vectorvein 0.2.24__py3-none-any.whl → 0.2.25__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,10 +1,17 @@
1
1
  import json
2
- from typing import List, Union
2
+ from typing import List, Union, TypedDict
3
3
 
4
4
  from .node import Node
5
5
  from .edge import Edge
6
6
 
7
7
 
8
+ class WorkflowCheckResult(TypedDict):
9
+ """工作流检查结果类型。"""
10
+
11
+ no_cycle: bool # 工作流是否不包含环
12
+ no_isolated_nodes: bool # 工作流是否不包含孤立节点
13
+
14
+
8
15
  class Workflow:
9
16
  def __init__(self) -> None:
10
17
  self.nodes: List[Node] = []
@@ -109,3 +116,102 @@ class Workflow:
109
116
  lines.append(f" {source_label} -->|{label}| {target_label}")
110
117
 
111
118
  return "\n".join(lines)
119
+
120
+ def _check_dag(self) -> WorkflowCheckResult:
121
+ """检查流程图是否为有向无环图,并检测是否存在孤立节点。
122
+
123
+ Returns:
124
+ WorkflowCheckResult: 包含检查结果的字典
125
+ - no_cycle (bool): 如果流程图是有向无环图返回 True,否则返回 False
126
+ - no_isolated_nodes (bool): 如果不存在孤立节点返回 True,否则返回 False
127
+ """
128
+ result: WorkflowCheckResult = {"no_cycle": True, "no_isolated_nodes": True}
129
+
130
+ # 过滤掉触发器节点和辅助节点
131
+ trigger_nodes = [
132
+ node.id
133
+ for node in self.nodes
134
+ if hasattr(node, "category") and (node.category == "triggers" or node.category == "assistedNodes")
135
+ ]
136
+
137
+ # 获取需要检查的节点和边
138
+ regular_nodes = [node.id for node in self.nodes if node.id not in trigger_nodes]
139
+ regular_edges = [
140
+ edge for edge in self.edges if edge.source not in trigger_nodes and edge.target not in trigger_nodes
141
+ ]
142
+
143
+ # ---------- 检查有向图是否有环 ----------
144
+ # 构建邻接表
145
+ adjacency = {node_id: [] for node_id in regular_nodes}
146
+ for edge in regular_edges:
147
+ if edge.source in adjacency: # 确保节点在字典中
148
+ adjacency[edge.source].append(edge.target)
149
+
150
+ # 三种状态: 0 = 未访问, 1 = 正在访问, 2 = 已访问完成
151
+ visited = {node_id: 0 for node_id in regular_nodes}
152
+
153
+ def dfs_cycle_detection(node_id):
154
+ # 如果节点正在被访问,说明找到了环
155
+ if visited[node_id] == 1:
156
+ return False
157
+
158
+ # 如果节点已经访问完成,无需再次访问
159
+ if visited[node_id] == 2:
160
+ return True
161
+
162
+ # 标记为正在访问
163
+ visited[node_id] = 1
164
+
165
+ # 访问所有邻居
166
+ for neighbor in adjacency[node_id]:
167
+ if neighbor in visited and not dfs_cycle_detection(neighbor):
168
+ return False
169
+
170
+ # 标记为已访问完成
171
+ visited[node_id] = 2
172
+ return True
173
+
174
+ # 对每个未访问的节点进行 DFS 检测环
175
+ for node_id in regular_nodes:
176
+ if visited[node_id] == 0:
177
+ if not dfs_cycle_detection(node_id):
178
+ result["no_cycle"] = False
179
+ break
180
+
181
+ # ---------- 检查是否存在孤立节点 ----------
182
+ # 构建无向图邻接表
183
+ undirected_adjacency = {node_id: [] for node_id in regular_nodes}
184
+ for edge in regular_edges:
185
+ if edge.source in undirected_adjacency and edge.target in undirected_adjacency:
186
+ undirected_adjacency[edge.source].append(edge.target)
187
+ undirected_adjacency[edge.target].append(edge.source)
188
+
189
+ # 深度优先搜索来检测连通分量
190
+ undirected_visited = set()
191
+
192
+ def dfs_connected_components(node_id):
193
+ undirected_visited.add(node_id)
194
+ for neighbor in undirected_adjacency[node_id]:
195
+ if neighbor not in undirected_visited:
196
+ dfs_connected_components(neighbor)
197
+
198
+ # 计算连通分量数量
199
+ connected_components_count = 0
200
+ for node_id in regular_nodes:
201
+ if node_id not in undirected_visited:
202
+ connected_components_count += 1
203
+ dfs_connected_components(node_id)
204
+
205
+ # 如果连通分量数量大于1,说明存在孤立节点
206
+ if connected_components_count > 1 and len(regular_nodes) > 0:
207
+ result["no_isolated_nodes"] = False
208
+
209
+ return result
210
+
211
+ def check(self) -> WorkflowCheckResult:
212
+ """检查流程图的有效性。
213
+
214
+ Returns:
215
+ WorkflowCheckResult: 包含各种检查结果的字典
216
+ """
217
+ return self._check_dag()
@@ -292,6 +292,8 @@ class Claude(Node):
292
292
  port_type=PortType.SELECT,
293
293
  value="claude-3-5-haiku",
294
294
  options=[
295
+ {"value": "claude-3-7-sonnet-thinking", "label": "claude-3-7-sonnet-thinking"},
296
+ {"value": "claude-3-7-sonnet", "label": "claude-3-7-sonnet"},
295
297
  {"value": "claude-3-5-sonnet", "label": "claude-3-5-sonnet"},
296
298
  {"value": "claude-3-5-haiku", "label": "claude-3-5-haiku"},
297
299
  {"value": "claude-3-opus", "label": "claude-3-opus"},
@@ -338,8 +340,8 @@ class Deepseek(Node):
338
340
  value="deepseek-chat",
339
341
  options=[
340
342
  {"value": "deepseek-chat", "label": "deepseek-chat"},
341
- {"value": "deepseek-reasoner", "label": "deepseek-reasoner"},
342
- {"value": "deepseek-32k", "label": "deepseek-32k"},
343
+ {"value": "deepseek-reasoner", "label": "deepseek-r1"},
344
+ {"value": "deepseek-r1-distill-qwen-32b", "label": "deepseek-r1-distill-qwen-32b"},
343
345
  ],
344
346
  ),
345
347
  "temperature": InputPort(
@@ -523,12 +525,10 @@ class LingYiWanWu(Node):
523
525
  port_type=PortType.SELECT,
524
526
  value="yi-lightning",
525
527
  options=[
526
- {"value": "yi-lightning", "label": "yi-lightning"},
527
- {"value": "yi-large", "label": "yi-large"},
528
- {"value": "yi-large-turbo", "label": "yi-large-turbo"},
529
- {"value": "yi-medium", "label": "yi-medium"},
530
- {"value": "yi-medium-200k", "label": "yi-medium-200k"},
531
- {"value": "yi-spark", "label": "yi-spark"},
528
+ {
529
+ "value": "yi-lightning",
530
+ "label": "yi-lightning",
531
+ },
532
532
  ],
533
533
  ),
534
534
  "temperature": InputPort(
@@ -746,6 +746,7 @@ class OpenAI(Node):
746
746
  {"value": "gpt-4o-mini", "label": "gpt-4o-mini"},
747
747
  {"value": "o1-mini", "label": "o1-mini"},
748
748
  {"value": "o1-preview", "label": "o1-preview"},
749
+ {"value": "o3-mini", "label": "o3-mini"},
749
750
  ],
750
751
  ),
751
752
  "temperature": InputPort(
@@ -893,3 +894,91 @@ class XAi(Node):
893
894
  ),
894
895
  },
895
896
  )
897
+
898
+
899
+ class CustomModel(Node):
900
+ def __init__(self, id: Optional[str] = None):
901
+ super().__init__(
902
+ node_type="CustomModel",
903
+ category="llms",
904
+ task_name="llms.custom_model",
905
+ node_id=id,
906
+ ports={
907
+ "prompt": InputPort(
908
+ name="prompt",
909
+ port_type=PortType.TEXTAREA,
910
+ value="",
911
+ ),
912
+ "model_family": InputPort(
913
+ name="model_family",
914
+ port_type=PortType.SELECT,
915
+ value="",
916
+ options=[],
917
+ ),
918
+ "llm_model": InputPort(
919
+ name="llm_model",
920
+ port_type=PortType.SELECT,
921
+ value="",
922
+ options=[],
923
+ ),
924
+ "temperature": InputPort(
925
+ name="temperature",
926
+ port_type=PortType.TEMPERATURE,
927
+ value=0.7,
928
+ ),
929
+ "top_p": InputPort(
930
+ name="top_p",
931
+ port_type=PortType.NUMBER,
932
+ value=0.95,
933
+ ),
934
+ "stream": InputPort(
935
+ name="stream",
936
+ port_type=PortType.CHECKBOX,
937
+ value=False,
938
+ ),
939
+ "system_prompt": InputPort(
940
+ name="system_prompt",
941
+ port_type=PortType.TEXTAREA,
942
+ value="",
943
+ ),
944
+ "response_format": InputPort(
945
+ name="response_format",
946
+ port_type=PortType.SELECT,
947
+ value="text",
948
+ options=[
949
+ {"value": "text", "label": "Text"},
950
+ {"value": "json_object", "label": "JSON"},
951
+ ],
952
+ ),
953
+ "use_function_call": InputPort(
954
+ name="use_function_call",
955
+ port_type=PortType.CHECKBOX,
956
+ value=False,
957
+ ),
958
+ "functions": InputPort(
959
+ name="functions",
960
+ port_type=PortType.SELECT,
961
+ value=[],
962
+ ),
963
+ "function_call_mode": InputPort(
964
+ name="function_call_mode",
965
+ port_type=PortType.SELECT,
966
+ value="auto",
967
+ options=[
968
+ {"value": "auto", "label": "auto"},
969
+ {"value": "none", "label": "none"},
970
+ ],
971
+ ),
972
+ "output": OutputPort(
973
+ name="output",
974
+ ),
975
+ "function_call_output": OutputPort(
976
+ name="function_call_output",
977
+ condition="return fieldsData.use_function_call.value",
978
+ ),
979
+ "function_call_arguments": OutputPort(
980
+ name="function_call_arguments",
981
+ condition="return fieldsData.use_function_call.value",
982
+ ),
983
+ },
984
+ )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: vectorvein
3
- Version: 0.2.24
3
+ Version: 0.2.25
4
4
  Summary: VectorVein Python SDK
5
5
  Author-Email: Anderson <andersonby@163.com>
6
6
  License: MIT
@@ -1,6 +1,6 @@
1
- vectorvein-0.2.24.dist-info/METADATA,sha256=Vq9TrFThHAi0HNPZxp4-JuEjGB7vgMSbf2hOZNJXRXQ,4570
2
- vectorvein-0.2.24.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
3
- vectorvein-0.2.24.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
1
+ vectorvein-0.2.25.dist-info/METADATA,sha256=Q5GwQcPe2_hMU26jkaFftOxDlEkbYEPN-vw6KvImgRQ,4570
2
+ vectorvein-0.2.25.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
3
+ vectorvein-0.2.25.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
4
4
  vectorvein/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
5
  vectorvein/api/__init__.py,sha256=lfY-XA46fgD2iIZTU0VYP8i07AwA03Egj4Qua0vUKrQ,738
6
6
  vectorvein/api/client.py,sha256=xF-leKDQzVyyy9FnIRaz0k4eElYW1XbbzeRLcpnyk90,33047
@@ -44,13 +44,13 @@ vectorvein/utilities/retry.py,sha256=6KFS9R2HdhqM3_9jkjD4F36ZSpEx2YNFGOVlpOsUetM
44
44
  vectorvein/workflow/graph/edge.py,sha256=xLZEJmBjAfVB53cd7CuRcKhgE6QqXv9nz32wJn8cmyk,1064
45
45
  vectorvein/workflow/graph/node.py,sha256=A3M_GghrSju1D3xc_HtPdGyr-7XSkplGPKJveOUiIF4,3256
46
46
  vectorvein/workflow/graph/port.py,sha256=Q6HmI2cUi6viJ98ec6-MmMPMRtKS1-OgaudP3LMwVLA,6054
47
- vectorvein/workflow/graph/workflow.py,sha256=uh8JzTbvaucKryvFUj3nAswtdOtaOw2Z4YfD9Q6r77s,3973
47
+ vectorvein/workflow/graph/workflow.py,sha256=XIoCHfJBNLEvdNf1xDur10o4cjAvhuqy2SjRLvRip1M,8200
48
48
  vectorvein/workflow/nodes/__init__.py,sha256=jd4O27kIJdOtkij1FYZ6aJnJy2OQa7xtL1r-Yv8ylO0,3103
49
49
  vectorvein/workflow/nodes/audio_generation.py,sha256=ht2S0vnd0mIAt6FBaSWlADGbb7f_1DAySYrgYnvZT1Q,5726
50
50
  vectorvein/workflow/nodes/control_flows.py,sha256=Zc_uWuroYznLrU-BZCncyzvejC-zFl6EuN_VP8oq5mY,6573
51
51
  vectorvein/workflow/nodes/file_processing.py,sha256=Rsjc8al0z-2KuweO0nIybWvceqxbqOPQyTs0-pgy5m4,3980
52
52
  vectorvein/workflow/nodes/image_generation.py,sha256=fXOhLGodJ3OdKBPXO5a3rq4wN2GMJ0jwqKO_gJFdocU,32852
53
- vectorvein/workflow/nodes/llms.py,sha256=RD3z5hsVJ722zCgBaM7PncgqvBcFA-f_XFSaOvhgMhc,34859
53
+ vectorvein/workflow/nodes/llms.py,sha256=rXN5Vgn6EvoglNb_BEzVUIrc4dCDxlinEYqznSE-Bek,38121
54
54
  vectorvein/workflow/nodes/media_editing.py,sha256=Od0X0SdcyRhcJckWpDM4WvgWEKxaIsgMXpMifN8Sc5M,29405
55
55
  vectorvein/workflow/nodes/media_processing.py,sha256=t-azYDphXmLRdOyHDfXFTS1tsEOyKqKskDyD0y232j8,19043
56
56
  vectorvein/workflow/nodes/output.py,sha256=_UQxiddHtGv2rkjhUFE-KDgrjnh0AGJQJyq9-4Aji5A,12567
@@ -62,4 +62,4 @@ vectorvein/workflow/nodes/vector_db.py,sha256=t6I17q6iR3yQreiDHpRrksMdWDPIvgqJs0
62
62
  vectorvein/workflow/nodes/video_generation.py,sha256=qmdg-t_idpxq1veukd-jv_ChICMOoInKxprV9Z4Vi2w,4118
63
63
  vectorvein/workflow/nodes/web_crawlers.py,sha256=LsqomfXfqrXfHJDO1cl0Ox48f4St7X_SL12DSbAMSOw,5415
64
64
  vectorvein/workflow/utils/json_to_code.py,sha256=F7dhDy8kGc8ndOeihGLRLGFGlquoxVlb02ENtxnQ0C8,5914
65
- vectorvein-0.2.24.dist-info/RECORD,,
65
+ vectorvein-0.2.25.dist-info/RECORD,,