vectorvein 0.1.88__py3-none-any.whl → 0.1.90__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vectorvein/chat_clients/anthropic_client.py +4 -0
- vectorvein/chat_clients/base_client.py +121 -2
- vectorvein/chat_clients/gemini_client.py +9 -523
- vectorvein/chat_clients/openai_compatible_client.py +4 -0
- vectorvein/chat_clients/utils.py +34 -116
- vectorvein/settings/__init__.py +30 -1
- vectorvein/types/defaults.py +30 -6
- vectorvein/types/llm_parameters.py +4 -1
- vectorvein/utilities/rate_limiter.py +312 -0
- {vectorvein-0.1.88.dist-info → vectorvein-0.1.90.dist-info}/METADATA +6 -1
- {vectorvein-0.1.88.dist-info → vectorvein-0.1.90.dist-info}/RECORD +13 -12
- {vectorvein-0.1.88.dist-info → vectorvein-0.1.90.dist-info}/WHEEL +0 -0
- {vectorvein-0.1.88.dist-info → vectorvein-0.1.90.dist-info}/entry_points.txt +0 -0
@@ -1,527 +1,13 @@
|
|
1
|
-
|
2
|
-
|
3
|
-
import
|
4
|
-
from functools import cached_property
|
5
|
-
from typing import Iterable, Literal, Generator, AsyncGenerator, overload, Any
|
1
|
+
from ..types.enums import BackendType
|
2
|
+
from ..types.defaults import GEMINI_DEFAULT_MODEL
|
3
|
+
from .openai_compatible_client import OpenAICompatibleChatClient, AsyncOpenAICompatibleChatClient
|
6
4
|
|
7
|
-
import httpx
|
8
5
|
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
from ..types.enums import ContextLengthControlType, BackendType
|
13
|
-
from ..types.llm_parameters import (
|
14
|
-
NotGiven,
|
15
|
-
NOT_GIVEN,
|
16
|
-
ToolParam,
|
17
|
-
ToolChoice,
|
18
|
-
ChatCompletionMessage,
|
19
|
-
ChatCompletionDeltaMessage,
|
20
|
-
ChatCompletionStreamOptionsParam,
|
21
|
-
)
|
6
|
+
class GeminiChatClient(OpenAICompatibleChatClient):
|
7
|
+
DEFAULT_MODEL = GEMINI_DEFAULT_MODEL
|
8
|
+
BACKEND_NAME = BackendType.Gemini
|
22
9
|
|
23
10
|
|
24
|
-
class
|
25
|
-
DEFAULT_MODEL
|
26
|
-
BACKEND_NAME
|
27
|
-
|
28
|
-
def __init__(
|
29
|
-
self,
|
30
|
-
model: str = defs.GEMINI_DEFAULT_MODEL,
|
31
|
-
stream: bool = True,
|
32
|
-
temperature: float | None | NotGiven = NOT_GIVEN,
|
33
|
-
context_length_control: ContextLengthControlType = defs.CONTEXT_LENGTH_CONTROL,
|
34
|
-
random_endpoint: bool = True,
|
35
|
-
endpoint_id: str = "",
|
36
|
-
http_client: httpx.Client | None = None,
|
37
|
-
backend_name: str | None = None,
|
38
|
-
):
|
39
|
-
super().__init__(
|
40
|
-
model,
|
41
|
-
stream,
|
42
|
-
temperature,
|
43
|
-
context_length_control,
|
44
|
-
random_endpoint,
|
45
|
-
endpoint_id,
|
46
|
-
http_client,
|
47
|
-
backend_name,
|
48
|
-
)
|
49
|
-
self.model_id = None
|
50
|
-
self.endpoint = None
|
51
|
-
|
52
|
-
@cached_property
|
53
|
-
def raw_client(self):
|
54
|
-
self.endpoint, self.model_id = self._set_endpoint()
|
55
|
-
if not self.http_client:
|
56
|
-
self.http_client = httpx.Client(timeout=300, proxy=self.endpoint.proxy)
|
57
|
-
return self.http_client
|
58
|
-
|
59
|
-
@overload
|
60
|
-
def create_completion(
|
61
|
-
self,
|
62
|
-
*,
|
63
|
-
messages: list,
|
64
|
-
model: str | None = None,
|
65
|
-
stream: Literal[False] = False,
|
66
|
-
temperature: float | None | NotGiven = NOT_GIVEN,
|
67
|
-
max_tokens: int | None = None,
|
68
|
-
tools: Iterable[ToolParam] | NotGiven = NOT_GIVEN,
|
69
|
-
tool_choice: ToolChoice | NotGiven = NOT_GIVEN,
|
70
|
-
response_format: dict | None = None,
|
71
|
-
stream_options: ChatCompletionStreamOptionsParam | None = None,
|
72
|
-
top_p: float | NotGiven | None = NOT_GIVEN,
|
73
|
-
skip_cutoff: bool = False,
|
74
|
-
**kwargs,
|
75
|
-
) -> ChatCompletionMessage:
|
76
|
-
pass
|
77
|
-
|
78
|
-
@overload
|
79
|
-
def create_completion(
|
80
|
-
self,
|
81
|
-
*,
|
82
|
-
messages: list,
|
83
|
-
model: str | None = None,
|
84
|
-
stream: Literal[True],
|
85
|
-
temperature: float | None | NotGiven = NOT_GIVEN,
|
86
|
-
max_tokens: int | None = None,
|
87
|
-
tools: Iterable[ToolParam] | NotGiven = NOT_GIVEN,
|
88
|
-
tool_choice: ToolChoice | NotGiven = NOT_GIVEN,
|
89
|
-
response_format: dict | None = None,
|
90
|
-
stream_options: ChatCompletionStreamOptionsParam | None = None,
|
91
|
-
top_p: float | NotGiven | None = NOT_GIVEN,
|
92
|
-
skip_cutoff: bool = False,
|
93
|
-
**kwargs,
|
94
|
-
) -> Generator[ChatCompletionDeltaMessage, None, None]:
|
95
|
-
pass
|
96
|
-
|
97
|
-
@overload
|
98
|
-
def create_completion(
|
99
|
-
self,
|
100
|
-
*,
|
101
|
-
messages: list,
|
102
|
-
model: str | None = None,
|
103
|
-
stream: bool,
|
104
|
-
temperature: float | None | NotGiven = NOT_GIVEN,
|
105
|
-
max_tokens: int | None = None,
|
106
|
-
tools: Iterable[ToolParam] | NotGiven = NOT_GIVEN,
|
107
|
-
tool_choice: ToolChoice | NotGiven = NOT_GIVEN,
|
108
|
-
response_format: dict | None = None,
|
109
|
-
stream_options: ChatCompletionStreamOptionsParam | None = None,
|
110
|
-
top_p: float | NotGiven | None = NOT_GIVEN,
|
111
|
-
skip_cutoff: bool = False,
|
112
|
-
**kwargs,
|
113
|
-
) -> ChatCompletionMessage | Generator[ChatCompletionDeltaMessage, Any, None]:
|
114
|
-
pass
|
115
|
-
|
116
|
-
def create_completion(
|
117
|
-
self,
|
118
|
-
*,
|
119
|
-
messages: list,
|
120
|
-
model: str | None = None,
|
121
|
-
stream: Literal[False] | Literal[True] = False,
|
122
|
-
temperature: float | None | NotGiven = NOT_GIVEN,
|
123
|
-
max_tokens: int | None = None,
|
124
|
-
tools: Iterable[ToolParam] | NotGiven = NOT_GIVEN,
|
125
|
-
tool_choice: ToolChoice | NotGiven = NOT_GIVEN,
|
126
|
-
response_format: dict | None = None,
|
127
|
-
stream_options: ChatCompletionStreamOptionsParam | None = None,
|
128
|
-
top_p: float | NotGiven | None = NOT_GIVEN,
|
129
|
-
skip_cutoff: bool = False,
|
130
|
-
**kwargs,
|
131
|
-
):
|
132
|
-
if model is not None:
|
133
|
-
self.model = model
|
134
|
-
if stream is not None:
|
135
|
-
self.stream = stream
|
136
|
-
if temperature is not None:
|
137
|
-
self.temperature = temperature
|
138
|
-
|
139
|
-
self.model_setting = self.backend_settings.models[self.model]
|
140
|
-
if self.model_id is None:
|
141
|
-
self.model_id = self.model_setting.id
|
142
|
-
|
143
|
-
self.endpoint, self.model_id = self._set_endpoint()
|
144
|
-
|
145
|
-
if messages[0].get("role") == "system":
|
146
|
-
system_prompt = messages[0]["content"]
|
147
|
-
messages = messages[1:]
|
148
|
-
else:
|
149
|
-
system_prompt = ""
|
150
|
-
|
151
|
-
if not skip_cutoff and self.context_length_control == ContextLengthControlType.Latest:
|
152
|
-
messages = cutoff_messages(
|
153
|
-
messages,
|
154
|
-
max_count=self.model_setting.context_length,
|
155
|
-
backend=self.BACKEND_NAME,
|
156
|
-
model=self.model_setting.id,
|
157
|
-
)
|
158
|
-
|
159
|
-
tools_params = {}
|
160
|
-
if tools:
|
161
|
-
tools_params = {"tools": [{"function_declarations": [tool["function"] for tool in tools]}]}
|
162
|
-
|
163
|
-
response_format_params = {}
|
164
|
-
if response_format is not None:
|
165
|
-
if response_format.get("type") == "json_object":
|
166
|
-
response_format_params = {"response_mime_type": "application/json"}
|
167
|
-
|
168
|
-
top_p_params = {}
|
169
|
-
if top_p:
|
170
|
-
top_p_params = {"top_p": top_p}
|
171
|
-
|
172
|
-
temperature_params = {}
|
173
|
-
if temperature:
|
174
|
-
temperature_params = {"temperature": temperature}
|
175
|
-
|
176
|
-
request_body = {
|
177
|
-
"contents": messages,
|
178
|
-
"safetySettings": [
|
179
|
-
{
|
180
|
-
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
|
181
|
-
"threshold": "BLOCK_ONLY_HIGH",
|
182
|
-
}
|
183
|
-
],
|
184
|
-
"generationConfig": {
|
185
|
-
"maxOutputTokens": max_tokens,
|
186
|
-
**temperature_params,
|
187
|
-
**top_p_params,
|
188
|
-
**response_format_params,
|
189
|
-
},
|
190
|
-
**tools_params,
|
191
|
-
**kwargs,
|
192
|
-
}
|
193
|
-
if system_prompt:
|
194
|
-
request_body["systemInstruction"] = {"parts": [{"text": system_prompt}]}
|
195
|
-
|
196
|
-
headers = {"Content-Type": "application/json"}
|
197
|
-
|
198
|
-
params = {"key": self.endpoint.api_key}
|
199
|
-
|
200
|
-
if self.stream:
|
201
|
-
url = f"{self.endpoint.api_base}/models/{self.model_setting.id}:streamGenerateContent"
|
202
|
-
params["alt"] = "sse"
|
203
|
-
|
204
|
-
def generator():
|
205
|
-
result = {"content": "", "tool_calls": [], "usage": {}}
|
206
|
-
client = self.raw_client
|
207
|
-
with client.stream("POST", url, headers=headers, params=params, json=request_body) as response:
|
208
|
-
for chunk in response.iter_lines():
|
209
|
-
message = {"content": "", "tool_calls": []}
|
210
|
-
if not chunk.startswith("data:"):
|
211
|
-
continue
|
212
|
-
data = json.loads(chunk[5:])
|
213
|
-
chunk_content = data["candidates"][0]["content"]["parts"][0]
|
214
|
-
if "text" in chunk_content:
|
215
|
-
message["content"] = chunk_content["text"]
|
216
|
-
result["content"] += message["content"]
|
217
|
-
elif "functionCall" in chunk_content:
|
218
|
-
message["tool_calls"] = [
|
219
|
-
{
|
220
|
-
"index": 0,
|
221
|
-
"id": "call_0",
|
222
|
-
"function": {
|
223
|
-
"arguments": json.dumps(
|
224
|
-
chunk_content["functionCall"]["args"], ensure_ascii=False
|
225
|
-
),
|
226
|
-
"name": chunk_content["functionCall"]["name"],
|
227
|
-
},
|
228
|
-
"type": "function",
|
229
|
-
}
|
230
|
-
]
|
231
|
-
|
232
|
-
result["usage"] = message["usage"] = {
|
233
|
-
"prompt_tokens": data["usageMetadata"].get("promptTokenCount", 0),
|
234
|
-
"completion_tokens": data["usageMetadata"].get("candidatesTokenCount", 0),
|
235
|
-
"total_tokens": data["usageMetadata"].get("totalTokenCount", 0),
|
236
|
-
}
|
237
|
-
yield ChatCompletionDeltaMessage(**message)
|
238
|
-
|
239
|
-
return generator()
|
240
|
-
else:
|
241
|
-
url = f"{self.endpoint.api_base}/models/{self.model_setting.id}:generateContent"
|
242
|
-
client = self.raw_client
|
243
|
-
response = client.post(url, json=request_body, headers=headers, params=params, timeout=None).json()
|
244
|
-
if "error" in response:
|
245
|
-
raise Exception(response["error"])
|
246
|
-
result = {
|
247
|
-
"content": "",
|
248
|
-
"usage": {
|
249
|
-
"prompt_tokens": response.get("usageMetadata", {}).get("promptTokenCount", 0),
|
250
|
-
"completion_tokens": response.get("usageMetadata", {}).get("candidatesTokenCount", 0),
|
251
|
-
"total_tokens": response.get("usageMetadata", {}).get("totalTokenCount", 0),
|
252
|
-
},
|
253
|
-
}
|
254
|
-
tool_calls = []
|
255
|
-
for part in response["candidates"][0]["content"]["parts"]:
|
256
|
-
if "text" in part:
|
257
|
-
result["content"] += part["text"]
|
258
|
-
elif "functionCall" in part:
|
259
|
-
tool_call = {
|
260
|
-
"index": 0,
|
261
|
-
"id": "call_0",
|
262
|
-
"function": {
|
263
|
-
"arguments": json.dumps(part["functionCall"]["args"], ensure_ascii=False),
|
264
|
-
"name": part["functionCall"]["name"],
|
265
|
-
},
|
266
|
-
"type": "function",
|
267
|
-
}
|
268
|
-
tool_calls.append(tool_call)
|
269
|
-
|
270
|
-
if tool_calls:
|
271
|
-
result["tool_calls"] = tool_calls
|
272
|
-
|
273
|
-
return ChatCompletionMessage(**result)
|
274
|
-
|
275
|
-
|
276
|
-
class AsyncGeminiChatClient(BaseAsyncChatClient):
|
277
|
-
DEFAULT_MODEL: str = defs.GEMINI_DEFAULT_MODEL
|
278
|
-
BACKEND_NAME: BackendType = BackendType.Gemini
|
279
|
-
|
280
|
-
def __init__(
|
281
|
-
self,
|
282
|
-
model: str = defs.GEMINI_DEFAULT_MODEL,
|
283
|
-
stream: bool = True,
|
284
|
-
temperature: float | None | NotGiven = NOT_GIVEN,
|
285
|
-
context_length_control: ContextLengthControlType = defs.CONTEXT_LENGTH_CONTROL,
|
286
|
-
random_endpoint: bool = True,
|
287
|
-
endpoint_id: str = "",
|
288
|
-
http_client: httpx.AsyncClient | None = None,
|
289
|
-
backend_name: str | None = None,
|
290
|
-
):
|
291
|
-
super().__init__(
|
292
|
-
model,
|
293
|
-
stream,
|
294
|
-
temperature,
|
295
|
-
context_length_control,
|
296
|
-
random_endpoint,
|
297
|
-
endpoint_id,
|
298
|
-
http_client,
|
299
|
-
backend_name,
|
300
|
-
)
|
301
|
-
self.model_id = None
|
302
|
-
self.endpoint = None
|
303
|
-
|
304
|
-
@cached_property
|
305
|
-
def raw_client(self):
|
306
|
-
self.endpoint, self.model_id = self._set_endpoint()
|
307
|
-
if not self.http_client:
|
308
|
-
self.http_client = httpx.AsyncClient(timeout=300, proxy=self.endpoint.proxy)
|
309
|
-
return self.http_client
|
310
|
-
|
311
|
-
@overload
|
312
|
-
async def create_completion(
|
313
|
-
self,
|
314
|
-
*,
|
315
|
-
messages: list,
|
316
|
-
model: str | None = None,
|
317
|
-
stream: Literal[False] = False,
|
318
|
-
temperature: float | None | NotGiven = NOT_GIVEN,
|
319
|
-
max_tokens: int | None = None,
|
320
|
-
tools: Iterable[ToolParam] | NotGiven = NOT_GIVEN,
|
321
|
-
tool_choice: ToolChoice | NotGiven = NOT_GIVEN,
|
322
|
-
response_format: dict | None = None,
|
323
|
-
stream_options: ChatCompletionStreamOptionsParam | None = None,
|
324
|
-
top_p: float | NotGiven | None = NOT_GIVEN,
|
325
|
-
skip_cutoff: bool = False,
|
326
|
-
**kwargs,
|
327
|
-
) -> ChatCompletionMessage:
|
328
|
-
pass
|
329
|
-
|
330
|
-
@overload
|
331
|
-
async def create_completion(
|
332
|
-
self,
|
333
|
-
*,
|
334
|
-
messages: list,
|
335
|
-
model: str | None = None,
|
336
|
-
stream: Literal[True],
|
337
|
-
temperature: float | None | NotGiven = NOT_GIVEN,
|
338
|
-
max_tokens: int | None = None,
|
339
|
-
tools: Iterable[ToolParam] | NotGiven = NOT_GIVEN,
|
340
|
-
tool_choice: ToolChoice | NotGiven = NOT_GIVEN,
|
341
|
-
response_format: dict | None = None,
|
342
|
-
stream_options: ChatCompletionStreamOptionsParam | None = None,
|
343
|
-
top_p: float | NotGiven | None = NOT_GIVEN,
|
344
|
-
skip_cutoff: bool = False,
|
345
|
-
**kwargs,
|
346
|
-
) -> AsyncGenerator[ChatCompletionDeltaMessage, Any]:
|
347
|
-
pass
|
348
|
-
|
349
|
-
@overload
|
350
|
-
async def create_completion(
|
351
|
-
self,
|
352
|
-
*,
|
353
|
-
messages: list,
|
354
|
-
model: str | None = None,
|
355
|
-
stream: bool,
|
356
|
-
temperature: float | None | NotGiven = NOT_GIVEN,
|
357
|
-
max_tokens: int | None = None,
|
358
|
-
tools: Iterable[ToolParam] | NotGiven = NOT_GIVEN,
|
359
|
-
tool_choice: ToolChoice | NotGiven = NOT_GIVEN,
|
360
|
-
response_format: dict | None = None,
|
361
|
-
stream_options: ChatCompletionStreamOptionsParam | None = None,
|
362
|
-
top_p: float | NotGiven | None = NOT_GIVEN,
|
363
|
-
skip_cutoff: bool = False,
|
364
|
-
**kwargs,
|
365
|
-
) -> ChatCompletionMessage | AsyncGenerator[ChatCompletionDeltaMessage, Any]:
|
366
|
-
pass
|
367
|
-
|
368
|
-
async def create_completion(
|
369
|
-
self,
|
370
|
-
*,
|
371
|
-
messages: list,
|
372
|
-
model: str | None = None,
|
373
|
-
stream: Literal[False] | Literal[True] = False,
|
374
|
-
temperature: float | None | NotGiven = NOT_GIVEN,
|
375
|
-
max_tokens: int | None = None,
|
376
|
-
tools: Iterable[ToolParam] | NotGiven = NOT_GIVEN,
|
377
|
-
tool_choice: ToolChoice | NotGiven = NOT_GIVEN,
|
378
|
-
response_format: dict | None = None,
|
379
|
-
stream_options: ChatCompletionStreamOptionsParam | None = None,
|
380
|
-
top_p: float | NotGiven | None = NOT_GIVEN,
|
381
|
-
skip_cutoff: bool = False,
|
382
|
-
**kwargs,
|
383
|
-
):
|
384
|
-
if model is not None:
|
385
|
-
self.model = model
|
386
|
-
if stream is not None:
|
387
|
-
self.stream = stream
|
388
|
-
if temperature is not None:
|
389
|
-
self.temperature = temperature
|
390
|
-
|
391
|
-
self.model_setting = self.backend_settings.models[self.model]
|
392
|
-
if self.model_id is None:
|
393
|
-
self.model_id = self.model_setting.id
|
394
|
-
|
395
|
-
self.endpoint, self.model_id = self._set_endpoint()
|
396
|
-
|
397
|
-
if messages[0].get("role") == "system":
|
398
|
-
system_prompt = messages[0]["content"]
|
399
|
-
messages = messages[1:]
|
400
|
-
else:
|
401
|
-
system_prompt = ""
|
402
|
-
|
403
|
-
if not skip_cutoff and self.context_length_control == ContextLengthControlType.Latest:
|
404
|
-
messages = cutoff_messages(
|
405
|
-
messages,
|
406
|
-
max_count=self.model_setting.context_length,
|
407
|
-
backend=self.BACKEND_NAME,
|
408
|
-
model=self.model_setting.id,
|
409
|
-
)
|
410
|
-
|
411
|
-
tools_params = {}
|
412
|
-
if tools:
|
413
|
-
tools_params = {"tools": [{"function_declarations": [tool["function"] for tool in tools]}]}
|
414
|
-
|
415
|
-
response_format_params = {}
|
416
|
-
if response_format is not None:
|
417
|
-
if response_format.get("type") == "json_object":
|
418
|
-
response_format_params = {"response_mime_type": "application/json"}
|
419
|
-
|
420
|
-
top_p_params = {}
|
421
|
-
if top_p:
|
422
|
-
top_p_params = {"top_p": top_p}
|
423
|
-
|
424
|
-
temperature_params = {}
|
425
|
-
if temperature:
|
426
|
-
temperature_params = {"temperature": temperature}
|
427
|
-
|
428
|
-
request_body = {
|
429
|
-
"contents": messages,
|
430
|
-
"safetySettings": [
|
431
|
-
{
|
432
|
-
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
|
433
|
-
"threshold": "BLOCK_ONLY_HIGH",
|
434
|
-
}
|
435
|
-
],
|
436
|
-
"generationConfig": {
|
437
|
-
"maxOutputTokens": max_tokens,
|
438
|
-
**temperature_params,
|
439
|
-
**top_p_params,
|
440
|
-
**response_format_params,
|
441
|
-
},
|
442
|
-
**tools_params,
|
443
|
-
**kwargs,
|
444
|
-
}
|
445
|
-
if system_prompt:
|
446
|
-
request_body["systemInstruction"] = {"parts": [{"text": system_prompt}]}
|
447
|
-
|
448
|
-
headers = {"Content-Type": "application/json"}
|
449
|
-
|
450
|
-
params = {"key": self.endpoint.api_key}
|
451
|
-
|
452
|
-
if self.stream:
|
453
|
-
url = f"{self.endpoint.api_base}/models/{self.model_setting.id}:streamGenerateContent"
|
454
|
-
params["alt"] = "sse"
|
455
|
-
|
456
|
-
async def generator():
|
457
|
-
result = {"content": "", "tool_calls": [], "usage": {}}
|
458
|
-
client = self.raw_client
|
459
|
-
async with client.stream("POST", url, headers=headers, params=params, json=request_body) as response:
|
460
|
-
async for chunk in response.aiter_lines():
|
461
|
-
message = {"content": "", "tool_calls": []}
|
462
|
-
if not chunk.startswith("data:"):
|
463
|
-
continue
|
464
|
-
data = json.loads(chunk[5:])
|
465
|
-
chunk_content = data["candidates"][0]["content"]["parts"][0]
|
466
|
-
if "text" in chunk_content:
|
467
|
-
message["content"] = chunk_content["text"]
|
468
|
-
result["content"] += message["content"]
|
469
|
-
elif "functionCall" in chunk_content:
|
470
|
-
message["tool_calls"] = [
|
471
|
-
{
|
472
|
-
"index": 0,
|
473
|
-
"id": "call_0",
|
474
|
-
"function": {
|
475
|
-
"arguments": json.dumps(
|
476
|
-
chunk_content["functionCall"]["args"], ensure_ascii=False
|
477
|
-
),
|
478
|
-
"name": chunk_content["functionCall"]["name"],
|
479
|
-
},
|
480
|
-
"type": "function",
|
481
|
-
}
|
482
|
-
]
|
483
|
-
|
484
|
-
result["usage"] = message["usage"] = {
|
485
|
-
"prompt_tokens": data["usageMetadata"].get("promptTokenCount", 0),
|
486
|
-
"completion_tokens": data["usageMetadata"].get("candidatesTokenCount", 0),
|
487
|
-
"total_tokens": data["usageMetadata"].get("totalTokenCount", 0),
|
488
|
-
}
|
489
|
-
yield ChatCompletionDeltaMessage(**message)
|
490
|
-
|
491
|
-
return generator()
|
492
|
-
else:
|
493
|
-
url = f"{self.endpoint.api_base}/models/{self.model_setting.id}:generateContent"
|
494
|
-
client = self.raw_client
|
495
|
-
async with client:
|
496
|
-
response = await client.post(url, json=request_body, headers=headers, params=params, timeout=None)
|
497
|
-
response = response.json()
|
498
|
-
if "error" in response:
|
499
|
-
raise Exception(response["error"])
|
500
|
-
result = {
|
501
|
-
"content": "",
|
502
|
-
"usage": {
|
503
|
-
"prompt_tokens": response.get("usageMetadata", {}).get("promptTokenCount", 0),
|
504
|
-
"completion_tokens": response.get("usageMetadata", {}).get("candidatesTokenCount", 0),
|
505
|
-
"total_tokens": response.get("usageMetadata", {}).get("totalTokenCount", 0),
|
506
|
-
},
|
507
|
-
}
|
508
|
-
tool_calls = []
|
509
|
-
for part in response["candidates"][0]["content"]["parts"]:
|
510
|
-
if "text" in part:
|
511
|
-
result["content"] += part["text"]
|
512
|
-
elif "functionCall" in part:
|
513
|
-
tool_call = {
|
514
|
-
"index": 0,
|
515
|
-
"id": "call_0",
|
516
|
-
"function": {
|
517
|
-
"arguments": json.dumps(part["functionCall"]["args"], ensure_ascii=False),
|
518
|
-
"name": part["functionCall"]["name"],
|
519
|
-
},
|
520
|
-
"type": "function",
|
521
|
-
}
|
522
|
-
tool_calls.append(tool_call)
|
523
|
-
|
524
|
-
if tool_calls:
|
525
|
-
result["tool_calls"] = tool_calls
|
526
|
-
|
527
|
-
return ChatCompletionMessage(**result)
|
11
|
+
class AsyncGeminiChatClient(AsyncOpenAICompatibleChatClient):
|
12
|
+
DEFAULT_MODEL = GEMINI_DEFAULT_MODEL
|
13
|
+
BACKEND_NAME = BackendType.Gemini
|
@@ -212,6 +212,8 @@ class OpenAICompatibleChatClient(BaseChatClient):
|
|
212
212
|
else:
|
213
213
|
_stream_options_params = {}
|
214
214
|
|
215
|
+
self._acquire_rate_limit(self.endpoint, self.model, messages)
|
216
|
+
|
215
217
|
if self.stream:
|
216
218
|
stream_response = raw_client.chat.completions.create(
|
217
219
|
model=self.model_id,
|
@@ -538,6 +540,8 @@ class AsyncOpenAICompatibleChatClient(BaseAsyncChatClient):
|
|
538
540
|
else:
|
539
541
|
max_tokens = self.model_setting.context_length - token_counts - 64
|
540
542
|
|
543
|
+
await self._acquire_rate_limit(self.endpoint, self.model, messages)
|
544
|
+
|
541
545
|
if self.stream:
|
542
546
|
stream_response = await raw_client.chat.completions.create(
|
543
547
|
model=self.model_id,
|