):
65
+ if neighbor not in visited and all(
66
+ parent in visited for parent in [e.source for e in edges if e.target == neighbor]
67
+ ):
68
+ next_layer.append(neighbor)
69
+ current_layer = next_layer
70
+
71
+ # 还有未访问的节点(可能是孤立节点或环的一部分)
72
+ remaining = [node.id for node in nodes if node.id not in visited]
73
+ if remaining:
74
+ layers.append(remaining)
75
+
76
+ # 根据层级信息设置节点位置
77
+ layer_spacing = default_options["layer_spacing"]
78
+ node_spacing = default_options["node_spacing"]
79
+ margin_x = default_options["margin_x"]
80
+ margin_y = default_options["margin_y"]
81
+
82
+ # 布局方向
83
+ is_vertical = default_options["direction"] in ["TB", "BT"]
84
+ is_reversed = default_options["direction"] in ["BT", "RL"]
85
+
86
+ for layer_idx, layer in enumerate(layers):
87
+ for node_idx, node_id in enumerate(layer):
88
+ # 根据布局方向计算位置
89
+ if is_vertical:
90
+ # 垂直布局 (TB 或 BT)
91
+ x = node_idx * node_spacing + margin_x
92
+ y = layer_idx * layer_spacing + margin_y
93
+ if is_reversed: # BT 布局需要反转 y 坐标
94
+ y = (len(layers) - 1 - layer_idx) * layer_spacing + margin_y
95
+ else:
96
+ # 水平布局 (LR 或 RL)
97
+ x = layer_idx * layer_spacing + margin_x
98
+ y = node_idx * node_spacing + margin_y
99
+ if is_reversed: # RL 布局需要反转 x 坐标
100
+ x = (len(layers) - 1 - layer_idx) * layer_spacing + margin_x
101
+
102
+ # 找到节点对象并设置位置
103
+ for node in nodes:
104
+ if node.id == node_id:
105
+ # 确保节点有 position 属性
106
+ if not hasattr(node, "position"):
107
+ node.position = {"x": x, "y": y}
108
+ else:
109
+ # 如果已经有 position 属性,更新它
110
+ if isinstance(node.position, dict):
111
+ node.position.update({"x": x, "y": y})
112
+ else:
113
+ node.position = {"x": x, "y": y}
114
+ break
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: vectorvein
3
- Version: 0.2.49
3
+ Version: 0.2.51
4
4
  Summary: VectorVein Python SDK
5
5
  Author-Email: Anderson <andersonby@163.com>
6
6
  License: MIT
@@ -1,6 +1,6 @@
1
- vectorvein-0.2.49.dist-info/METADATA,sha256=uVJ6y78HdLXEXH_RZx9jbM8NlQrGHN4klzbxog1PAvs,4570
2
- vectorvein-0.2.49.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
3
- vectorvein-0.2.49.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
1
+ vectorvein-0.2.51.dist-info/METADATA,sha256=N4nBBY1TFDSERO5aA57Gys1IGVCcZYGqtML8KRVMjdY,4570
2
+ vectorvein-0.2.51.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
3
+ vectorvein-0.2.51.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
4
4
  vectorvein/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
5
  vectorvein/api/__init__.py,sha256=lfY-XA46fgD2iIZTU0VYP8i07AwA03Egj4Qua0vUKrQ,738
6
6
  vectorvein/api/client.py,sha256=xF-leKDQzVyyy9FnIRaz0k4eElYW1XbbzeRLcpnyk90,33047
@@ -42,9 +42,9 @@ vectorvein/utilities/media_processing.py,sha256=7KtbLFzOYIn1e9QTN9G6C76NH8CBlV9k
42
42
  vectorvein/utilities/rate_limiter.py,sha256=dwolIUVw2wP83Odqpx0AAaE77de1GzxkYDGH4tM_u_4,10300
43
43
  vectorvein/utilities/retry.py,sha256=6KFS9R2HdhqM3_9jkjD4F36ZSpEx2YNFGOVlpOsUetM,2208
44
44
  vectorvein/workflow/graph/edge.py,sha256=1ckyyjCue_PLm7P1ItUfKOy6AKkemOpZ9m1WJ8UXIHQ,1072
45
- vectorvein/workflow/graph/node.py,sha256=U3LAq01wOaDANVUuYWc2BhIq-Pl2-33FirJZkkNL_wA,5329
45
+ vectorvein/workflow/graph/node.py,sha256=6W9czon4JpWPcjwfN1B5-igEbifRsMemjGByZxa68RY,5047
46
46
  vectorvein/workflow/graph/port.py,sha256=_QpHCBGAu657VhYAh0Wzjri3ZZ8-WYJp99J465mqmwo,6492
47
- vectorvein/workflow/graph/workflow.py,sha256=jDa8dedgtW39Gx0PrqgYrs7XQ_NfQbhgGge88xElksI,11159
47
+ vectorvein/workflow/graph/workflow.py,sha256=W2ucuclAjtqjHOmvhLx1lWmFw1xMKMCKaYSV66NdDwo,5835
48
48
  vectorvein/workflow/nodes/__init__.py,sha256=dWrWtL3q0Vsn-MLgJ7gNgLCrwZ5BrqjrN2QFPNeBMuc,3240
49
49
  vectorvein/workflow/nodes/audio_generation.py,sha256=ZRFZ_ycMTSJ2LKmekctagQdJYTl-3q4TNOIKETpS9AM,5870
50
50
  vectorvein/workflow/nodes/control_flows.py,sha256=l8CjFQlsGV3fNGM6SVzS1Kz361K1xDv1fGT7acuDXuU,6613
@@ -61,5 +61,7 @@ vectorvein/workflow/nodes/triggers.py,sha256=BolH4X6S8HSuU2kwHmYKr-ozHbgKBmdZRcn
61
61
  vectorvein/workflow/nodes/vector_db.py,sha256=t6I17q6iR3yQreiDHpRrksMdWDPIvgqJs076z-7dlQQ,5712
62
62
  vectorvein/workflow/nodes/video_generation.py,sha256=qmdg-t_idpxq1veukd-jv_ChICMOoInKxprV9Z4Vi2w,4118
63
63
  vectorvein/workflow/nodes/web_crawlers.py,sha256=BhJBX1AZH7-22Gu95Ox4qJqmH5DU-m4dbUb5N5DTA-M,5559
64
+ vectorvein/workflow/utils/check.py,sha256=BJ-Di_6UROoeu_1KQB1AaBi0xdegSBT93VdB-RqI5eY,6085
64
65
  vectorvein/workflow/utils/json_to_code.py,sha256=F7dhDy8kGc8ndOeihGLRLGFGlquoxVlb02ENtxnQ0C8,5914
65
- vectorvein-0.2.49.dist-info/RECORD,,
66
+ vectorvein/workflow/utils/layout.py,sha256=j0bRD3uaXu40xCS6U6BGahBI8FrHa5MiF55GbTrZ1LM,4565
67
+ vectorvein-0.2.51.dist-info/RECORD,,