vectordb-bench 1.0.3__py3-none-any.whl → 1.0.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vectordb_bench/backend/cases.py +45 -1
- vectordb_bench/backend/clients/__init__.py +32 -0
- vectordb_bench/backend/clients/aliyun_opensearch/aliyun_opensearch.py +34 -42
- vectordb_bench/backend/clients/aliyun_opensearch/config.py +0 -7
- vectordb_bench/backend/clients/milvus/cli.py +216 -0
- vectordb_bench/backend/clients/oss_opensearch/cli.py +155 -0
- vectordb_bench/backend/clients/oss_opensearch/config.py +157 -0
- vectordb_bench/backend/clients/oss_opensearch/oss_opensearch.py +582 -0
- vectordb_bench/backend/clients/oss_opensearch/run.py +166 -0
- vectordb_bench/backend/clients/s3_vectors/config.py +41 -0
- vectordb_bench/backend/clients/s3_vectors/s3_vectors.py +171 -0
- vectordb_bench/backend/clients/tidb/cli.py +0 -4
- vectordb_bench/backend/clients/tidb/config.py +22 -2
- vectordb_bench/backend/dataset.py +70 -0
- vectordb_bench/backend/filter.py +17 -0
- vectordb_bench/backend/runner/mp_runner.py +4 -0
- vectordb_bench/backend/runner/read_write_runner.py +10 -9
- vectordb_bench/backend/runner/serial_runner.py +23 -7
- vectordb_bench/backend/task_runner.py +5 -4
- vectordb_bench/cli/vectordbbench.py +2 -0
- vectordb_bench/fig/custom_case_run_test.png +0 -0
- vectordb_bench/fig/custom_dataset.png +0 -0
- vectordb_bench/fig/homepage/bar-chart.png +0 -0
- vectordb_bench/fig/homepage/concurrent.png +0 -0
- vectordb_bench/fig/homepage/custom.png +0 -0
- vectordb_bench/fig/homepage/label_filter.png +0 -0
- vectordb_bench/fig/homepage/qp$.png +0 -0
- vectordb_bench/fig/homepage/run_test.png +0 -0
- vectordb_bench/fig/homepage/streaming.png +0 -0
- vectordb_bench/fig/homepage/table.png +0 -0
- vectordb_bench/fig/run_test_select_case.png +0 -0
- vectordb_bench/fig/run_test_select_db.png +0 -0
- vectordb_bench/fig/run_test_submit.png +0 -0
- vectordb_bench/frontend/components/check_results/filters.py +1 -4
- vectordb_bench/frontend/components/check_results/nav.py +2 -1
- vectordb_bench/frontend/components/concurrent/charts.py +5 -0
- vectordb_bench/frontend/components/int_filter/charts.py +60 -0
- vectordb_bench/frontend/components/streaming/data.py +7 -0
- vectordb_bench/frontend/components/welcome/welcomePrams.py +42 -4
- vectordb_bench/frontend/config/dbCaseConfigs.py +60 -13
- vectordb_bench/frontend/config/styles.py +3 -0
- vectordb_bench/frontend/pages/concurrent.py +1 -1
- vectordb_bench/frontend/pages/custom.py +1 -1
- vectordb_bench/frontend/pages/int_filter.py +56 -0
- vectordb_bench/frontend/pages/streaming.py +16 -3
- vectordb_bench/metric.py +7 -0
- vectordb_bench/models.py +36 -4
- vectordb_bench/results/S3Vectors/result_20250722_standard_s3vectors.json +2509 -0
- {vectordb_bench-1.0.3.dist-info → vectordb_bench-1.0.5.dist-info}/METADATA +1 -3
- {vectordb_bench-1.0.3.dist-info → vectordb_bench-1.0.5.dist-info}/RECORD +54 -32
- {vectordb_bench-1.0.3.dist-info → vectordb_bench-1.0.5.dist-info}/WHEEL +0 -0
- {vectordb_bench-1.0.3.dist-info → vectordb_bench-1.0.5.dist-info}/entry_points.txt +0 -0
- {vectordb_bench-1.0.3.dist-info → vectordb_bench-1.0.5.dist-info}/licenses/LICENSE +0 -0
- {vectordb_bench-1.0.3.dist-info → vectordb_bench-1.0.5.dist-info}/top_level.txt +0 -0
@@ -241,7 +241,7 @@ class SerialSearchRunner:
|
|
241
241
|
|
242
242
|
return results
|
243
243
|
|
244
|
-
def search(self, args: tuple[list, list[list[int]]]) -> tuple[float, float, float]:
|
244
|
+
def search(self, args: tuple[list, list[list[int]]]) -> tuple[float, float, float, float]:
|
245
245
|
log.info(f"{mp.current_process().name:14} start search the entire test_data to get recall and latency")
|
246
246
|
with self.db.init():
|
247
247
|
self.db.prepare_filter(self.filters)
|
@@ -281,6 +281,7 @@ class SerialSearchRunner:
|
|
281
281
|
avg_ndcg = round(np.mean(ndcgs), 4)
|
282
282
|
cost = round(np.sum(latencies), 4)
|
283
283
|
p99 = round(np.percentile(latencies, 99), 4)
|
284
|
+
p95 = round(np.percentile(latencies, 95), 4)
|
284
285
|
log.info(
|
285
286
|
f"{mp.current_process().name:14} search entire test_data: "
|
286
287
|
f"cost={cost}s, "
|
@@ -288,20 +289,35 @@ class SerialSearchRunner:
|
|
288
289
|
f"avg_recall={avg_recall}, "
|
289
290
|
f"avg_ndcg={avg_ndcg}, "
|
290
291
|
f"avg_latency={avg_latency}, "
|
291
|
-
f"p99={p99}"
|
292
|
+
f"p99={p99}, "
|
293
|
+
f"p95={p95}"
|
292
294
|
)
|
293
|
-
return (avg_recall, avg_ndcg, p99)
|
295
|
+
return (avg_recall, avg_ndcg, p99, p95)
|
294
296
|
|
295
|
-
def _run_in_subprocess(self) -> tuple[float, float]:
|
297
|
+
def _run_in_subprocess(self) -> tuple[float, float, float, float]:
|
296
298
|
with concurrent.futures.ProcessPoolExecutor(max_workers=1) as executor:
|
297
299
|
future = executor.submit(self.search, (self.test_data, self.ground_truth))
|
298
300
|
return future.result()
|
299
301
|
|
300
302
|
@utils.time_it
|
301
|
-
def run(self) -> tuple[float, float, float]:
|
303
|
+
def run(self) -> tuple[float, float, float, float]:
|
304
|
+
log.info(f"{mp.current_process().name:14} start serial search")
|
305
|
+
if self.test_data is None:
|
306
|
+
msg = "empty test_data"
|
307
|
+
raise RuntimeError(msg)
|
308
|
+
|
309
|
+
return self._run_in_subprocess()
|
310
|
+
|
311
|
+
@utils.time_it
|
312
|
+
def run_with_cost(self) -> tuple[tuple[float, float, float, float], float]:
|
302
313
|
"""
|
314
|
+
Search all test data in serial.
|
303
315
|
Returns:
|
304
|
-
tuple[tuple[float, float, float], float]: (avg_recall, avg_ndcg, p99_latency), cost
|
305
|
-
|
316
|
+
tuple[tuple[float, float, float, float], float]: (avg_recall, avg_ndcg, p99_latency, p95_latency), cost
|
306
317
|
"""
|
318
|
+
log.info(f"{mp.current_process().name:14} start serial search")
|
319
|
+
if self.test_data is None:
|
320
|
+
msg = "empty test_data"
|
321
|
+
raise RuntimeError(msg)
|
322
|
+
|
307
323
|
return self._run_in_subprocess()
|
@@ -186,11 +186,12 @@ class CaseRunner(BaseModel):
|
|
186
186
|
m.conc_num_list,
|
187
187
|
m.conc_qps_list,
|
188
188
|
m.conc_latency_p99_list,
|
189
|
+
m.conc_latency_p95_list,
|
189
190
|
m.conc_latency_avg_list,
|
190
191
|
) = search_results
|
191
192
|
if TaskStage.SEARCH_SERIAL in self.config.stages:
|
192
193
|
search_results = self._serial_search()
|
193
|
-
m.recall, m.ndcg, m.serial_latency_p99 = search_results
|
194
|
+
m.recall, m.ndcg, m.serial_latency_p99, m.serial_latency_p95 = search_results
|
194
195
|
|
195
196
|
except Exception as e:
|
196
197
|
log.warning(f"Failed to run performance case, reason = {e}")
|
@@ -230,12 +231,12 @@ class CaseRunner(BaseModel):
|
|
230
231
|
finally:
|
231
232
|
runner = None
|
232
233
|
|
233
|
-
def _serial_search(self) -> tuple[float, float, float]:
|
234
|
+
def _serial_search(self) -> tuple[float, float, float, float]:
|
234
235
|
"""Performance serial tests, search the entire test data once,
|
235
|
-
calculate the recall, serial_latency_p99
|
236
|
+
calculate the recall, serial_latency_p99, serial_latency_p95
|
236
237
|
|
237
238
|
Returns:
|
238
|
-
tuple[float, float, float]: recall, ndcg, serial_latency_p99
|
239
|
+
tuple[float, float, float, float]: recall, ndcg, serial_latency_p99, serial_latency_p95
|
239
240
|
"""
|
240
241
|
try:
|
241
242
|
results, _ = self.serial_search_runner.run()
|
@@ -6,6 +6,7 @@ from ..backend.clients.mariadb.cli import MariaDBHNSW
|
|
6
6
|
from ..backend.clients.memorydb.cli import MemoryDB
|
7
7
|
from ..backend.clients.milvus.cli import MilvusAutoIndex
|
8
8
|
from ..backend.clients.oceanbase.cli import OceanBaseHNSW, OceanBaseIVF
|
9
|
+
from ..backend.clients.oss_opensearch.cli import OSSOpenSearch
|
9
10
|
from ..backend.clients.pgdiskann.cli import PgDiskAnn
|
10
11
|
from ..backend.clients.pgvecto_rs.cli import PgVectoRSHNSW, PgVectoRSIVFFlat
|
11
12
|
from ..backend.clients.pgvector.cli import PgVectorHNSW
|
@@ -31,6 +32,7 @@ cli.add_command(Test)
|
|
31
32
|
cli.add_command(ZillizAutoIndex)
|
32
33
|
cli.add_command(MilvusAutoIndex)
|
33
34
|
cli.add_command(AWSOpenSearch)
|
35
|
+
cli.add_command(OSSOpenSearch)
|
34
36
|
cli.add_command(PgVectorScaleDiskAnn)
|
35
37
|
cli.add_command(PgDiskAnn)
|
36
38
|
cli.add_command(AlloyDBScaNN)
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
@@ -89,7 +89,7 @@ def getShowDbsAndCases(st, result: list[CaseResult], filter_type: FilterOp) -> t
|
|
89
89
|
col=1,
|
90
90
|
)
|
91
91
|
|
92
|
-
if filter_type == FilterOp.StrEqual:
|
92
|
+
if filter_type == FilterOp.StrEqual or filter_type == FilterOp.NumGE:
|
93
93
|
container = st.container()
|
94
94
|
datasetWithSizeTypes = [dataset_with_size_type for dataset_with_size_type in DatasetWithSizeType]
|
95
95
|
showDatasetWithSizeTypes = filterView(
|
@@ -102,9 +102,6 @@ def getShowDbsAndCases(st, result: list[CaseResult], filter_type: FilterOp) -> t
|
|
102
102
|
datasets = [dataset_with_size_type.get_manager() for dataset_with_size_type in showDatasetWithSizeTypes]
|
103
103
|
showCaseNames = list(set([case.name for case in allCases if case.dataset in datasets]))
|
104
104
|
|
105
|
-
if filter_type == FilterOp.NumGE:
|
106
|
-
raise NotImplementedError
|
107
|
-
|
108
105
|
return showDBNames, showCaseNames
|
109
106
|
|
110
107
|
|
@@ -19,7 +19,7 @@ def NavToQuriesPerDollar(st):
|
|
19
19
|
def NavToResults(st, key="nav-to-results"):
|
20
20
|
navClick = st.button("< Back to Results", key=key)
|
21
21
|
if navClick:
|
22
|
-
switch_page("
|
22
|
+
switch_page("results")
|
23
23
|
|
24
24
|
|
25
25
|
def NavToPages(st):
|
@@ -29,6 +29,7 @@ def NavToPages(st):
|
|
29
29
|
{"name": "Quries Per Dollar", "link": "quries_per_dollar"},
|
30
30
|
{"name": "Concurrent", "link": "concurrent"},
|
31
31
|
{"name": "Label Filter", "link": "label_filter"},
|
32
|
+
{"name": "Int Filter", "link": "int_filter"},
|
32
33
|
{"name": "Streaming", "link": "streaming"},
|
33
34
|
{"name": "Tables", "link": "tables"},
|
34
35
|
{"name": "Custom Dataset", "link": "custom"},
|
@@ -20,6 +20,11 @@ def drawChartsByCase(allData, showCaseNames: list[str], st, latency_type: str):
|
|
20
20
|
if 0 <= i < len(caseData["conc_latency_p99_list"])
|
21
21
|
else 0
|
22
22
|
),
|
23
|
+
"latency_p95": (
|
24
|
+
caseData["conc_latency_p95_list"][i] * 1000
|
25
|
+
if "conc_latency_p95_list" in caseData and 0 <= i < len(caseData["conc_latency_p95_list"])
|
26
|
+
else 0
|
27
|
+
),
|
23
28
|
"latency_avg": (
|
24
29
|
caseData["conc_latency_avg_list"][i] * 1000
|
25
30
|
if 0 <= i < len(caseData["conc_latency_avg_list"])
|
@@ -0,0 +1,60 @@
|
|
1
|
+
import plotly.express as px
|
2
|
+
from vectordb_bench.metric import metric_unit_map
|
3
|
+
|
4
|
+
|
5
|
+
def drawCharts(st, allData, **kwargs):
|
6
|
+
dataset_names = list(set([data["dataset_name"] for data in allData]))
|
7
|
+
dataset_names.sort()
|
8
|
+
for dataset_name in dataset_names:
|
9
|
+
container = st.container()
|
10
|
+
container.subheader(dataset_name)
|
11
|
+
data = [d for d in allData if d["dataset_name"] == dataset_name]
|
12
|
+
drawChartByMetric(container, data, **kwargs)
|
13
|
+
|
14
|
+
|
15
|
+
def drawChartByMetric(st, data, metrics=("qps", "recall"), **kwargs):
|
16
|
+
columns = st.columns(len(metrics))
|
17
|
+
for i, metric in enumerate(metrics):
|
18
|
+
container = columns[i]
|
19
|
+
container.markdown(f"#### {metric}")
|
20
|
+
drawChart(container, data, metric)
|
21
|
+
|
22
|
+
|
23
|
+
def getRange(metric, data, padding_multipliers):
|
24
|
+
minV = min([d.get(metric, 0) for d in data])
|
25
|
+
maxV = max([d.get(metric, 0) for d in data])
|
26
|
+
padding = maxV - minV
|
27
|
+
rangeV = [
|
28
|
+
minV - padding * padding_multipliers[0],
|
29
|
+
maxV + padding * padding_multipliers[1],
|
30
|
+
]
|
31
|
+
return rangeV
|
32
|
+
|
33
|
+
|
34
|
+
def drawChart(st, data: list[object], metric):
|
35
|
+
unit = metric_unit_map.get(metric, "")
|
36
|
+
x = "filter_rate"
|
37
|
+
xrange = getRange(x, data, [0.05, 0.1])
|
38
|
+
|
39
|
+
y = metric
|
40
|
+
yrange = getRange(y, data, [0.2, 0.1])
|
41
|
+
|
42
|
+
data.sort(key=lambda a: a[x])
|
43
|
+
|
44
|
+
fig = px.line(
|
45
|
+
data,
|
46
|
+
x=x,
|
47
|
+
y=y,
|
48
|
+
color="db_name",
|
49
|
+
line_group="db_name",
|
50
|
+
text=metric,
|
51
|
+
markers=True,
|
52
|
+
)
|
53
|
+
fig.update_xaxes(range=xrange)
|
54
|
+
fig.update_yaxes(range=yrange)
|
55
|
+
fig.update_traces(textposition="bottom right", texttemplate="%{y:,.4~r}" + unit)
|
56
|
+
fig.update_layout(
|
57
|
+
margin=dict(l=0, r=0, t=40, b=0, pad=8),
|
58
|
+
legend=dict(orientation="h", yanchor="bottom", y=1, xanchor="right", x=1, title=""),
|
59
|
+
)
|
60
|
+
st.plotly_chart(fig, use_container_width=True)
|
@@ -13,6 +13,7 @@ class DisplayedMetric(StrEnum):
|
|
13
13
|
adjusted_recall = "adjusted_recall"
|
14
14
|
adjusted_ndcg = "adjusted_ndcg"
|
15
15
|
latency_p99 = "latency_p99"
|
16
|
+
latency_p95 = "latency_p95"
|
16
17
|
# st_ideal_insert_duration = "st_ideal_insert_duration"
|
17
18
|
# st_search_time_list = "st_search_time_list"
|
18
19
|
insert_duration = "insert_duration"
|
@@ -31,6 +32,7 @@ class StreamingData:
|
|
31
32
|
adjusted_recall: float
|
32
33
|
adjusted_ndcg: float
|
33
34
|
latency_p99: float
|
35
|
+
latency_p95: float
|
34
36
|
ideal_insert_duration: int
|
35
37
|
insert_duration: float
|
36
38
|
optimize_duration: float
|
@@ -53,6 +55,11 @@ def get_streaming_data(data) -> list[StreamingData]:
|
|
53
55
|
adjusted_recall=round(d["st_recall_list"][i] / min(search_stage, 100) * 100, 4),
|
54
56
|
adjusted_ndcg=round(d["st_ndcg_list"][i] / min(search_stage, 100) * 100, 4),
|
55
57
|
latency_p99=round(d["st_serial_latency_p99_list"][i] * 1000, 2),
|
58
|
+
latency_p95=(
|
59
|
+
round(d["st_serial_latency_p95_list"][i] * 1000, 2)
|
60
|
+
if "st_serial_latency_p95_list" in d and i < len(d["st_serial_latency_p95_list"])
|
61
|
+
else 0.0
|
62
|
+
),
|
56
63
|
ideal_insert_duration=d["st_ideal_insert_duration"],
|
57
64
|
insert_duration=d["insert_duration"],
|
58
65
|
optimize_duration=d["optimize_duration"],
|
@@ -2,6 +2,8 @@ import base64
|
|
2
2
|
from PIL import Image
|
3
3
|
from io import BytesIO
|
4
4
|
import os
|
5
|
+
from pathlib import Path
|
6
|
+
from importlib import resources
|
5
7
|
|
6
8
|
from vectordb_bench.frontend.components.welcome.pagestyle import pagestyle
|
7
9
|
|
@@ -11,12 +13,38 @@ def get_image_as_base64(image_path):
|
|
11
13
|
if image_path.startswith("http"):
|
12
14
|
return image_path
|
13
15
|
|
16
|
+
# Try to load from package resources first (for pip installed package)
|
17
|
+
if image_path.startswith("fig/homepage/"):
|
18
|
+
try:
|
19
|
+
# Convert fig/homepage/xxx.png to vectordb_bench.fig.homepage
|
20
|
+
package_parts = ["vectordb_bench"] + image_path.split("/")[:-1]
|
21
|
+
package_name = ".".join(package_parts)
|
22
|
+
file_name = os.path.basename(image_path)
|
23
|
+
|
24
|
+
# Get the resource content using importlib.resources
|
25
|
+
files = resources.files(package_name)
|
26
|
+
img_data = (files / file_name).read_bytes()
|
27
|
+
|
28
|
+
img = Image.open(BytesIO(img_data))
|
29
|
+
buffered = BytesIO()
|
30
|
+
img.save(buffered, format="PNG")
|
31
|
+
return f"data:image/png;base64,{base64.b64encode(buffered.getvalue()).decode()}"
|
32
|
+
except Exception:
|
33
|
+
# If package resource fails, try the original path
|
34
|
+
pass
|
35
|
+
|
36
|
+
# Fallback to file system path (for development)
|
14
37
|
path = os.path.expanduser(image_path)
|
38
|
+
if not os.path.isabs(path):
|
39
|
+
# Try relative to the vectordb_bench package directory
|
40
|
+
package_dir = Path(__file__).parent.parent.parent
|
41
|
+
path = package_dir / path
|
42
|
+
|
15
43
|
img = Image.open(path)
|
16
44
|
buffered = BytesIO()
|
17
45
|
img.save(buffered, format="PNG")
|
18
46
|
return f"data:image/png;base64,{base64.b64encode(buffered.getvalue()).decode()}"
|
19
|
-
except Exception
|
47
|
+
except Exception:
|
20
48
|
return None
|
21
49
|
|
22
50
|
|
@@ -66,12 +94,22 @@ def welcomePrams(st):
|
|
66
94
|
"title": "Label Filter Performance",
|
67
95
|
"description": (
|
68
96
|
"<span style='font-size: 17px;'>"
|
69
|
-
"To view the perfomance of datasets under different filter ratios "
|
97
|
+
"To view the perfomance of datasets under different label filter ratios "
|
70
98
|
"</span>"
|
71
99
|
),
|
72
100
|
"image": "fig/homepage/label_filter.png",
|
73
101
|
"link": "label_filter",
|
74
102
|
},
|
103
|
+
{
|
104
|
+
"title": "Int Filter Performance",
|
105
|
+
"description": (
|
106
|
+
"<span style='font-size: 17px;'>"
|
107
|
+
"To view the perfomance of datasets under different int filter ratios "
|
108
|
+
"</span>"
|
109
|
+
),
|
110
|
+
"image": "fig/homepage/label_filter.png",
|
111
|
+
"link": "int_filter",
|
112
|
+
},
|
75
113
|
{
|
76
114
|
"title": "Streaming Performance",
|
77
115
|
"description": (
|
@@ -110,7 +148,7 @@ def welcomePrams(st):
|
|
110
148
|
for option in options:
|
111
149
|
option["image"] = get_image_as_base64(option["image"])
|
112
150
|
|
113
|
-
for
|
151
|
+
for option in options[:7]:
|
114
152
|
html_content += f"""
|
115
153
|
<a href="/{option['link']}" target="_self" style="text-decoration: none;">
|
116
154
|
<div class="section-card">
|
@@ -129,7 +167,7 @@ def welcomePrams(st):
|
|
129
167
|
<div class="last-row">
|
130
168
|
"""
|
131
169
|
|
132
|
-
for option in options[
|
170
|
+
for option in options[7:9]:
|
133
171
|
html_content += f"""
|
134
172
|
<a href="/{option['link']}" target="_self" style="text-decoration: none;">
|
135
173
|
<div class="section-card">
|
@@ -219,6 +219,17 @@ def generate_label_filter_cases(dataset_with_size_type: DatasetWithSizeType) ->
|
|
219
219
|
]
|
220
220
|
|
221
221
|
|
222
|
+
def generate_int_filter_cases(dataset_with_size_type: DatasetWithSizeType) -> list[CaseConfig]:
|
223
|
+
filter_rates = dataset_with_size_type.get_manager().data.scalar_int_rates
|
224
|
+
return [
|
225
|
+
CaseConfig(
|
226
|
+
case_id=CaseType.NewIntFilterPerformanceCase,
|
227
|
+
custom_case=dict(dataset_with_size_type=dataset_with_size_type, filter_rate=filter_rate),
|
228
|
+
)
|
229
|
+
for filter_rate in filter_rates
|
230
|
+
]
|
231
|
+
|
232
|
+
|
222
233
|
UI_CASE_CLUSTERS: list[UICaseItemCluster] = [
|
223
234
|
UICaseItemCluster(
|
224
235
|
label="Search Performance Test",
|
@@ -249,6 +260,29 @@ UI_CASE_CLUSTERS: list[UICaseItemCluster] = [
|
|
249
260
|
UICaseItem(cases=generate_normal_cases(CaseType.Performance1536D500K99P)),
|
250
261
|
],
|
251
262
|
),
|
263
|
+
UICaseItemCluster(
|
264
|
+
label="New-Int-Filter Search Performance Test",
|
265
|
+
uiCaseItems=[
|
266
|
+
UICaseItem(
|
267
|
+
label=f"Int-Filter Search Performance Test - {dataset_with_size_type.value}",
|
268
|
+
description=(
|
269
|
+
f"[Batch Cases]These cases test the search performance of a vector database "
|
270
|
+
f"with dataset {dataset_with_size_type.value}"
|
271
|
+
f"under filtering rates of {dataset_with_size_type.get_manager().data.scalar_int_rates}, at varying parallel levels."
|
272
|
+
f"Results will show index building time, recall, and maximum QPS."
|
273
|
+
),
|
274
|
+
cases=generate_int_filter_cases(dataset_with_size_type),
|
275
|
+
)
|
276
|
+
for dataset_with_size_type in [
|
277
|
+
DatasetWithSizeType.CohereMedium,
|
278
|
+
DatasetWithSizeType.CohereLarge,
|
279
|
+
DatasetWithSizeType.OpenAIMedium,
|
280
|
+
DatasetWithSizeType.OpenAILarge,
|
281
|
+
DatasetWithSizeType.BioasqMedium,
|
282
|
+
DatasetWithSizeType.BioasqLarge,
|
283
|
+
]
|
284
|
+
],
|
285
|
+
),
|
252
286
|
UICaseItemCluster(
|
253
287
|
label="Label-Filter Search Performance Test",
|
254
288
|
uiCaseItems=[
|
@@ -632,6 +666,7 @@ CaseConfigParamInput_EFConstruction_ES = CaseConfigInput(
|
|
632
666
|
|
633
667
|
CaseConfigParamInput_EFConstruction_AWSOpensearch = CaseConfigInput(
|
634
668
|
label=CaseConfigParamType.EFConstruction,
|
669
|
+
displayLabel="EF Construction",
|
635
670
|
inputType=InputType.Number,
|
636
671
|
inputConfig={
|
637
672
|
"min": 100,
|
@@ -642,6 +677,7 @@ CaseConfigParamInput_EFConstruction_AWSOpensearch = CaseConfigInput(
|
|
642
677
|
|
643
678
|
CaseConfigParamInput_M_AWSOpensearch = CaseConfigInput(
|
644
679
|
label=CaseConfigParamType.M,
|
680
|
+
displayLabel="M",
|
645
681
|
inputType=InputType.Number,
|
646
682
|
inputConfig={
|
647
683
|
"min": 4,
|
@@ -652,6 +688,7 @@ CaseConfigParamInput_M_AWSOpensearch = CaseConfigInput(
|
|
652
688
|
|
653
689
|
CaseConfigParamInput_EF_SEARCH_AWSOpensearch = CaseConfigInput(
|
654
690
|
label=CaseConfigParamType.ef_search,
|
691
|
+
displayLabel="EF Search",
|
655
692
|
inputType=InputType.Number,
|
656
693
|
inputConfig={
|
657
694
|
"min": 1,
|
@@ -1177,7 +1214,7 @@ CaseConfigParamInput_ZillizLevel = CaseConfigInput(
|
|
1177
1214
|
inputType=InputType.Number,
|
1178
1215
|
inputConfig={
|
1179
1216
|
"min": 1,
|
1180
|
-
"max":
|
1217
|
+
"max": 10,
|
1181
1218
|
"value": 1,
|
1182
1219
|
},
|
1183
1220
|
)
|
@@ -1587,6 +1624,14 @@ CaseConfigParamInput_METRIC_TYPE_NAME_AWSOpensearch = CaseConfigInput(
|
|
1587
1624
|
},
|
1588
1625
|
)
|
1589
1626
|
|
1627
|
+
CaseConfigParamInput_REFRESH_INTERVAL_AWSOpensearch = CaseConfigInput(
|
1628
|
+
label=CaseConfigParamType.refresh_interval,
|
1629
|
+
displayLabel="Refresh Interval",
|
1630
|
+
inputHelp="How often to make new data searchable. (e.g., 30s, 1m).",
|
1631
|
+
inputType=InputType.Text,
|
1632
|
+
inputConfig={"value": "60s", "placeholder": "e.g. 30s, 1m"},
|
1633
|
+
)
|
1634
|
+
|
1590
1635
|
MilvusLoadConfig = [
|
1591
1636
|
CaseConfigParamInput_IndexType,
|
1592
1637
|
CaseConfigParamInput_M,
|
@@ -1951,28 +1996,30 @@ LanceDBLoadConfig = [
|
|
1951
1996
|
LanceDBPerformanceConfig = LanceDBLoadConfig
|
1952
1997
|
|
1953
1998
|
AWSOpensearchLoadingConfig = [
|
1954
|
-
|
1955
|
-
CaseConfigParamInput_M_AWSOpensearch,
|
1999
|
+
CaseConfigParamInput_REFRESH_INTERVAL_AWSOpensearch,
|
1956
2000
|
CaseConfigParamInput_ENGINE_NAME_AWSOpensearch,
|
1957
2001
|
CaseConfigParamInput_METRIC_TYPE_NAME_AWSOpensearch,
|
1958
|
-
|
1959
|
-
|
2002
|
+
CaseConfigParamInput_M_AWSOpensearch,
|
2003
|
+
CaseConfigParamInput_EFConstruction_AWSOpensearch,
|
1960
2004
|
CaseConfigParamInput_NUMBER_OF_SHARDS_AWSOpensearch,
|
1961
2005
|
CaseConfigParamInput_NUMBER_OF_REPLICAS_AWSOpensearch,
|
2006
|
+
CaseConfigParamInput_NUMBER_OF_INDEXING_CLIENTS_AWSOpensearch,
|
1962
2007
|
CaseConfigParamInput_INDEX_THREAD_QTY_AWSOpensearch,
|
2008
|
+
CaseConfigParamInput_INDEX_THREAD_QTY_DURING_FORCE_MERGE_AWSOpensearch,
|
1963
2009
|
]
|
1964
2010
|
|
1965
2011
|
AWSOpenSearchPerformanceConfig = [
|
1966
|
-
|
1967
|
-
CaseConfigParamInput_M_AWSOpensearch,
|
2012
|
+
CaseConfigParamInput_REFRESH_INTERVAL_AWSOpensearch,
|
1968
2013
|
CaseConfigParamInput_EF_SEARCH_AWSOpensearch,
|
1969
2014
|
CaseConfigParamInput_ENGINE_NAME_AWSOpensearch,
|
1970
2015
|
CaseConfigParamInput_METRIC_TYPE_NAME_AWSOpensearch,
|
1971
|
-
|
1972
|
-
|
2016
|
+
CaseConfigParamInput_M_AWSOpensearch,
|
2017
|
+
CaseConfigParamInput_EFConstruction_AWSOpensearch,
|
1973
2018
|
CaseConfigParamInput_NUMBER_OF_SHARDS_AWSOpensearch,
|
1974
2019
|
CaseConfigParamInput_NUMBER_OF_REPLICAS_AWSOpensearch,
|
2020
|
+
CaseConfigParamInput_NUMBER_OF_INDEXING_CLIENTS_AWSOpensearch,
|
1975
2021
|
CaseConfigParamInput_INDEX_THREAD_QTY_AWSOpensearch,
|
2022
|
+
CaseConfigParamInput_INDEX_THREAD_QTY_DURING_FORCE_MERGE_AWSOpensearch,
|
1976
2023
|
]
|
1977
2024
|
|
1978
2025
|
# Map DB to config
|
@@ -1997,6 +2044,10 @@ CASE_CONFIG_MAP = {
|
|
1997
2044
|
CaseLabel.Load: AWSOpensearchLoadingConfig,
|
1998
2045
|
CaseLabel.Performance: AWSOpenSearchPerformanceConfig,
|
1999
2046
|
},
|
2047
|
+
DB.OSSOpenSearch: {
|
2048
|
+
CaseLabel.Load: AWSOpensearchLoadingConfig,
|
2049
|
+
CaseLabel.Performance: AWSOpenSearchPerformanceConfig,
|
2050
|
+
},
|
2000
2051
|
DB.PgVector: {
|
2001
2052
|
CaseLabel.Load: PgVectorLoadingConfig,
|
2002
2053
|
CaseLabel.Performance: PgVectorPerformanceConfig,
|
@@ -2041,10 +2092,6 @@ CASE_CONFIG_MAP = {
|
|
2041
2092
|
CaseLabel.Load: LanceDBLoadConfig,
|
2042
2093
|
CaseLabel.Performance: LanceDBPerformanceConfig,
|
2043
2094
|
},
|
2044
|
-
DB.AWSOpenSearch: {
|
2045
|
-
CaseLabel.Load: AWSOpensearchLoadingConfig,
|
2046
|
-
CaseLabel.Performance: AWSOpenSearchPerformanceConfig,
|
2047
|
-
},
|
2048
2095
|
}
|
2049
2096
|
|
2050
2097
|
|
@@ -59,12 +59,14 @@ DB_TO_ICON = {
|
|
59
59
|
DB.Chroma: "https://assets.zilliz.com/chroma_ceb3f06ed7.png",
|
60
60
|
DB.AliyunOpenSearch: "",
|
61
61
|
DB.AWSOpenSearch: "https://assets.zilliz.com/opensearch_1eee37584e.jpeg",
|
62
|
+
DB.OSSOpenSearch: "https://images.seeklogo.com/logo-png/50/1/opensearch-icon-logo-png_seeklogo-500356.png",
|
62
63
|
DB.MongoDB: "",
|
63
64
|
DB.TiDB: "https://img2.pingcap.com/forms/3/d/3d7fd5f9767323d6f037795704211ac44b4923d6.png",
|
64
65
|
DB.Clickhouse: "",
|
65
66
|
DB.Vespa: "https://vespa.ai/vespa-content/uploads/2025/01/Vespa-symbol-green-rgb.png.webp",
|
66
67
|
DB.LanceDB: "",
|
67
68
|
DB.OceanBase: "",
|
69
|
+
DB.S3Vectors: "https://assets.zilliz.com/s3_vectors_daf370b4e5.png",
|
68
70
|
}
|
69
71
|
|
70
72
|
# RedisCloud color: #0D6EFD
|
@@ -79,6 +81,7 @@ COLOR_MAP = {
|
|
79
81
|
DB.PgVector.value: "#4C779A",
|
80
82
|
DB.Redis.value: "#0D6EFD",
|
81
83
|
DB.AWSOpenSearch.value: "#0DCAF0",
|
84
|
+
DB.OSSOpenSearch.value: "#0DCAF0",
|
82
85
|
DB.TiDB.value: "#0D6EFD",
|
83
86
|
DB.Vespa.value: "#61d790",
|
84
87
|
}
|
@@ -60,7 +60,7 @@ def main():
|
|
60
60
|
getResults(resultesContainer, "vectordb_bench_concurrent")
|
61
61
|
|
62
62
|
# main
|
63
|
-
latency_type = st.radio("Latency Type", options=["latency_p99", "latency_avg"])
|
63
|
+
latency_type = st.radio("Latency Type", options=["latency_p99", "latency_p95", "latency_avg"])
|
64
64
|
drawChartsByCase(shownData, showCaseNames, st.container(), latency_type=latency_type)
|
65
65
|
|
66
66
|
# footer
|
@@ -0,0 +1,56 @@
|
|
1
|
+
import streamlit as st
|
2
|
+
from vectordb_bench.backend.filter import FilterOp
|
3
|
+
from vectordb_bench.frontend.components.check_results.footer import footer
|
4
|
+
from vectordb_bench.frontend.components.check_results.headerIcon import drawHeaderIcon
|
5
|
+
from vectordb_bench.frontend.components.check_results.nav import (
|
6
|
+
NavToQuriesPerDollar,
|
7
|
+
NavToRunTest,
|
8
|
+
NavToPages,
|
9
|
+
)
|
10
|
+
from vectordb_bench.frontend.components.int_filter.charts import drawCharts
|
11
|
+
from vectordb_bench.frontend.components.check_results.filters import getshownData
|
12
|
+
from vectordb_bench.frontend.config.styles import FAVICON
|
13
|
+
from vectordb_bench.interface import benchmark_runner
|
14
|
+
|
15
|
+
|
16
|
+
def main():
|
17
|
+
# set page config
|
18
|
+
st.set_page_config(
|
19
|
+
page_title="Int Filter",
|
20
|
+
page_icon=FAVICON,
|
21
|
+
layout="wide",
|
22
|
+
# initial_sidebar_state="collapsed",
|
23
|
+
)
|
24
|
+
|
25
|
+
# header
|
26
|
+
drawHeaderIcon(st)
|
27
|
+
|
28
|
+
# navigate
|
29
|
+
NavToPages(st)
|
30
|
+
|
31
|
+
allResults = benchmark_runner.get_results()
|
32
|
+
|
33
|
+
st.title("Vector Database Benchmark (Int Filter)")
|
34
|
+
|
35
|
+
# results selector and filter
|
36
|
+
resultSelectorContainer = st.sidebar.container()
|
37
|
+
shownData, failedTasks, showCaseNames = getshownData(
|
38
|
+
resultSelectorContainer, allResults, filter_type=FilterOp.NumGE
|
39
|
+
)
|
40
|
+
|
41
|
+
resultSelectorContainer.divider()
|
42
|
+
|
43
|
+
# nav
|
44
|
+
navContainer = st.sidebar.container()
|
45
|
+
NavToRunTest(navContainer)
|
46
|
+
NavToQuriesPerDollar(navContainer)
|
47
|
+
|
48
|
+
# charts
|
49
|
+
drawCharts(st, shownData)
|
50
|
+
|
51
|
+
# footer
|
52
|
+
footer(st.container())
|
53
|
+
|
54
|
+
|
55
|
+
if __name__ == "__main__":
|
56
|
+
main()
|