vectordb-bench 0.0.30__py3-none-any.whl → 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (76) hide show
  1. vectordb_bench/__init__.py +14 -27
  2. vectordb_bench/backend/assembler.py +19 -6
  3. vectordb_bench/backend/cases.py +186 -23
  4. vectordb_bench/backend/clients/__init__.py +16 -0
  5. vectordb_bench/backend/clients/api.py +22 -1
  6. vectordb_bench/backend/clients/aws_opensearch/aws_opensearch.py +82 -41
  7. vectordb_bench/backend/clients/aws_opensearch/config.py +23 -4
  8. vectordb_bench/backend/clients/chroma/chroma.py +6 -2
  9. vectordb_bench/backend/clients/elastic_cloud/config.py +19 -1
  10. vectordb_bench/backend/clients/elastic_cloud/elastic_cloud.py +133 -45
  11. vectordb_bench/backend/clients/milvus/config.py +1 -0
  12. vectordb_bench/backend/clients/milvus/milvus.py +74 -22
  13. vectordb_bench/backend/clients/oceanbase/cli.py +100 -0
  14. vectordb_bench/backend/clients/oceanbase/config.py +125 -0
  15. vectordb_bench/backend/clients/oceanbase/oceanbase.py +215 -0
  16. vectordb_bench/backend/clients/pinecone/pinecone.py +39 -25
  17. vectordb_bench/backend/clients/qdrant_cloud/config.py +59 -3
  18. vectordb_bench/backend/clients/qdrant_cloud/qdrant_cloud.py +100 -33
  19. vectordb_bench/backend/dataset.py +143 -27
  20. vectordb_bench/backend/filter.py +76 -0
  21. vectordb_bench/backend/runner/__init__.py +3 -3
  22. vectordb_bench/backend/runner/mp_runner.py +52 -39
  23. vectordb_bench/backend/runner/rate_runner.py +68 -52
  24. vectordb_bench/backend/runner/read_write_runner.py +125 -68
  25. vectordb_bench/backend/runner/serial_runner.py +56 -23
  26. vectordb_bench/backend/task_runner.py +48 -20
  27. vectordb_bench/cli/cli.py +59 -1
  28. vectordb_bench/cli/vectordbbench.py +3 -0
  29. vectordb_bench/frontend/components/check_results/data.py +16 -11
  30. vectordb_bench/frontend/components/check_results/filters.py +53 -25
  31. vectordb_bench/frontend/components/check_results/headerIcon.py +16 -13
  32. vectordb_bench/frontend/components/check_results/nav.py +20 -0
  33. vectordb_bench/frontend/components/custom/displayCustomCase.py +43 -8
  34. vectordb_bench/frontend/components/custom/displaypPrams.py +10 -5
  35. vectordb_bench/frontend/components/custom/getCustomConfig.py +10 -0
  36. vectordb_bench/frontend/components/label_filter/charts.py +60 -0
  37. vectordb_bench/frontend/components/run_test/caseSelector.py +48 -52
  38. vectordb_bench/frontend/components/run_test/dbSelector.py +9 -5
  39. vectordb_bench/frontend/components/run_test/inputWidget.py +48 -0
  40. vectordb_bench/frontend/components/run_test/submitTask.py +3 -1
  41. vectordb_bench/frontend/components/streaming/charts.py +253 -0
  42. vectordb_bench/frontend/components/streaming/data.py +62 -0
  43. vectordb_bench/frontend/components/tables/data.py +1 -1
  44. vectordb_bench/frontend/components/welcome/explainPrams.py +66 -0
  45. vectordb_bench/frontend/components/welcome/pagestyle.py +106 -0
  46. vectordb_bench/frontend/components/welcome/welcomePrams.py +147 -0
  47. vectordb_bench/frontend/config/dbCaseConfigs.py +307 -40
  48. vectordb_bench/frontend/config/styles.py +32 -2
  49. vectordb_bench/frontend/pages/concurrent.py +5 -1
  50. vectordb_bench/frontend/pages/custom.py +4 -0
  51. vectordb_bench/frontend/pages/label_filter.py +56 -0
  52. vectordb_bench/frontend/pages/quries_per_dollar.py +5 -1
  53. vectordb_bench/frontend/pages/results.py +60 -0
  54. vectordb_bench/frontend/pages/run_test.py +3 -3
  55. vectordb_bench/frontend/pages/streaming.py +135 -0
  56. vectordb_bench/frontend/pages/tables.py +4 -0
  57. vectordb_bench/frontend/vdb_benchmark.py +16 -41
  58. vectordb_bench/interface.py +6 -2
  59. vectordb_bench/metric.py +15 -1
  60. vectordb_bench/models.py +31 -11
  61. vectordb_bench/results/ElasticCloud/result_20250318_standard_elasticcloud.json +5890 -0
  62. vectordb_bench/results/Milvus/result_20250509_standard_milvus.json +6138 -0
  63. vectordb_bench/results/OpenSearch/result_20250224_standard_opensearch.json +7319 -0
  64. vectordb_bench/results/Pinecone/result_20250124_standard_pinecone.json +2365 -0
  65. vectordb_bench/results/QdrantCloud/result_20250602_standard_qdrantcloud.json +3556 -0
  66. vectordb_bench/results/ZillizCloud/result_20250613_standard_zillizcloud.json +6290 -0
  67. vectordb_bench/results/dbPrices.json +12 -4
  68. {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.0.dist-info}/METADATA +85 -32
  69. {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.0.dist-info}/RECORD +73 -56
  70. vectordb_bench/results/ZillizCloud/result_20230727_standard_zillizcloud.json +0 -791
  71. vectordb_bench/results/ZillizCloud/result_20230808_standard_zillizcloud.json +0 -679
  72. vectordb_bench/results/ZillizCloud/result_20240105_standard_202401_zillizcloud.json +0 -1352
  73. {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.0.dist-info}/WHEEL +0 -0
  74. {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.0.dist-info}/entry_points.txt +0 -0
  75. {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.0.dist-info}/licenses/LICENSE +0 -0
  76. {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.0.dist-info}/top_level.txt +0 -0
@@ -4,6 +4,7 @@ from pydantic import BaseModel
4
4
  from vectordb_bench.backend.cases import CaseLabel, CaseType
5
5
  from vectordb_bench.backend.clients import DB
6
6
  from vectordb_bench.backend.clients.api import IndexType, MetricType, SQType
7
+ from vectordb_bench.backend.dataset import DatasetWithSizeType
7
8
  from vectordb_bench.frontend.components.custom.getCustomConfig import get_custom_configs
8
9
 
9
10
  from vectordb_bench.models import CaseConfig, CaseConfigParamType
@@ -23,32 +24,58 @@ class BatchCaseConfig(BaseModel):
23
24
  cases: list[CaseConfig] = []
24
25
 
25
26
 
27
+ class InputType(IntEnum):
28
+ Text = 20001
29
+ Number = 20002
30
+ Option = 20003
31
+ Float = 20004
32
+ Bool = 20005
33
+
34
+
35
+ class ConfigInput(BaseModel):
36
+ label: CaseConfigParamType
37
+ inputType: InputType = InputType.Text
38
+ inputConfig: dict = {}
39
+ inputHelp: str = ""
40
+ displayLabel: str = ""
41
+
42
+
43
+ class CaseConfigInput(ConfigInput):
44
+ # todo type should be a function
45
+ isDisplayed: typing.Any = lambda config: True
46
+
47
+
26
48
  class UICaseItem(BaseModel):
27
49
  isLine: bool = False
50
+ key: str = ""
28
51
  label: str = ""
29
52
  description: str = ""
30
53
  cases: list[CaseConfig] = []
31
54
  caseLabel: CaseLabel = CaseLabel.Performance
55
+ extra_custom_case_config_inputs: list[ConfigInput] = []
56
+ tmp_custom_config: dict = dict()
32
57
 
33
58
  def __init__(
34
59
  self,
35
60
  isLine: bool = False,
36
- case_id: CaseType | None = None,
37
- custom_case: dict | None = None,
38
- cases: list[CaseConfig] | None = None,
61
+ cases: list[CaseConfig] = None,
39
62
  label: str = "",
40
63
  description: str = "",
41
64
  caseLabel: CaseLabel = CaseLabel.Performance,
65
+ **kwargs,
42
66
  ):
43
67
  if isLine is True:
44
- super().__init__(isLine=True)
45
- elif case_id is not None and isinstance(case_id, CaseType):
46
- c = case_id.case_cls(custom_case)
68
+ super().__init__(isLine=True, **kwargs)
69
+ if cases is None:
70
+ cases = []
71
+ elif len(cases) == 1:
72
+ c = cases[0].case
47
73
  super().__init__(
48
- label=c.name,
49
- description=c.description,
50
- cases=[CaseConfig(case_id=case_id, custom_case=custom_case)],
51
- caseLabel=c.label,
74
+ label=label if label else c.name,
75
+ description=description if description else c.description,
76
+ cases=cases,
77
+ caseLabel=caseLabel,
78
+ **kwargs,
52
79
  )
53
80
  else:
54
81
  super().__init__(
@@ -56,10 +83,26 @@ class UICaseItem(BaseModel):
56
83
  description=description,
57
84
  cases=cases,
58
85
  caseLabel=caseLabel,
86
+ **kwargs,
59
87
  )
60
88
 
61
89
  def __hash__(self) -> int:
62
- return hash(self.json())
90
+ return hash(self.key if self.key else self.label)
91
+
92
+ def get_cases(self) -> list[CaseConfig]:
93
+ # return self.cases
94
+ if len(self.extra_custom_case_config_inputs) == 0:
95
+ return self.cases
96
+ cases = [
97
+ CaseConfig(
98
+ case_id=c.case_id,
99
+ k=c.k,
100
+ concurrency_search_config=c.concurrency_search_config,
101
+ custom_case={**c.custom_case, **self.tmp_custom_config},
102
+ )
103
+ for c in self.cases
104
+ ]
105
+ return cases
63
106
 
64
107
 
65
108
  class UICaseItemCluster(BaseModel):
@@ -70,47 +113,181 @@ class UICaseItemCluster(BaseModel):
70
113
  def get_custom_case_items() -> list[UICaseItem]:
71
114
  custom_configs = get_custom_configs()
72
115
  return [
73
- UICaseItem(case_id=CaseType.PerformanceCustomDataset, custom_case=custom_config.dict())
116
+ UICaseItem(
117
+ label=f"{custom_config.dataset_config.name} - None Filter",
118
+ cases=[
119
+ CaseConfig(
120
+ case_id=CaseType.PerformanceCustomDataset,
121
+ custom_case={
122
+ **custom_config.dict(),
123
+ "use_filter": False,
124
+ },
125
+ )
126
+ ],
127
+ )
128
+ for custom_config in custom_configs
129
+ ] + [
130
+ UICaseItem(
131
+ label=f"{custom_config.dataset_config.name} - Filter",
132
+ description=(
133
+ f'[Batch Cases] This case evaluate search performance under filtering constraints like "color==red."'
134
+ f"Vdbbench provides an additional column of randomly distributed labels with fixed proportions, "
135
+ f"such as [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5]. "
136
+ f"Essentially, vdbbench will test each filter label in your own dataset to"
137
+ " assess the vector database's search performance across different filtering conditions."
138
+ ),
139
+ cases=[
140
+ CaseConfig(
141
+ case_id=CaseType.PerformanceCustomDataset,
142
+ custom_case={
143
+ **custom_config.dict(),
144
+ "use_filter": True,
145
+ "label_percentage": label_percentage,
146
+ },
147
+ )
148
+ for label_percentage in custom_config.dataset_config.label_percentages
149
+ ],
150
+ )
74
151
  for custom_config in custom_configs
152
+ if custom_config.dataset_config.label_percentages
75
153
  ]
76
154
 
77
155
 
156
+ def generate_normal_cases(case_id: CaseType, custom_case: dict | None = None) -> list[CaseConfig]:
157
+ return [CaseConfig(case_id=case_id, custom_case=custom_case)]
158
+
159
+
78
160
  def get_custom_case_cluter() -> UICaseItemCluster:
79
161
  return UICaseItemCluster(label="Custom Search Performance Test", uiCaseItems=get_custom_case_items())
80
162
 
81
163
 
164
+ def generate_custom_streaming_case() -> CaseConfig:
165
+ return CaseConfig(
166
+ case_id=CaseType.StreamingPerformanceCase,
167
+ custom_case=dict(),
168
+ )
169
+
170
+
171
+ custom_streaming_config: list[ConfigInput] = [
172
+ ConfigInput(
173
+ label=CaseConfigParamType.dataset_with_size_type,
174
+ displayLabel="dataset",
175
+ inputType=InputType.Option,
176
+ inputConfig=dict(options=[dataset.value for dataset in DatasetWithSizeType]),
177
+ ),
178
+ ConfigInput(
179
+ label=CaseConfigParamType.insert_rate,
180
+ inputType=InputType.Number,
181
+ inputConfig=dict(step=100, min=100, max=4_000, value=200),
182
+ inputHelp="fixed insertion rate (rows/s), must be divisible by 100",
183
+ ),
184
+ ConfigInput(
185
+ label=CaseConfigParamType.search_stages,
186
+ inputType=InputType.Text,
187
+ inputConfig=dict(value="[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]"),
188
+ inputHelp="0<=stage<1.0; do search test when inserting a specified amount of data.",
189
+ ),
190
+ ConfigInput(
191
+ label=CaseConfigParamType.concurrencies,
192
+ inputType=InputType.Text,
193
+ inputConfig=dict(value="[5, 10, 20]"),
194
+ inputHelp="concurrent num of search test while insertion; record max-qps.",
195
+ ),
196
+ ConfigInput(
197
+ label=CaseConfigParamType.optimize_after_write,
198
+ inputType=InputType.Option,
199
+ inputConfig=dict(options=[True, False]),
200
+ inputHelp="whether to optimize after inserting all data",
201
+ ),
202
+ ConfigInput(
203
+ label=CaseConfigParamType.read_dur_after_write,
204
+ inputType=InputType.Number,
205
+ inputConfig=dict(step=10, min=30, max=360_000, value=30),
206
+ inputHelp="search test duration after inserting all data",
207
+ ),
208
+ ]
209
+
210
+
211
+ def generate_label_filter_cases(dataset_with_size_type: DatasetWithSizeType) -> list[CaseConfig]:
212
+ label_percentages = dataset_with_size_type.get_manager().data.scalar_label_percentages
213
+ return [
214
+ CaseConfig(
215
+ case_id=CaseType.LabelFilterPerformanceCase,
216
+ custom_case=dict(dataset_with_size_type=dataset_with_size_type, label_percentage=label_percentage),
217
+ )
218
+ for label_percentage in label_percentages
219
+ ]
220
+
221
+
82
222
  UI_CASE_CLUSTERS: list[UICaseItemCluster] = [
83
223
  UICaseItemCluster(
84
224
  label="Search Performance Test",
85
225
  uiCaseItems=[
86
- UICaseItem(case_id=CaseType.Performance768D100M),
87
- UICaseItem(case_id=CaseType.Performance768D10M),
88
- UICaseItem(case_id=CaseType.Performance768D1M),
226
+ UICaseItem(cases=generate_normal_cases(CaseType.Performance768D100M)),
227
+ UICaseItem(cases=generate_normal_cases(CaseType.Performance768D10M)),
228
+ UICaseItem(cases=generate_normal_cases(CaseType.Performance768D1M)),
229
+ UICaseItem(isLine=True),
230
+ UICaseItem(cases=generate_normal_cases(CaseType.Performance1024D1M)),
231
+ UICaseItem(cases=generate_normal_cases(CaseType.Performance1024D10M)),
89
232
  UICaseItem(isLine=True),
90
- UICaseItem(case_id=CaseType.Performance1536D5M),
91
- UICaseItem(case_id=CaseType.Performance1536D500K),
92
- UICaseItem(case_id=CaseType.Performance1536D50K),
233
+ UICaseItem(cases=generate_normal_cases(CaseType.Performance1536D5M)),
234
+ UICaseItem(cases=generate_normal_cases(CaseType.Performance1536D500K)),
235
+ UICaseItem(cases=generate_normal_cases(CaseType.Performance1536D50K)),
93
236
  ],
94
237
  ),
95
238
  UICaseItemCluster(
96
- label="Filter Search Performance Test",
239
+ label="Int-Filter Search Performance Test",
97
240
  uiCaseItems=[
98
- UICaseItem(case_id=CaseType.Performance768D10M1P),
99
- UICaseItem(case_id=CaseType.Performance768D10M99P),
100
- UICaseItem(case_id=CaseType.Performance768D1M1P),
101
- UICaseItem(case_id=CaseType.Performance768D1M99P),
241
+ UICaseItem(cases=generate_normal_cases(CaseType.Performance768D10M1P)),
242
+ UICaseItem(cases=generate_normal_cases(CaseType.Performance768D10M99P)),
243
+ UICaseItem(cases=generate_normal_cases(CaseType.Performance768D1M1P)),
244
+ UICaseItem(cases=generate_normal_cases(CaseType.Performance768D1M99P)),
102
245
  UICaseItem(isLine=True),
103
- UICaseItem(case_id=CaseType.Performance1536D5M1P),
104
- UICaseItem(case_id=CaseType.Performance1536D5M99P),
105
- UICaseItem(case_id=CaseType.Performance1536D500K1P),
106
- UICaseItem(case_id=CaseType.Performance1536D500K99P),
246
+ UICaseItem(cases=generate_normal_cases(CaseType.Performance1536D5M1P)),
247
+ UICaseItem(cases=generate_normal_cases(CaseType.Performance1536D5M99P)),
248
+ UICaseItem(cases=generate_normal_cases(CaseType.Performance1536D500K1P)),
249
+ UICaseItem(cases=generate_normal_cases(CaseType.Performance1536D500K99P)),
250
+ ],
251
+ ),
252
+ UICaseItemCluster(
253
+ label="Label-Filter Search Performance Test",
254
+ uiCaseItems=[
255
+ UICaseItem(
256
+ label=f"Label-Filter Search Performance Test - {dataset_with_size_type.value}",
257
+ description=(
258
+ f'[Batch Cases] These cases evaluate search performance under filtering constraints like "color==red." '
259
+ "Vdbbench provides an additional column of randomly distributed labels with fixed proportions, "
260
+ f"such as {dataset_with_size_type.get_manager().data.scalar_label_percentages}. "
261
+ f"Essentially, vdbbench will test each filter label in {dataset_with_size_type.value} to "
262
+ "assess the vector database's search performance across different filtering conditions. "
263
+ ),
264
+ cases=generate_label_filter_cases(dataset_with_size_type),
265
+ )
266
+ for dataset_with_size_type in DatasetWithSizeType
107
267
  ],
108
268
  ),
109
269
  UICaseItemCluster(
110
270
  label="Capacity Test",
111
271
  uiCaseItems=[
112
- UICaseItem(case_id=CaseType.CapacityDim960),
113
- UICaseItem(case_id=CaseType.CapacityDim128),
272
+ UICaseItem(cases=generate_normal_cases(CaseType.CapacityDim960)),
273
+ UICaseItem(cases=generate_normal_cases(CaseType.CapacityDim128)),
274
+ ],
275
+ ),
276
+ UICaseItemCluster(
277
+ label="Streaming Test",
278
+ uiCaseItems=[
279
+ UICaseItem(
280
+ label="Customize Streaming Test",
281
+ description=(
282
+ "This case test the search performance during insertion. "
283
+ "VDBB will send insert requests to VectorDB at a fixed rate and "
284
+ "conduct a search test once the insert count reaches the search_stages. "
285
+ "After all data is inserted, optimization and search tests can be "
286
+ "optionally performed."
287
+ ),
288
+ cases=[generate_custom_streaming_case()],
289
+ extra_custom_case_config_inputs=custom_streaming_config,
290
+ )
114
291
  ],
115
292
  ),
116
293
  ]
@@ -123,14 +300,8 @@ DISPLAY_CASE_ORDER: list[CaseType] = [
123
300
  CaseType.Performance1536D5M,
124
301
  CaseType.Performance1536D500K,
125
302
  CaseType.Performance1536D50K,
126
- CaseType.Performance768D10M1P,
127
- CaseType.Performance768D1M1P,
128
- CaseType.Performance1536D5M1P,
129
- CaseType.Performance1536D500K1P,
130
- CaseType.Performance768D10M99P,
131
- CaseType.Performance768D1M99P,
132
- CaseType.Performance1536D5M99P,
133
- CaseType.Performance1536D500K99P,
303
+ CaseType.Performance1024D1M,
304
+ CaseType.Performance1024D10M,
134
305
  CaseType.CapacityDim960,
135
306
  CaseType.CapacityDim128,
136
307
  ]
@@ -455,7 +626,7 @@ CaseConfigParamInput_EFConstruction_ES = CaseConfigInput(
455
626
  inputConfig={
456
627
  "min": 8,
457
628
  "max": 512,
458
- "value": 360,
629
+ "value": 128,
459
630
  },
460
631
  )
461
632
 
@@ -557,6 +728,67 @@ CaseConfigParamInput_EFConstruction_PgVector = CaseConfigInput(
557
728
  isDisplayed=lambda config: config[CaseConfigParamType.IndexType] == IndexType.HNSW.value,
558
729
  )
559
730
 
731
+ CaseConfigParamInput_IndexType_ES = CaseConfigInput(
732
+ label=CaseConfigParamType.IndexType,
733
+ inputType=InputType.Option,
734
+ inputConfig={
735
+ "options": [
736
+ IndexType.ES_HNSW.value,
737
+ IndexType.ES_HNSW_INT8.value,
738
+ IndexType.ES_HNSW_INT4.value,
739
+ IndexType.ES_HNSW_BBQ.value,
740
+ ],
741
+ },
742
+ )
743
+
744
+ CaseConfigParamInput_NumShards_ES = CaseConfigInput(
745
+ label=CaseConfigParamType.number_of_shards,
746
+ inputType=InputType.Number,
747
+ inputConfig={
748
+ "min": 1,
749
+ "max": 128,
750
+ "value": 1,
751
+ },
752
+ )
753
+
754
+ CaseConfigParamInput_NumReplica_ES = CaseConfigInput(
755
+ label=CaseConfigParamType.number_of_replicas,
756
+ inputType=InputType.Number,
757
+ inputConfig={
758
+ "min": 0,
759
+ "max": 10,
760
+ "value": 0,
761
+ },
762
+ )
763
+
764
+ CaseConfigParamInput_RefreshInterval_ES = CaseConfigInput(
765
+ label=CaseConfigParamType.refresh_interval,
766
+ inputType=InputType.Text,
767
+ inputConfig={"value": "30s"},
768
+ )
769
+
770
+ CaseConfigParamInput_UseRescore_ES = CaseConfigInput(
771
+ label=CaseConfigParamType.use_rescore,
772
+ inputType=InputType.Bool,
773
+ inputConfig={"value": False},
774
+ isDisplayed=lambda config: config.get(CaseConfigParamType.IndexType, None) != IndexType.ES_HNSW.value,
775
+ )
776
+
777
+ CaseConfigParamInput_OversampleRatio_ES = CaseConfigInput(
778
+ label=CaseConfigParamType.oversample_ratio,
779
+ inputType=InputType.Float,
780
+ inputConfig={"min": 1.0, "max": 100.0, "value": 2.0},
781
+ isDisplayed=lambda config: config.get(CaseConfigParamType.use_rescore, False),
782
+ inputHelp="num_oversample = oversample_ratio * top_k.",
783
+ )
784
+
785
+ CaseConfigParamInput_UseRouting_ES = CaseConfigInput(
786
+ label=CaseConfigParamType.use_routing,
787
+ inputType=InputType.Bool,
788
+ inputConfig={"value": False},
789
+ inputHelp="Using routing to improve label-filter case performance",
790
+ )
791
+
560
792
 
561
793
  CaseConfigParamInput_M_ES = CaseConfigInput(
562
794
  label=CaseConfigParamType.M,
@@ -564,10 +796,11 @@ CaseConfigParamInput_M_ES = CaseConfigInput(
564
796
  inputConfig={
565
797
  "min": 4,
566
798
  "max": 64,
567
- "value": 30,
799
+ "value": 16,
568
800
  },
569
801
  )
570
802
 
803
+
571
804
  CaseConfigParamInput_NumCandidates_ES = CaseConfigInput(
572
805
  label=CaseConfigParamType.numCandidates,
573
806
  inputType=InputType.Number,
@@ -1204,6 +1437,13 @@ CaseConfigParamInput_CacheSize_MariaDB = CaseConfigInput(
1204
1437
  },
1205
1438
  isDisplayed=lambda config: config.get(CaseConfigParamType.IndexType, None) == IndexType.HNSW.value,
1206
1439
  )
1440
+ CaseConfigParamInput_Milvus_use_partition_key = CaseConfigInput(
1441
+ label=CaseConfigParamType.use_partition_key,
1442
+ inputType=InputType.Option,
1443
+ inputHelp="whether to use partition_key for label-filter cases. only works in label-filter cases",
1444
+ inputConfig={"options": [True, False]},
1445
+ )
1446
+
1207
1447
 
1208
1448
  CaseConfigParamInput_MongoDBQuantizationType = CaseConfigInput(
1209
1449
  label=CaseConfigParamType.mongodb_quantization_type,
@@ -1362,6 +1602,7 @@ MilvusLoadConfig = [
1362
1602
  CaseConfigParamInput_Refine,
1363
1603
  CaseConfigParamInput_RefineType,
1364
1604
  CaseConfigParamInput_NRQ,
1605
+ CaseConfigParamInput_Milvus_use_partition_key,
1365
1606
  ]
1366
1607
  MilvusPerformanceConfig = [
1367
1608
  CaseConfigParamInput_IndexType,
@@ -1389,6 +1630,7 @@ MilvusPerformanceConfig = [
1389
1630
  CaseConfigParamInput_Refine,
1390
1631
  CaseConfigParamInput_RefineType,
1391
1632
  CaseConfigParamInput_RefineK,
1633
+ CaseConfigParamInput_Milvus_use_partition_key,
1392
1634
  ]
1393
1635
 
1394
1636
  WeaviateLoadConfig = [
@@ -1401,11 +1643,25 @@ WeaviatePerformanceConfig = [
1401
1643
  CaseConfigParamInput_EF_Weaviate,
1402
1644
  ]
1403
1645
 
1404
- ESLoadingConfig = [CaseConfigParamInput_EFConstruction_ES, CaseConfigParamInput_M_ES]
1646
+ ESLoadingConfig = [
1647
+ CaseConfigParamInput_IndexType_ES,
1648
+ CaseConfigParamInput_NumShards_ES,
1649
+ CaseConfigParamInput_NumReplica_ES,
1650
+ CaseConfigParamInput_RefreshInterval_ES,
1651
+ CaseConfigParamInput_EFConstruction_ES,
1652
+ CaseConfigParamInput_M_ES,
1653
+ ]
1405
1654
  ESPerformanceConfig = [
1655
+ CaseConfigParamInput_IndexType_ES,
1656
+ CaseConfigParamInput_NumShards_ES,
1657
+ CaseConfigParamInput_NumReplica_ES,
1658
+ CaseConfigParamInput_RefreshInterval_ES,
1406
1659
  CaseConfigParamInput_EFConstruction_ES,
1407
1660
  CaseConfigParamInput_M_ES,
1408
1661
  CaseConfigParamInput_NumCandidates_ES,
1662
+ CaseConfigParamInput_UseRescore_ES,
1663
+ CaseConfigParamInput_OversampleRatio_ES,
1664
+ CaseConfigParamInput_UseRouting_ES,
1409
1665
  ]
1410
1666
 
1411
1667
  AWSOpensearchLoadingConfig = [
@@ -1724,6 +1980,7 @@ CASE_CONFIG_MAP = {
1724
1980
  DB.Milvus: {
1725
1981
  CaseLabel.Load: MilvusLoadConfig,
1726
1982
  CaseLabel.Performance: MilvusPerformanceConfig,
1983
+ CaseLabel.Streaming: MilvusPerformanceConfig,
1727
1984
  },
1728
1985
  DB.ZillizCloud: {
1729
1986
  CaseLabel.Performance: ZillizCloudPerformanceConfig,
@@ -1789,3 +2046,13 @@ CASE_CONFIG_MAP = {
1789
2046
  CaseLabel.Performance: AWSOpenSearchPerformanceConfig,
1790
2047
  },
1791
2048
  }
2049
+
2050
+
2051
+ def get_case_config_inputs(db: DB, case_label: CaseLabel) -> list[CaseConfigInput]:
2052
+ if db not in CASE_CONFIG_MAP:
2053
+ return []
2054
+ if case_label == CaseLabel.Load:
2055
+ return CASE_CONFIG_MAP[db][CaseLabel.Load]
2056
+ elif case_label == CaseLabel.Performance or case_label == CaseLabel.Streaming:
2057
+ return CASE_CONFIG_MAP[db][CaseLabel.Performance]
2058
+ return []
@@ -3,7 +3,8 @@ from vectordb_bench.models import DB
3
3
  # style const
4
4
  DB_SELECTOR_COLUMNS = 6
5
5
  DB_CONFIG_SETTING_COLUMNS = 3
6
- CASE_CONFIG_SETTING_COLUMNS = 4
6
+ CASE_CONFIG_SETTING_COLUMNS = 2
7
+ DB_CASE_CONFIG_SETTING_COLUMNS = 4
7
8
  CHECKBOX_INDENT = 30
8
9
  TASK_LABEL_INPUT_COLUMNS = 2
9
10
  CHECKBOX_MAX_COLUMNS = 4
@@ -16,6 +17,9 @@ SIDEBAR_CONTROL_COLUMNS = 3
16
17
  LEGEND_RECT_WIDTH = 24
17
18
  LEGEND_RECT_HEIGHT = 16
18
19
  LEGEND_TEXT_FONT_SIZE = 14
20
+ STREAMING_CHART_COLUMNS = 2
21
+ SCATTER_MAKER_SIZE = 8
22
+ SCATTER_LINE_WIDTH = 2
19
23
 
20
24
  PATTERN_SHAPES = ["", "+", "\\", "x", ".", "|", "/", "-"]
21
25
 
@@ -41,15 +45,26 @@ DB_TO_ICON = {
41
45
  DB.ElasticCloud: "https://assets.zilliz.com/Elatic_Cloud_dad8d6a3a3.png",
42
46
  DB.Pinecone: "https://assets.zilliz.com/pinecone_94d8154979.png",
43
47
  DB.QdrantCloud: "https://assets.zilliz.com/qdrant_b691674fcd.png",
48
+ DB.QdrantLocal: "https://assets.zilliz.com/qdrant_b691674fcd.png",
44
49
  DB.WeaviateCloud: "https://assets.zilliz.com/weaviate_4f6f171ebe.png",
45
50
  DB.PgVector: "https://assets.zilliz.com/PG_Vector_d464f2ef5f.png",
46
51
  DB.PgVectoRS: "https://assets.zilliz.com/PG_Vector_d464f2ef5f.png",
52
+ DB.PgVectorScale: "",
53
+ DB.PgDiskANN: "https://assets.zilliz.com/PG_Vector_d464f2ef5f.png",
54
+ DB.AlloyDB: "",
55
+ DB.MemoryDB: "",
56
+ DB.AliyunElasticsearch: "",
47
57
  DB.Redis: "https://assets.zilliz.com/Redis_Cloud_74b8bfef39.png",
58
+ DB.MariaDB: "",
48
59
  DB.Chroma: "https://assets.zilliz.com/chroma_ceb3f06ed7.png",
60
+ DB.AliyunOpenSearch: "",
49
61
  DB.AWSOpenSearch: "https://assets.zilliz.com/opensearch_1eee37584e.jpeg",
62
+ DB.MongoDB: "",
50
63
  DB.TiDB: "https://img2.pingcap.com/forms/3/d/3d7fd5f9767323d6f037795704211ac44b4923d6.png",
64
+ DB.Clickhouse: "",
51
65
  DB.Vespa: "https://vespa.ai/vespa-content/uploads/2025/01/Vespa-symbol-green-rgb.png.webp",
52
- DB.LanceDB: "https://raw.githubusercontent.com/lancedb/lancedb/main/docs/src/assets/logo.png",
66
+ DB.LanceDB: "",
67
+ DB.OceanBase: "",
53
68
  }
54
69
 
55
70
  # RedisCloud color: #0D6EFD
@@ -67,3 +82,18 @@ COLOR_MAP = {
67
82
  DB.TiDB.value: "#0D6EFD",
68
83
  DB.Vespa.value: "#61d790",
69
84
  }
85
+
86
+ COLORS_10 = [
87
+ "#a6cee3",
88
+ "#1f78b4",
89
+ "#b2df8a",
90
+ "#33a02c",
91
+ "#fb9a99",
92
+ "#e31a1c",
93
+ "#fdbf6f",
94
+ "#ff7f00",
95
+ "#cab2d6",
96
+ "#6a3d9a",
97
+ ]
98
+
99
+ COLORS_2 = ["#1f78b4", "#d8b365"]