vectordb-bench 0.0.30__py3-none-any.whl → 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vectordb_bench/__init__.py +14 -27
- vectordb_bench/backend/assembler.py +19 -6
- vectordb_bench/backend/cases.py +186 -23
- vectordb_bench/backend/clients/__init__.py +16 -0
- vectordb_bench/backend/clients/api.py +22 -1
- vectordb_bench/backend/clients/aws_opensearch/aws_opensearch.py +82 -41
- vectordb_bench/backend/clients/aws_opensearch/config.py +23 -4
- vectordb_bench/backend/clients/chroma/chroma.py +6 -2
- vectordb_bench/backend/clients/elastic_cloud/config.py +19 -1
- vectordb_bench/backend/clients/elastic_cloud/elastic_cloud.py +133 -45
- vectordb_bench/backend/clients/milvus/config.py +1 -0
- vectordb_bench/backend/clients/milvus/milvus.py +74 -22
- vectordb_bench/backend/clients/oceanbase/cli.py +100 -0
- vectordb_bench/backend/clients/oceanbase/config.py +125 -0
- vectordb_bench/backend/clients/oceanbase/oceanbase.py +215 -0
- vectordb_bench/backend/clients/pinecone/pinecone.py +39 -25
- vectordb_bench/backend/clients/qdrant_cloud/config.py +59 -3
- vectordb_bench/backend/clients/qdrant_cloud/qdrant_cloud.py +100 -33
- vectordb_bench/backend/dataset.py +143 -27
- vectordb_bench/backend/filter.py +76 -0
- vectordb_bench/backend/runner/__init__.py +3 -3
- vectordb_bench/backend/runner/mp_runner.py +52 -39
- vectordb_bench/backend/runner/rate_runner.py +68 -52
- vectordb_bench/backend/runner/read_write_runner.py +125 -68
- vectordb_bench/backend/runner/serial_runner.py +56 -23
- vectordb_bench/backend/task_runner.py +48 -20
- vectordb_bench/cli/cli.py +59 -1
- vectordb_bench/cli/vectordbbench.py +3 -0
- vectordb_bench/frontend/components/check_results/data.py +16 -11
- vectordb_bench/frontend/components/check_results/filters.py +53 -25
- vectordb_bench/frontend/components/check_results/headerIcon.py +16 -13
- vectordb_bench/frontend/components/check_results/nav.py +20 -0
- vectordb_bench/frontend/components/custom/displayCustomCase.py +43 -8
- vectordb_bench/frontend/components/custom/displaypPrams.py +10 -5
- vectordb_bench/frontend/components/custom/getCustomConfig.py +10 -0
- vectordb_bench/frontend/components/label_filter/charts.py +60 -0
- vectordb_bench/frontend/components/run_test/caseSelector.py +48 -52
- vectordb_bench/frontend/components/run_test/dbSelector.py +9 -5
- vectordb_bench/frontend/components/run_test/inputWidget.py +48 -0
- vectordb_bench/frontend/components/run_test/submitTask.py +3 -1
- vectordb_bench/frontend/components/streaming/charts.py +253 -0
- vectordb_bench/frontend/components/streaming/data.py +62 -0
- vectordb_bench/frontend/components/tables/data.py +1 -1
- vectordb_bench/frontend/components/welcome/explainPrams.py +66 -0
- vectordb_bench/frontend/components/welcome/pagestyle.py +106 -0
- vectordb_bench/frontend/components/welcome/welcomePrams.py +147 -0
- vectordb_bench/frontend/config/dbCaseConfigs.py +307 -40
- vectordb_bench/frontend/config/styles.py +32 -2
- vectordb_bench/frontend/pages/concurrent.py +5 -1
- vectordb_bench/frontend/pages/custom.py +4 -0
- vectordb_bench/frontend/pages/label_filter.py +56 -0
- vectordb_bench/frontend/pages/quries_per_dollar.py +5 -1
- vectordb_bench/frontend/pages/results.py +60 -0
- vectordb_bench/frontend/pages/run_test.py +3 -3
- vectordb_bench/frontend/pages/streaming.py +135 -0
- vectordb_bench/frontend/pages/tables.py +4 -0
- vectordb_bench/frontend/vdb_benchmark.py +16 -41
- vectordb_bench/interface.py +6 -2
- vectordb_bench/metric.py +15 -1
- vectordb_bench/models.py +31 -11
- vectordb_bench/results/ElasticCloud/result_20250318_standard_elasticcloud.json +5890 -0
- vectordb_bench/results/Milvus/result_20250509_standard_milvus.json +6138 -0
- vectordb_bench/results/OpenSearch/result_20250224_standard_opensearch.json +7319 -0
- vectordb_bench/results/Pinecone/result_20250124_standard_pinecone.json +2365 -0
- vectordb_bench/results/QdrantCloud/result_20250602_standard_qdrantcloud.json +3556 -0
- vectordb_bench/results/ZillizCloud/result_20250613_standard_zillizcloud.json +6290 -0
- vectordb_bench/results/dbPrices.json +12 -4
- {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.0.dist-info}/METADATA +85 -32
- {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.0.dist-info}/RECORD +73 -56
- vectordb_bench/results/ZillizCloud/result_20230727_standard_zillizcloud.json +0 -791
- vectordb_bench/results/ZillizCloud/result_20230808_standard_zillizcloud.json +0 -679
- vectordb_bench/results/ZillizCloud/result_20240105_standard_202401_zillizcloud.json +0 -1352
- {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.0.dist-info}/WHEEL +0 -0
- {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.0.dist-info}/entry_points.txt +0 -0
- {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.0.dist-info}/licenses/LICENSE +0 -0
- {vectordb_bench-0.0.30.dist-info → vectordb_bench-1.0.0.dist-info}/top_level.txt +0 -0
@@ -4,6 +4,7 @@ from pydantic import BaseModel
|
|
4
4
|
from vectordb_bench.backend.cases import CaseLabel, CaseType
|
5
5
|
from vectordb_bench.backend.clients import DB
|
6
6
|
from vectordb_bench.backend.clients.api import IndexType, MetricType, SQType
|
7
|
+
from vectordb_bench.backend.dataset import DatasetWithSizeType
|
7
8
|
from vectordb_bench.frontend.components.custom.getCustomConfig import get_custom_configs
|
8
9
|
|
9
10
|
from vectordb_bench.models import CaseConfig, CaseConfigParamType
|
@@ -23,32 +24,58 @@ class BatchCaseConfig(BaseModel):
|
|
23
24
|
cases: list[CaseConfig] = []
|
24
25
|
|
25
26
|
|
27
|
+
class InputType(IntEnum):
|
28
|
+
Text = 20001
|
29
|
+
Number = 20002
|
30
|
+
Option = 20003
|
31
|
+
Float = 20004
|
32
|
+
Bool = 20005
|
33
|
+
|
34
|
+
|
35
|
+
class ConfigInput(BaseModel):
|
36
|
+
label: CaseConfigParamType
|
37
|
+
inputType: InputType = InputType.Text
|
38
|
+
inputConfig: dict = {}
|
39
|
+
inputHelp: str = ""
|
40
|
+
displayLabel: str = ""
|
41
|
+
|
42
|
+
|
43
|
+
class CaseConfigInput(ConfigInput):
|
44
|
+
# todo type should be a function
|
45
|
+
isDisplayed: typing.Any = lambda config: True
|
46
|
+
|
47
|
+
|
26
48
|
class UICaseItem(BaseModel):
|
27
49
|
isLine: bool = False
|
50
|
+
key: str = ""
|
28
51
|
label: str = ""
|
29
52
|
description: str = ""
|
30
53
|
cases: list[CaseConfig] = []
|
31
54
|
caseLabel: CaseLabel = CaseLabel.Performance
|
55
|
+
extra_custom_case_config_inputs: list[ConfigInput] = []
|
56
|
+
tmp_custom_config: dict = dict()
|
32
57
|
|
33
58
|
def __init__(
|
34
59
|
self,
|
35
60
|
isLine: bool = False,
|
36
|
-
|
37
|
-
custom_case: dict | None = None,
|
38
|
-
cases: list[CaseConfig] | None = None,
|
61
|
+
cases: list[CaseConfig] = None,
|
39
62
|
label: str = "",
|
40
63
|
description: str = "",
|
41
64
|
caseLabel: CaseLabel = CaseLabel.Performance,
|
65
|
+
**kwargs,
|
42
66
|
):
|
43
67
|
if isLine is True:
|
44
|
-
super().__init__(isLine=True)
|
45
|
-
|
46
|
-
|
68
|
+
super().__init__(isLine=True, **kwargs)
|
69
|
+
if cases is None:
|
70
|
+
cases = []
|
71
|
+
elif len(cases) == 1:
|
72
|
+
c = cases[0].case
|
47
73
|
super().__init__(
|
48
|
-
label=c.name,
|
49
|
-
description=c.description,
|
50
|
-
cases=
|
51
|
-
caseLabel=
|
74
|
+
label=label if label else c.name,
|
75
|
+
description=description if description else c.description,
|
76
|
+
cases=cases,
|
77
|
+
caseLabel=caseLabel,
|
78
|
+
**kwargs,
|
52
79
|
)
|
53
80
|
else:
|
54
81
|
super().__init__(
|
@@ -56,10 +83,26 @@ class UICaseItem(BaseModel):
|
|
56
83
|
description=description,
|
57
84
|
cases=cases,
|
58
85
|
caseLabel=caseLabel,
|
86
|
+
**kwargs,
|
59
87
|
)
|
60
88
|
|
61
89
|
def __hash__(self) -> int:
|
62
|
-
return hash(self.
|
90
|
+
return hash(self.key if self.key else self.label)
|
91
|
+
|
92
|
+
def get_cases(self) -> list[CaseConfig]:
|
93
|
+
# return self.cases
|
94
|
+
if len(self.extra_custom_case_config_inputs) == 0:
|
95
|
+
return self.cases
|
96
|
+
cases = [
|
97
|
+
CaseConfig(
|
98
|
+
case_id=c.case_id,
|
99
|
+
k=c.k,
|
100
|
+
concurrency_search_config=c.concurrency_search_config,
|
101
|
+
custom_case={**c.custom_case, **self.tmp_custom_config},
|
102
|
+
)
|
103
|
+
for c in self.cases
|
104
|
+
]
|
105
|
+
return cases
|
63
106
|
|
64
107
|
|
65
108
|
class UICaseItemCluster(BaseModel):
|
@@ -70,47 +113,181 @@ class UICaseItemCluster(BaseModel):
|
|
70
113
|
def get_custom_case_items() -> list[UICaseItem]:
|
71
114
|
custom_configs = get_custom_configs()
|
72
115
|
return [
|
73
|
-
UICaseItem(
|
116
|
+
UICaseItem(
|
117
|
+
label=f"{custom_config.dataset_config.name} - None Filter",
|
118
|
+
cases=[
|
119
|
+
CaseConfig(
|
120
|
+
case_id=CaseType.PerformanceCustomDataset,
|
121
|
+
custom_case={
|
122
|
+
**custom_config.dict(),
|
123
|
+
"use_filter": False,
|
124
|
+
},
|
125
|
+
)
|
126
|
+
],
|
127
|
+
)
|
128
|
+
for custom_config in custom_configs
|
129
|
+
] + [
|
130
|
+
UICaseItem(
|
131
|
+
label=f"{custom_config.dataset_config.name} - Filter",
|
132
|
+
description=(
|
133
|
+
f'[Batch Cases] This case evaluate search performance under filtering constraints like "color==red."'
|
134
|
+
f"Vdbbench provides an additional column of randomly distributed labels with fixed proportions, "
|
135
|
+
f"such as [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5]. "
|
136
|
+
f"Essentially, vdbbench will test each filter label in your own dataset to"
|
137
|
+
" assess the vector database's search performance across different filtering conditions."
|
138
|
+
),
|
139
|
+
cases=[
|
140
|
+
CaseConfig(
|
141
|
+
case_id=CaseType.PerformanceCustomDataset,
|
142
|
+
custom_case={
|
143
|
+
**custom_config.dict(),
|
144
|
+
"use_filter": True,
|
145
|
+
"label_percentage": label_percentage,
|
146
|
+
},
|
147
|
+
)
|
148
|
+
for label_percentage in custom_config.dataset_config.label_percentages
|
149
|
+
],
|
150
|
+
)
|
74
151
|
for custom_config in custom_configs
|
152
|
+
if custom_config.dataset_config.label_percentages
|
75
153
|
]
|
76
154
|
|
77
155
|
|
156
|
+
def generate_normal_cases(case_id: CaseType, custom_case: dict | None = None) -> list[CaseConfig]:
|
157
|
+
return [CaseConfig(case_id=case_id, custom_case=custom_case)]
|
158
|
+
|
159
|
+
|
78
160
|
def get_custom_case_cluter() -> UICaseItemCluster:
|
79
161
|
return UICaseItemCluster(label="Custom Search Performance Test", uiCaseItems=get_custom_case_items())
|
80
162
|
|
81
163
|
|
164
|
+
def generate_custom_streaming_case() -> CaseConfig:
|
165
|
+
return CaseConfig(
|
166
|
+
case_id=CaseType.StreamingPerformanceCase,
|
167
|
+
custom_case=dict(),
|
168
|
+
)
|
169
|
+
|
170
|
+
|
171
|
+
custom_streaming_config: list[ConfigInput] = [
|
172
|
+
ConfigInput(
|
173
|
+
label=CaseConfigParamType.dataset_with_size_type,
|
174
|
+
displayLabel="dataset",
|
175
|
+
inputType=InputType.Option,
|
176
|
+
inputConfig=dict(options=[dataset.value for dataset in DatasetWithSizeType]),
|
177
|
+
),
|
178
|
+
ConfigInput(
|
179
|
+
label=CaseConfigParamType.insert_rate,
|
180
|
+
inputType=InputType.Number,
|
181
|
+
inputConfig=dict(step=100, min=100, max=4_000, value=200),
|
182
|
+
inputHelp="fixed insertion rate (rows/s), must be divisible by 100",
|
183
|
+
),
|
184
|
+
ConfigInput(
|
185
|
+
label=CaseConfigParamType.search_stages,
|
186
|
+
inputType=InputType.Text,
|
187
|
+
inputConfig=dict(value="[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]"),
|
188
|
+
inputHelp="0<=stage<1.0; do search test when inserting a specified amount of data.",
|
189
|
+
),
|
190
|
+
ConfigInput(
|
191
|
+
label=CaseConfigParamType.concurrencies,
|
192
|
+
inputType=InputType.Text,
|
193
|
+
inputConfig=dict(value="[5, 10, 20]"),
|
194
|
+
inputHelp="concurrent num of search test while insertion; record max-qps.",
|
195
|
+
),
|
196
|
+
ConfigInput(
|
197
|
+
label=CaseConfigParamType.optimize_after_write,
|
198
|
+
inputType=InputType.Option,
|
199
|
+
inputConfig=dict(options=[True, False]),
|
200
|
+
inputHelp="whether to optimize after inserting all data",
|
201
|
+
),
|
202
|
+
ConfigInput(
|
203
|
+
label=CaseConfigParamType.read_dur_after_write,
|
204
|
+
inputType=InputType.Number,
|
205
|
+
inputConfig=dict(step=10, min=30, max=360_000, value=30),
|
206
|
+
inputHelp="search test duration after inserting all data",
|
207
|
+
),
|
208
|
+
]
|
209
|
+
|
210
|
+
|
211
|
+
def generate_label_filter_cases(dataset_with_size_type: DatasetWithSizeType) -> list[CaseConfig]:
|
212
|
+
label_percentages = dataset_with_size_type.get_manager().data.scalar_label_percentages
|
213
|
+
return [
|
214
|
+
CaseConfig(
|
215
|
+
case_id=CaseType.LabelFilterPerformanceCase,
|
216
|
+
custom_case=dict(dataset_with_size_type=dataset_with_size_type, label_percentage=label_percentage),
|
217
|
+
)
|
218
|
+
for label_percentage in label_percentages
|
219
|
+
]
|
220
|
+
|
221
|
+
|
82
222
|
UI_CASE_CLUSTERS: list[UICaseItemCluster] = [
|
83
223
|
UICaseItemCluster(
|
84
224
|
label="Search Performance Test",
|
85
225
|
uiCaseItems=[
|
86
|
-
UICaseItem(
|
87
|
-
UICaseItem(
|
88
|
-
UICaseItem(
|
226
|
+
UICaseItem(cases=generate_normal_cases(CaseType.Performance768D100M)),
|
227
|
+
UICaseItem(cases=generate_normal_cases(CaseType.Performance768D10M)),
|
228
|
+
UICaseItem(cases=generate_normal_cases(CaseType.Performance768D1M)),
|
229
|
+
UICaseItem(isLine=True),
|
230
|
+
UICaseItem(cases=generate_normal_cases(CaseType.Performance1024D1M)),
|
231
|
+
UICaseItem(cases=generate_normal_cases(CaseType.Performance1024D10M)),
|
89
232
|
UICaseItem(isLine=True),
|
90
|
-
UICaseItem(
|
91
|
-
UICaseItem(
|
92
|
-
UICaseItem(
|
233
|
+
UICaseItem(cases=generate_normal_cases(CaseType.Performance1536D5M)),
|
234
|
+
UICaseItem(cases=generate_normal_cases(CaseType.Performance1536D500K)),
|
235
|
+
UICaseItem(cases=generate_normal_cases(CaseType.Performance1536D50K)),
|
93
236
|
],
|
94
237
|
),
|
95
238
|
UICaseItemCluster(
|
96
|
-
label="Filter Search Performance Test",
|
239
|
+
label="Int-Filter Search Performance Test",
|
97
240
|
uiCaseItems=[
|
98
|
-
UICaseItem(
|
99
|
-
UICaseItem(
|
100
|
-
UICaseItem(
|
101
|
-
UICaseItem(
|
241
|
+
UICaseItem(cases=generate_normal_cases(CaseType.Performance768D10M1P)),
|
242
|
+
UICaseItem(cases=generate_normal_cases(CaseType.Performance768D10M99P)),
|
243
|
+
UICaseItem(cases=generate_normal_cases(CaseType.Performance768D1M1P)),
|
244
|
+
UICaseItem(cases=generate_normal_cases(CaseType.Performance768D1M99P)),
|
102
245
|
UICaseItem(isLine=True),
|
103
|
-
UICaseItem(
|
104
|
-
UICaseItem(
|
105
|
-
UICaseItem(
|
106
|
-
UICaseItem(
|
246
|
+
UICaseItem(cases=generate_normal_cases(CaseType.Performance1536D5M1P)),
|
247
|
+
UICaseItem(cases=generate_normal_cases(CaseType.Performance1536D5M99P)),
|
248
|
+
UICaseItem(cases=generate_normal_cases(CaseType.Performance1536D500K1P)),
|
249
|
+
UICaseItem(cases=generate_normal_cases(CaseType.Performance1536D500K99P)),
|
250
|
+
],
|
251
|
+
),
|
252
|
+
UICaseItemCluster(
|
253
|
+
label="Label-Filter Search Performance Test",
|
254
|
+
uiCaseItems=[
|
255
|
+
UICaseItem(
|
256
|
+
label=f"Label-Filter Search Performance Test - {dataset_with_size_type.value}",
|
257
|
+
description=(
|
258
|
+
f'[Batch Cases] These cases evaluate search performance under filtering constraints like "color==red." '
|
259
|
+
"Vdbbench provides an additional column of randomly distributed labels with fixed proportions, "
|
260
|
+
f"such as {dataset_with_size_type.get_manager().data.scalar_label_percentages}. "
|
261
|
+
f"Essentially, vdbbench will test each filter label in {dataset_with_size_type.value} to "
|
262
|
+
"assess the vector database's search performance across different filtering conditions. "
|
263
|
+
),
|
264
|
+
cases=generate_label_filter_cases(dataset_with_size_type),
|
265
|
+
)
|
266
|
+
for dataset_with_size_type in DatasetWithSizeType
|
107
267
|
],
|
108
268
|
),
|
109
269
|
UICaseItemCluster(
|
110
270
|
label="Capacity Test",
|
111
271
|
uiCaseItems=[
|
112
|
-
UICaseItem(
|
113
|
-
UICaseItem(
|
272
|
+
UICaseItem(cases=generate_normal_cases(CaseType.CapacityDim960)),
|
273
|
+
UICaseItem(cases=generate_normal_cases(CaseType.CapacityDim128)),
|
274
|
+
],
|
275
|
+
),
|
276
|
+
UICaseItemCluster(
|
277
|
+
label="Streaming Test",
|
278
|
+
uiCaseItems=[
|
279
|
+
UICaseItem(
|
280
|
+
label="Customize Streaming Test",
|
281
|
+
description=(
|
282
|
+
"This case test the search performance during insertion. "
|
283
|
+
"VDBB will send insert requests to VectorDB at a fixed rate and "
|
284
|
+
"conduct a search test once the insert count reaches the search_stages. "
|
285
|
+
"After all data is inserted, optimization and search tests can be "
|
286
|
+
"optionally performed."
|
287
|
+
),
|
288
|
+
cases=[generate_custom_streaming_case()],
|
289
|
+
extra_custom_case_config_inputs=custom_streaming_config,
|
290
|
+
)
|
114
291
|
],
|
115
292
|
),
|
116
293
|
]
|
@@ -123,14 +300,8 @@ DISPLAY_CASE_ORDER: list[CaseType] = [
|
|
123
300
|
CaseType.Performance1536D5M,
|
124
301
|
CaseType.Performance1536D500K,
|
125
302
|
CaseType.Performance1536D50K,
|
126
|
-
CaseType.
|
127
|
-
CaseType.
|
128
|
-
CaseType.Performance1536D5M1P,
|
129
|
-
CaseType.Performance1536D500K1P,
|
130
|
-
CaseType.Performance768D10M99P,
|
131
|
-
CaseType.Performance768D1M99P,
|
132
|
-
CaseType.Performance1536D5M99P,
|
133
|
-
CaseType.Performance1536D500K99P,
|
303
|
+
CaseType.Performance1024D1M,
|
304
|
+
CaseType.Performance1024D10M,
|
134
305
|
CaseType.CapacityDim960,
|
135
306
|
CaseType.CapacityDim128,
|
136
307
|
]
|
@@ -455,7 +626,7 @@ CaseConfigParamInput_EFConstruction_ES = CaseConfigInput(
|
|
455
626
|
inputConfig={
|
456
627
|
"min": 8,
|
457
628
|
"max": 512,
|
458
|
-
"value":
|
629
|
+
"value": 128,
|
459
630
|
},
|
460
631
|
)
|
461
632
|
|
@@ -557,6 +728,67 @@ CaseConfigParamInput_EFConstruction_PgVector = CaseConfigInput(
|
|
557
728
|
isDisplayed=lambda config: config[CaseConfigParamType.IndexType] == IndexType.HNSW.value,
|
558
729
|
)
|
559
730
|
|
731
|
+
CaseConfigParamInput_IndexType_ES = CaseConfigInput(
|
732
|
+
label=CaseConfigParamType.IndexType,
|
733
|
+
inputType=InputType.Option,
|
734
|
+
inputConfig={
|
735
|
+
"options": [
|
736
|
+
IndexType.ES_HNSW.value,
|
737
|
+
IndexType.ES_HNSW_INT8.value,
|
738
|
+
IndexType.ES_HNSW_INT4.value,
|
739
|
+
IndexType.ES_HNSW_BBQ.value,
|
740
|
+
],
|
741
|
+
},
|
742
|
+
)
|
743
|
+
|
744
|
+
CaseConfigParamInput_NumShards_ES = CaseConfigInput(
|
745
|
+
label=CaseConfigParamType.number_of_shards,
|
746
|
+
inputType=InputType.Number,
|
747
|
+
inputConfig={
|
748
|
+
"min": 1,
|
749
|
+
"max": 128,
|
750
|
+
"value": 1,
|
751
|
+
},
|
752
|
+
)
|
753
|
+
|
754
|
+
CaseConfigParamInput_NumReplica_ES = CaseConfigInput(
|
755
|
+
label=CaseConfigParamType.number_of_replicas,
|
756
|
+
inputType=InputType.Number,
|
757
|
+
inputConfig={
|
758
|
+
"min": 0,
|
759
|
+
"max": 10,
|
760
|
+
"value": 0,
|
761
|
+
},
|
762
|
+
)
|
763
|
+
|
764
|
+
CaseConfigParamInput_RefreshInterval_ES = CaseConfigInput(
|
765
|
+
label=CaseConfigParamType.refresh_interval,
|
766
|
+
inputType=InputType.Text,
|
767
|
+
inputConfig={"value": "30s"},
|
768
|
+
)
|
769
|
+
|
770
|
+
CaseConfigParamInput_UseRescore_ES = CaseConfigInput(
|
771
|
+
label=CaseConfigParamType.use_rescore,
|
772
|
+
inputType=InputType.Bool,
|
773
|
+
inputConfig={"value": False},
|
774
|
+
isDisplayed=lambda config: config.get(CaseConfigParamType.IndexType, None) != IndexType.ES_HNSW.value,
|
775
|
+
)
|
776
|
+
|
777
|
+
CaseConfigParamInput_OversampleRatio_ES = CaseConfigInput(
|
778
|
+
label=CaseConfigParamType.oversample_ratio,
|
779
|
+
inputType=InputType.Float,
|
780
|
+
inputConfig={"min": 1.0, "max": 100.0, "value": 2.0},
|
781
|
+
isDisplayed=lambda config: config.get(CaseConfigParamType.use_rescore, False),
|
782
|
+
inputHelp="num_oversample = oversample_ratio * top_k.",
|
783
|
+
)
|
784
|
+
|
785
|
+
CaseConfigParamInput_UseRouting_ES = CaseConfigInput(
|
786
|
+
label=CaseConfigParamType.use_routing,
|
787
|
+
inputType=InputType.Bool,
|
788
|
+
inputConfig={"value": False},
|
789
|
+
inputHelp="Using routing to improve label-filter case performance",
|
790
|
+
)
|
791
|
+
|
560
792
|
|
561
793
|
CaseConfigParamInput_M_ES = CaseConfigInput(
|
562
794
|
label=CaseConfigParamType.M,
|
@@ -564,10 +796,11 @@ CaseConfigParamInput_M_ES = CaseConfigInput(
|
|
564
796
|
inputConfig={
|
565
797
|
"min": 4,
|
566
798
|
"max": 64,
|
567
|
-
"value":
|
799
|
+
"value": 16,
|
568
800
|
},
|
569
801
|
)
|
570
802
|
|
803
|
+
|
571
804
|
CaseConfigParamInput_NumCandidates_ES = CaseConfigInput(
|
572
805
|
label=CaseConfigParamType.numCandidates,
|
573
806
|
inputType=InputType.Number,
|
@@ -1204,6 +1437,13 @@ CaseConfigParamInput_CacheSize_MariaDB = CaseConfigInput(
|
|
1204
1437
|
},
|
1205
1438
|
isDisplayed=lambda config: config.get(CaseConfigParamType.IndexType, None) == IndexType.HNSW.value,
|
1206
1439
|
)
|
1440
|
+
CaseConfigParamInput_Milvus_use_partition_key = CaseConfigInput(
|
1441
|
+
label=CaseConfigParamType.use_partition_key,
|
1442
|
+
inputType=InputType.Option,
|
1443
|
+
inputHelp="whether to use partition_key for label-filter cases. only works in label-filter cases",
|
1444
|
+
inputConfig={"options": [True, False]},
|
1445
|
+
)
|
1446
|
+
|
1207
1447
|
|
1208
1448
|
CaseConfigParamInput_MongoDBQuantizationType = CaseConfigInput(
|
1209
1449
|
label=CaseConfigParamType.mongodb_quantization_type,
|
@@ -1362,6 +1602,7 @@ MilvusLoadConfig = [
|
|
1362
1602
|
CaseConfigParamInput_Refine,
|
1363
1603
|
CaseConfigParamInput_RefineType,
|
1364
1604
|
CaseConfigParamInput_NRQ,
|
1605
|
+
CaseConfigParamInput_Milvus_use_partition_key,
|
1365
1606
|
]
|
1366
1607
|
MilvusPerformanceConfig = [
|
1367
1608
|
CaseConfigParamInput_IndexType,
|
@@ -1389,6 +1630,7 @@ MilvusPerformanceConfig = [
|
|
1389
1630
|
CaseConfigParamInput_Refine,
|
1390
1631
|
CaseConfigParamInput_RefineType,
|
1391
1632
|
CaseConfigParamInput_RefineK,
|
1633
|
+
CaseConfigParamInput_Milvus_use_partition_key,
|
1392
1634
|
]
|
1393
1635
|
|
1394
1636
|
WeaviateLoadConfig = [
|
@@ -1401,11 +1643,25 @@ WeaviatePerformanceConfig = [
|
|
1401
1643
|
CaseConfigParamInput_EF_Weaviate,
|
1402
1644
|
]
|
1403
1645
|
|
1404
|
-
ESLoadingConfig = [
|
1646
|
+
ESLoadingConfig = [
|
1647
|
+
CaseConfigParamInput_IndexType_ES,
|
1648
|
+
CaseConfigParamInput_NumShards_ES,
|
1649
|
+
CaseConfigParamInput_NumReplica_ES,
|
1650
|
+
CaseConfigParamInput_RefreshInterval_ES,
|
1651
|
+
CaseConfigParamInput_EFConstruction_ES,
|
1652
|
+
CaseConfigParamInput_M_ES,
|
1653
|
+
]
|
1405
1654
|
ESPerformanceConfig = [
|
1655
|
+
CaseConfigParamInput_IndexType_ES,
|
1656
|
+
CaseConfigParamInput_NumShards_ES,
|
1657
|
+
CaseConfigParamInput_NumReplica_ES,
|
1658
|
+
CaseConfigParamInput_RefreshInterval_ES,
|
1406
1659
|
CaseConfigParamInput_EFConstruction_ES,
|
1407
1660
|
CaseConfigParamInput_M_ES,
|
1408
1661
|
CaseConfigParamInput_NumCandidates_ES,
|
1662
|
+
CaseConfigParamInput_UseRescore_ES,
|
1663
|
+
CaseConfigParamInput_OversampleRatio_ES,
|
1664
|
+
CaseConfigParamInput_UseRouting_ES,
|
1409
1665
|
]
|
1410
1666
|
|
1411
1667
|
AWSOpensearchLoadingConfig = [
|
@@ -1724,6 +1980,7 @@ CASE_CONFIG_MAP = {
|
|
1724
1980
|
DB.Milvus: {
|
1725
1981
|
CaseLabel.Load: MilvusLoadConfig,
|
1726
1982
|
CaseLabel.Performance: MilvusPerformanceConfig,
|
1983
|
+
CaseLabel.Streaming: MilvusPerformanceConfig,
|
1727
1984
|
},
|
1728
1985
|
DB.ZillizCloud: {
|
1729
1986
|
CaseLabel.Performance: ZillizCloudPerformanceConfig,
|
@@ -1789,3 +2046,13 @@ CASE_CONFIG_MAP = {
|
|
1789
2046
|
CaseLabel.Performance: AWSOpenSearchPerformanceConfig,
|
1790
2047
|
},
|
1791
2048
|
}
|
2049
|
+
|
2050
|
+
|
2051
|
+
def get_case_config_inputs(db: DB, case_label: CaseLabel) -> list[CaseConfigInput]:
|
2052
|
+
if db not in CASE_CONFIG_MAP:
|
2053
|
+
return []
|
2054
|
+
if case_label == CaseLabel.Load:
|
2055
|
+
return CASE_CONFIG_MAP[db][CaseLabel.Load]
|
2056
|
+
elif case_label == CaseLabel.Performance or case_label == CaseLabel.Streaming:
|
2057
|
+
return CASE_CONFIG_MAP[db][CaseLabel.Performance]
|
2058
|
+
return []
|
@@ -3,7 +3,8 @@ from vectordb_bench.models import DB
|
|
3
3
|
# style const
|
4
4
|
DB_SELECTOR_COLUMNS = 6
|
5
5
|
DB_CONFIG_SETTING_COLUMNS = 3
|
6
|
-
CASE_CONFIG_SETTING_COLUMNS =
|
6
|
+
CASE_CONFIG_SETTING_COLUMNS = 2
|
7
|
+
DB_CASE_CONFIG_SETTING_COLUMNS = 4
|
7
8
|
CHECKBOX_INDENT = 30
|
8
9
|
TASK_LABEL_INPUT_COLUMNS = 2
|
9
10
|
CHECKBOX_MAX_COLUMNS = 4
|
@@ -16,6 +17,9 @@ SIDEBAR_CONTROL_COLUMNS = 3
|
|
16
17
|
LEGEND_RECT_WIDTH = 24
|
17
18
|
LEGEND_RECT_HEIGHT = 16
|
18
19
|
LEGEND_TEXT_FONT_SIZE = 14
|
20
|
+
STREAMING_CHART_COLUMNS = 2
|
21
|
+
SCATTER_MAKER_SIZE = 8
|
22
|
+
SCATTER_LINE_WIDTH = 2
|
19
23
|
|
20
24
|
PATTERN_SHAPES = ["", "+", "\\", "x", ".", "|", "/", "-"]
|
21
25
|
|
@@ -41,15 +45,26 @@ DB_TO_ICON = {
|
|
41
45
|
DB.ElasticCloud: "https://assets.zilliz.com/Elatic_Cloud_dad8d6a3a3.png",
|
42
46
|
DB.Pinecone: "https://assets.zilliz.com/pinecone_94d8154979.png",
|
43
47
|
DB.QdrantCloud: "https://assets.zilliz.com/qdrant_b691674fcd.png",
|
48
|
+
DB.QdrantLocal: "https://assets.zilliz.com/qdrant_b691674fcd.png",
|
44
49
|
DB.WeaviateCloud: "https://assets.zilliz.com/weaviate_4f6f171ebe.png",
|
45
50
|
DB.PgVector: "https://assets.zilliz.com/PG_Vector_d464f2ef5f.png",
|
46
51
|
DB.PgVectoRS: "https://assets.zilliz.com/PG_Vector_d464f2ef5f.png",
|
52
|
+
DB.PgVectorScale: "",
|
53
|
+
DB.PgDiskANN: "https://assets.zilliz.com/PG_Vector_d464f2ef5f.png",
|
54
|
+
DB.AlloyDB: "",
|
55
|
+
DB.MemoryDB: "",
|
56
|
+
DB.AliyunElasticsearch: "",
|
47
57
|
DB.Redis: "https://assets.zilliz.com/Redis_Cloud_74b8bfef39.png",
|
58
|
+
DB.MariaDB: "",
|
48
59
|
DB.Chroma: "https://assets.zilliz.com/chroma_ceb3f06ed7.png",
|
60
|
+
DB.AliyunOpenSearch: "",
|
49
61
|
DB.AWSOpenSearch: "https://assets.zilliz.com/opensearch_1eee37584e.jpeg",
|
62
|
+
DB.MongoDB: "",
|
50
63
|
DB.TiDB: "https://img2.pingcap.com/forms/3/d/3d7fd5f9767323d6f037795704211ac44b4923d6.png",
|
64
|
+
DB.Clickhouse: "",
|
51
65
|
DB.Vespa: "https://vespa.ai/vespa-content/uploads/2025/01/Vespa-symbol-green-rgb.png.webp",
|
52
|
-
DB.LanceDB: "
|
66
|
+
DB.LanceDB: "",
|
67
|
+
DB.OceanBase: "",
|
53
68
|
}
|
54
69
|
|
55
70
|
# RedisCloud color: #0D6EFD
|
@@ -67,3 +82,18 @@ COLOR_MAP = {
|
|
67
82
|
DB.TiDB.value: "#0D6EFD",
|
68
83
|
DB.Vespa.value: "#61d790",
|
69
84
|
}
|
85
|
+
|
86
|
+
COLORS_10 = [
|
87
|
+
"#a6cee3",
|
88
|
+
"#1f78b4",
|
89
|
+
"#b2df8a",
|
90
|
+
"#33a02c",
|
91
|
+
"#fb9a99",
|
92
|
+
"#e31a1c",
|
93
|
+
"#fdbf6f",
|
94
|
+
"#ff7f00",
|
95
|
+
"#cab2d6",
|
96
|
+
"#6a3d9a",
|
97
|
+
]
|
98
|
+
|
99
|
+
COLORS_2 = ["#1f78b4", "#d8b365"]
|