vectordb-bench 0.0.2__py3-none-any.whl → 0.0.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vectordb_bench/__init__.py +14 -3
- vectordb_bench/backend/cases.py +34 -13
- vectordb_bench/backend/clients/__init__.py +6 -1
- vectordb_bench/backend/clients/api.py +12 -8
- vectordb_bench/backend/clients/elastic_cloud/elastic_cloud.py +4 -2
- vectordb_bench/backend/clients/milvus/milvus.py +17 -10
- vectordb_bench/backend/clients/pgvector/config.py +49 -0
- vectordb_bench/backend/clients/pgvector/pgvector.py +171 -0
- vectordb_bench/backend/clients/pinecone/pinecone.py +4 -3
- vectordb_bench/backend/clients/qdrant_cloud/config.py +20 -2
- vectordb_bench/backend/clients/qdrant_cloud/qdrant_cloud.py +11 -11
- vectordb_bench/backend/clients/weaviate_cloud/weaviate_cloud.py +5 -5
- vectordb_bench/backend/clients/zilliz_cloud/zilliz_cloud.py +3 -1
- vectordb_bench/backend/dataset.py +99 -149
- vectordb_bench/backend/result_collector.py +2 -2
- vectordb_bench/backend/runner/mp_runner.py +29 -13
- vectordb_bench/backend/runner/serial_runner.py +69 -51
- vectordb_bench/backend/task_runner.py +43 -48
- vectordb_bench/frontend/components/get_results/saveAsImage.py +4 -2
- vectordb_bench/frontend/const/dbCaseConfigs.py +35 -4
- vectordb_bench/frontend/const/dbPrices.py +5 -33
- vectordb_bench/frontend/const/styles.py +9 -3
- vectordb_bench/metric.py +0 -1
- vectordb_bench/models.py +12 -8
- vectordb_bench/results/dbPrices.json +32 -0
- vectordb_bench/results/getLeaderboardData.py +52 -0
- vectordb_bench/results/leaderboard.json +1 -0
- vectordb_bench/results/{result_20230609_standard.json → result_20230705_standard.json} +670 -214
- {vectordb_bench-0.0.2.dist-info → vectordb_bench-0.0.3.dist-info}/METADATA +98 -13
- {vectordb_bench-0.0.2.dist-info → vectordb_bench-0.0.3.dist-info}/RECORD +34 -29
- {vectordb_bench-0.0.2.dist-info → vectordb_bench-0.0.3.dist-info}/LICENSE +0 -0
- {vectordb_bench-0.0.2.dist-info → vectordb_bench-0.0.3.dist-info}/WHEEL +0 -0
- {vectordb_bench-0.0.2.dist-info → vectordb_bench-0.0.3.dist-info}/entry_points.txt +0 -0
- {vectordb_bench-0.0.2.dist-info → vectordb_bench-0.0.3.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: vectordb-bench
|
3
|
-
Version: 0.0.
|
3
|
+
Version: 0.0.3
|
4
4
|
Summary: VectorDBBench is not just an offering of benchmark results for mainstream vector databases and cloud services, it's your go-to tool for the ultimate performance and cost-effectiveness comparison. Designed with ease-of-use in mind, VectorDBBench is devised to help users, even non-professionals, reproduce results or test new systems, making the hunt for the optimal choice amongst a plethora of cloud services and open-source vector databases a breeze.
|
5
5
|
Author-email: XuanYang-cn <xuan.yang@zilliz.com>
|
6
6
|
Project-URL: repository, https://github.com/zilliztech/VectorDBBench
|
@@ -27,6 +27,9 @@ Requires-Dist: environs
|
|
27
27
|
Requires-Dist: scikit-learn
|
28
28
|
Requires-Dist: s3fs
|
29
29
|
Requires-Dist: psutil
|
30
|
+
Requires-Dist: polars
|
31
|
+
Requires-Dist: pgvector
|
32
|
+
Requires-Dist: sqlalchemy
|
30
33
|
Provides-Extra: test
|
31
34
|
Requires-Dist: ruff ; extra == 'test'
|
32
35
|
Requires-Dist: pytest ; extra == 'test'
|
@@ -36,6 +39,7 @@ Requires-Dist: pytest ; extra == 'test'
|
|
36
39
|
[](https://pypi.org/project/vectordb-bench/)
|
37
40
|
[](https://pepy.tech/project/vectordb-bench)
|
38
41
|
|
42
|
+
**Leaderboard:** https://zilliz.com/benchmark
|
39
43
|
## Quick Start
|
40
44
|
### Prerequirement
|
41
45
|
``` shell
|
@@ -60,6 +64,24 @@ Closely mimicking real-world production environments, we've set up diverse testi
|
|
60
64
|
|
61
65
|
Prepare to delve into the world of VectorDBBench, and let it guide you in uncovering your perfect vector database match.
|
62
66
|
|
67
|
+
## Leaderboard
|
68
|
+
### Introduction
|
69
|
+
To facilitate the presentation of test results and provide a comprehensive performance analysis report, we offer a [leaderboard page](https://zilliz.com/benchmark). It allows us to choose from QPS, QP$, and latency metrics, and provides a comprehensive assessment of a system's performance based on the test results of various cases and a set of scoring mechanisms (to be introduced later). On this leaderboard, we can select the systems and models to be compared, and filter out cases we do not want to consider. Comprehensive scores are always ranked from best to worst, and the specific test results of each query will be presented in the list below.
|
70
|
+
|
71
|
+
### Scoring Rules
|
72
|
+
|
73
|
+
1. For each case, select a base value and score each system based on relative values.
|
74
|
+
- For QPS and QP$, we use the highest value as the reference, denoted as `base_QPS` or `base_QP$`, and the score of each system is `(QPS/base_QPS) * 100` or `(QP$/base_QP$) * 100`.
|
75
|
+
- For Latency, we use the lowest value as the reference, that is, `base_Latency`, and the score of each system is `(Latency + 10ms)/(base_Latency + 10ms)`.
|
76
|
+
|
77
|
+
We want to give equal weight to different cases, and not let a case with high absolute result values become the sole reason for the overall scoring. Therefore, when scoring different systems in each case, we need to use relative values.
|
78
|
+
|
79
|
+
Also, for Latency, we add 10ms to the numerator and denominator to ensure that if every system performs particularly well in a case, its advantage will not be infinitely magnified when latency tends to 0.
|
80
|
+
|
81
|
+
2. For systems that fail or timeout in a particular case, we will give them a score based on a value worse than the worst result by a factor of two. For example, in QPS or QP$, it would be half the lowest value. For Latency, it would be twice the maximum value.
|
82
|
+
|
83
|
+
3. For each system, we will take the geometric mean of its scores in all cases as its comprehensive score for a particular metric.
|
84
|
+
|
63
85
|
## Build on your own
|
64
86
|
### Install requirements
|
65
87
|
``` shell
|
@@ -88,10 +110,12 @@ $ ruff check vectordb_bench --fix
|
|
88
110
|
|
89
111
|
## How does it work?
|
90
112
|
### Result Page
|
91
|
-

|
92
114
|
This is the main page of VectorDBBench, which displays the standard benchmark results we provide. Additionally, results of all tests performed by users themselves will also be shown here. We also offer the ability to select and compare results from multiple tests simultaneously.
|
93
115
|
|
94
116
|
The standard benchmark results displayed here include all 9 cases that we currently support for all our clients (Milvus, Zilliz Cloud, Elastic Search, Qdrant Cloud, and Weaviate Cloud). However, as some systems may not be able to complete all the tests successfully due to issues like Out of Memory (OOM) or timeouts, not all clients are included in every case.
|
117
|
+
|
118
|
+
All standard benchmark results are generated by a client running on an 8 core, 32 GB host, which is located in the same region as the server being tested. The client host is equipped with an `Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz` processor. Also all the servers for the open-source systems tested in our benchmarks run on hosts with the same type of processor.
|
95
119
|
### Run Test Page
|
96
120
|

|
97
121
|
This is the page to run a test:
|
@@ -121,17 +145,17 @@ We've developed an array of 9 comprehensive benchmark cases to test vector datab
|
|
121
145
|
- **Medium Dataset, High Filtering Rate:** This case uses a medium dataset (Cohere 1M vectors, 768 dimensions) with a high filtering rate.
|
122
146
|
For a quick reference, here is a table summarizing the key aspects of each case:
|
123
147
|
|
124
|
-
Case No. | Case Type | Dataset Size
|
125
|
-
|
126
|
-
1 | Capacity Case |
|
127
|
-
2 | Capacity Case |
|
128
|
-
3 | Search Performance Case |
|
129
|
-
4 | Search Performance Case |
|
130
|
-
5 | Search Performance Case |
|
131
|
-
6 | Filtering Search Performance Case |
|
132
|
-
7 | Filtering Search Performance Case |
|
133
|
-
8 | Filtering Search Performance Case |
|
134
|
-
9 | Filtering Search Performance Case |
|
148
|
+
Case No. | Case Type | Dataset Size | Filtering Rate | Results |
|
149
|
+
|----------|-----------|--------------|----------------|---------|
|
150
|
+
1 | Capacity Case | GIST 100K vectors, 960 dimensions | N/A | Number of inserted vectors |
|
151
|
+
2 | Capacity Case | SIFT 100K vectors, 128 dimensions | N/A | Number of inserted vectors |
|
152
|
+
3 | Search Performance Case | LAION 100M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
|
153
|
+
4 | Search Performance Case | Cohere 10M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
|
154
|
+
5 | Search Performance Case | Cohere 1M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
|
155
|
+
6 | Filtering Search Performance Case | Cohere 10M vectors, 768 dimensions | 1% vectors | Index building time, recall, latency, maximum QPS |
|
156
|
+
7 | Filtering Search Performance Case | Cohere 1M vectors, 768 dimensions | 1% vectors | Index building time, recall, latency, maximum QPS |
|
157
|
+
8 | Filtering Search Performance Case | Cohere 10M vectors, 768 dimensions | 99% vectors | Index building time, recall, latency, maximum QPS |
|
158
|
+
9 | Filtering Search Performance Case | Cohere 1M vectors, 768 dimensions | 99% vectors | Index building time, recall, latency, maximum QPS |
|
135
159
|
|
136
160
|
Each case provides an in-depth examination of a vector database's abilities, providing you a comprehensive view of the database's performance.
|
137
161
|
|
@@ -219,3 +243,64 @@ For the Client, we welcome any parameter tuning to obtain better results.
|
|
219
243
|
Many databases may not be able to complete all test cases due to issues such as Out of Memory (OOM), crashes, or timeouts. In these scenarios, we will clearly state these occurrences in the test results.
|
220
244
|
### Mistake Or Misrepresentation
|
221
245
|
We strive for accuracy in learning and supporting various vector databases, yet there might be oversights or misapplications. For any such occurrences, feel free to [raise an issue](https://github.com/zilliztech/VectorDBBench/issues/new) or make amendments on our GitHub page.
|
246
|
+
## Timeout
|
247
|
+
In our pursuit to ensure that our benchmark reflects the reality of a production environment while guaranteeing the practicality of the system, we have implemented a timeout plan based on our experiences for various tests.
|
248
|
+
|
249
|
+
**1. Capacity Case:**
|
250
|
+
- For Capacity Case, we have assigned an overall timeout.
|
251
|
+
|
252
|
+
**2. Other Cases:**
|
253
|
+
|
254
|
+
For other cases, we have set two timeouts:
|
255
|
+
|
256
|
+
- **Data Loading Timeout:** This timeout is designed to filter out systems that are too slow in inserting data, thus ensuring that we are only considering systems that is able to cope with the demands of a real-world production environment within a reasonable time frame.
|
257
|
+
|
258
|
+
- **Optimization Preparation Timeout**: This timeout is established to avoid excessive optimization strategies that might work for benchmarks but fail to deliver in real production environments. By doing this, we ensure that the systems we consider are not only suitable for testing environments but also applicable and efficient in production scenarios.
|
259
|
+
|
260
|
+
This multi-tiered timeout approach allows our benchmark to be more representative of actual production environments and assists us in identifying systems that can truly perform in real-world scenarios.
|
261
|
+
<table>
|
262
|
+
<tr>
|
263
|
+
<th>Case</th>
|
264
|
+
<th>Data Size</th>
|
265
|
+
<th>Timeout Type</th>
|
266
|
+
<th>Value</th>
|
267
|
+
</tr>
|
268
|
+
<tr>
|
269
|
+
<td>Capacity Case</td>
|
270
|
+
<td>N/A</td>
|
271
|
+
<td>Loading timeout</td>
|
272
|
+
<td>24 hours</td>
|
273
|
+
</tr>
|
274
|
+
<tr>
|
275
|
+
<td rowspan="2">Other Cases</td>
|
276
|
+
<td rowspan="2">1M vectors, 768 dimensions</td>
|
277
|
+
<td>Loading timeout</td>
|
278
|
+
<td>2.5 hours</td>
|
279
|
+
</tr>
|
280
|
+
<tr>
|
281
|
+
<td>Optimization timeout</td>
|
282
|
+
<td>15 mins</td>
|
283
|
+
</tr>
|
284
|
+
<tr>
|
285
|
+
<td rowspan="2">Other Cases</td>
|
286
|
+
<td rowspan="2">10M vectors, 768 dimensions</td>
|
287
|
+
<td>Loading timeout</td>
|
288
|
+
<td>25 hours</td>
|
289
|
+
</tr>
|
290
|
+
<tr>
|
291
|
+
<td>Optimization timeout</td>
|
292
|
+
<td>2.5 hours</td>
|
293
|
+
</tr>
|
294
|
+
<tr>
|
295
|
+
<td rowspan="2">Other Cases</td>
|
296
|
+
<td rowspan="2">100M vectors, 768 dimensions</td>
|
297
|
+
<td>Loading timeout</td>
|
298
|
+
<td>250 hours</td>
|
299
|
+
</tr>
|
300
|
+
<tr>
|
301
|
+
<td>Optimization timeout</td>
|
302
|
+
<td>25 hours</td>
|
303
|
+
</tr>
|
304
|
+
</table>
|
305
|
+
|
306
|
+
**Note:** Some datapoints in the standard benchmark results that voilate this timeout will be kept for now for reference. We will remove them in the future.
|
@@ -1,34 +1,36 @@
|
|
1
|
-
vectordb_bench/__init__.py,sha256=
|
1
|
+
vectordb_bench/__init__.py,sha256=pNBMwS6NTyl3NK2QTELRtohlrUK0fC4b3TpE3IpbV1M,1224
|
2
2
|
vectordb_bench/__main__.py,sha256=YJOTn5MlbmLyr3PRsecY6fj7igHLB6_D3y1HwF_sO20,848
|
3
3
|
vectordb_bench/base.py,sha256=d34WCGXZI1u5RGQtqrPHd3HbOF5AmioFrM2j30Aj1sY,130
|
4
4
|
vectordb_bench/interface.py,sha256=aa46X4fitgScdHbQn_5naJr77Gb0uPFHoRiOhMAY560,8671
|
5
5
|
vectordb_bench/log_util.py,sha256=YGaaevphwoPD0exF8EX_6hX5_9BoysCcKyHl4Ox5Fbk,2907
|
6
|
-
vectordb_bench/metric.py,sha256
|
7
|
-
vectordb_bench/models.py,sha256=
|
6
|
+
vectordb_bench/metric.py,sha256=-SAcUm2m0OkHcph2QZusx-wZh8wCTrrHMy1Kv0WWL2w,1332
|
7
|
+
vectordb_bench/models.py,sha256=pcoEKcKpI8q9EnC3q5l8G6CkmdQ9PLR6-Nnsejbnswk,6711
|
8
8
|
vectordb_bench/backend/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
9
9
|
vectordb_bench/backend/assembler.py,sha256=3RA8fMjU5x0FmVrruA_h7dan3YqL7cF4Mlp3o-WumSI,1717
|
10
|
-
vectordb_bench/backend/cases.py,sha256=
|
11
|
-
vectordb_bench/backend/dataset.py,sha256=
|
12
|
-
vectordb_bench/backend/result_collector.py,sha256=
|
13
|
-
vectordb_bench/backend/task_runner.py,sha256=
|
10
|
+
vectordb_bench/backend/cases.py,sha256=d2p-FqYa9gLgXVA_aQhcf8FU4M3gT-bZdufx_7xc864,8432
|
11
|
+
vectordb_bench/backend/dataset.py,sha256=n3ah8Yqvo2H2XpTBZOCRRPLoOVOYZWvf3T5zK6r4tgY,11509
|
12
|
+
vectordb_bench/backend/result_collector.py,sha256=nSXheGz8-vQa3frIW_eEKAPaVgqMLXXWPgcVsYgPXho,449
|
13
|
+
vectordb_bench/backend/task_runner.py,sha256=IE1e-TwiupBmS9Hm44KeyWS0r0aMVorHll1LSJNxB_A,9217
|
14
14
|
vectordb_bench/backend/utils.py,sha256=YBIoxJIxVUPD-0SpbJwdnswX-nmlR9GPE4fj28M7CMQ,2563
|
15
|
-
vectordb_bench/backend/clients/__init__.py,sha256=
|
16
|
-
vectordb_bench/backend/clients/api.py,sha256=
|
15
|
+
vectordb_bench/backend/clients/__init__.py,sha256=FMT1zyi7AbKWhbIi-LbkBioYBGZBLDKOefPSt9sfIDY,1406
|
16
|
+
vectordb_bench/backend/clients/api.py,sha256=FcOcp_KU-MAjAC8XO96vGbziFLzblDn991xNgUTASq8,5628
|
17
17
|
vectordb_bench/backend/clients/elastic_cloud/config.py,sha256=xkaBNtsayByelVLda8LiSEwxjQjESpijJ8IFOh03f_0,1598
|
18
|
-
vectordb_bench/backend/clients/elastic_cloud/elastic_cloud.py,sha256=
|
18
|
+
vectordb_bench/backend/clients/elastic_cloud/elastic_cloud.py,sha256=wo2yb2dsvMTUunbaz9yqOxF9cB6iPYzQlYObSSL5TdY,5071
|
19
19
|
vectordb_bench/backend/clients/milvus/config.py,sha256=_6RsYKI3Ed8exMCWgI7ZdpM8MVzWJlj9mz4iHDVrONc,3152
|
20
|
-
vectordb_bench/backend/clients/milvus/milvus.py,sha256=
|
20
|
+
vectordb_bench/backend/clients/milvus/milvus.py,sha256=9xBdsJQhg4yzXA0iy-Tv4bOzJXv5mg3cP22lN-BWFrc,6543
|
21
|
+
vectordb_bench/backend/clients/pgvector/config.py,sha256=sy1dqNP9CyZdFBsSqE8oNg9dPE57ssIsIUafbvgQW_Q,1510
|
22
|
+
vectordb_bench/backend/clients/pgvector/pgvector.py,sha256=_VPuRpO0A94p2Y25YyDwyHRoGGTMiIxloP8ilJImXCU,5414
|
21
23
|
vectordb_bench/backend/clients/pinecone/config.py,sha256=QV3v-mfjxkFeT6jNeOKSywnxDiaCFr1YUXmePxiTC-Q,395
|
22
|
-
vectordb_bench/backend/clients/pinecone/pinecone.py,sha256=
|
23
|
-
vectordb_bench/backend/clients/qdrant_cloud/config.py,sha256=
|
24
|
-
vectordb_bench/backend/clients/qdrant_cloud/qdrant_cloud.py,sha256=
|
24
|
+
vectordb_bench/backend/clients/pinecone/pinecone.py,sha256=U31QbXLuTcNPp7PK24glE6LM23-YpbxK_Kj-NmEwoZY,4078
|
25
|
+
vectordb_bench/backend/clients/qdrant_cloud/config.py,sha256=VvPvzkWMYAFixpRCK9Rm5NJZpSPLYE2MPLAmnAO28aQ,892
|
26
|
+
vectordb_bench/backend/clients/qdrant_cloud/qdrant_cloud.py,sha256=zuRFHOZ-Rkwu68EWk05V0d4bcbqxLGgAxyuwLXMsFV0,5261
|
25
27
|
vectordb_bench/backend/clients/weaviate_cloud/config.py,sha256=aiW40N6PcMlh_VvbqNJ7iZg2mZu2Omb-PJySLpMGi5I,1292
|
26
|
-
vectordb_bench/backend/clients/weaviate_cloud/weaviate_cloud.py,sha256=
|
28
|
+
vectordb_bench/backend/clients/weaviate_cloud/weaviate_cloud.py,sha256=i5RyS4Udim8xgzGSMdEGXSkfS9LMcR5332nv_1FFS0o,5179
|
27
29
|
vectordb_bench/backend/clients/zilliz_cloud/config.py,sha256=sXg6MQr51-XfBS4E92-lksP4bxXY2BIPSERrmSEXsfc,816
|
28
|
-
vectordb_bench/backend/clients/zilliz_cloud/zilliz_cloud.py,sha256=
|
30
|
+
vectordb_bench/backend/clients/zilliz_cloud/zilliz_cloud.py,sha256=b_IwKKUssmErHUAze4y-fWcA_3dZDLqza3A4b7I5o8w,1015
|
29
31
|
vectordb_bench/backend/runner/__init__.py,sha256=5dZfPky8pY9Bi9HD5GZ3Fge8V2FJWrkGkQUkNL2v1t0,230
|
30
|
-
vectordb_bench/backend/runner/mp_runner.py,sha256=
|
31
|
-
vectordb_bench/backend/runner/serial_runner.py,sha256=
|
32
|
+
vectordb_bench/backend/runner/mp_runner.py,sha256=amvLKrSyM0g0dUtOZmzdlksdVfhIF49URnJ2IA_WQPU,5009
|
33
|
+
vectordb_bench/backend/runner/serial_runner.py,sha256=855WozDesngoNQJ2DqoM5jvXnrGHP31A4PBwZIctb_k,9290
|
32
34
|
vectordb_bench/frontend/utils.py,sha256=BzKR1kMX1ErlXAzkFUb06O2mIcxBbquRzJtxoHgRnKs,162
|
33
35
|
vectordb_bench/frontend/vdb_benchmark.py,sha256=qmhj-UUq5Ra8MnLiiCDAkueZoha5IV6ZdtBGt64LJg0,1545
|
34
36
|
vectordb_bench/frontend/components/check_results/charts.py,sha256=zbtEyUSk2FJbSlaGw1LH4boSljFXfhVZlC8rrIgVw_4,5113
|
@@ -40,7 +42,7 @@ vectordb_bench/frontend/components/check_results/headerIcon.py,sha256=Q0mbnav2FW
|
|
40
42
|
vectordb_bench/frontend/components/check_results/nav.py,sha256=DQl74rujw70ayh37PQaiO4AdtVZ95-OtTMEtw_Ui7hE,685
|
41
43
|
vectordb_bench/frontend/components/check_results/priceTable.py,sha256=E7sxhSCjkBOMlQFHe6zFizhQLsJ-mUcXUbNj4FpqSUE,1308
|
42
44
|
vectordb_bench/frontend/components/check_results/stPageConfig.py,sha256=rAL2prWx0hT7Q3QWz6ALyKUMNladX6U48GlKvVq3DFA,429
|
43
|
-
vectordb_bench/frontend/components/get_results/saveAsImage.py,sha256=
|
45
|
+
vectordb_bench/frontend/components/get_results/saveAsImage.py,sha256=MdQCqjrX5rQyK34XfTkVykVLOcOouIz4enMR1P5GBiY,1457
|
44
46
|
vectordb_bench/frontend/components/run_test/autoRefresh.py,sha256=ofsl2sdmBd2y9O_xaJDr58NPycJsDwCdf2rEyE_f6e8,288
|
45
47
|
vectordb_bench/frontend/components/run_test/caseSelector.py,sha256=F06V0Fabp7NohIRwZLktB6tarVDGG--ftH6P2NA0qsk,3609
|
46
48
|
vectordb_bench/frontend/components/run_test/dbConfigSetting.py,sha256=_2mSi7If5Xme84Bk6spklD6pa4b0Fw0MnS2JaFgW6mg,2126
|
@@ -48,15 +50,18 @@ vectordb_bench/frontend/components/run_test/dbSelector.py,sha256=r8ABYpu6aWA94Fi
|
|
48
50
|
vectordb_bench/frontend/components/run_test/generateTasks.py,sha256=tqjhMWm1HTkxPlQClr5pVcMMyf3_Zg1SKt8Bw7L4w3I,706
|
49
51
|
vectordb_bench/frontend/components/run_test/hideSidebar.py,sha256=vb5kzIMmbMqWX67qFEHek21X4sGO_tPyn_uPqUEtp3Q,234
|
50
52
|
vectordb_bench/frontend/components/run_test/submitTask.py,sha256=4dvlS1Frf32Cqc4yiVmbLnUPqOxgoFLKJ8pdxYvY7uI,2322
|
51
|
-
vectordb_bench/frontend/const/dbCaseConfigs.py,sha256=
|
52
|
-
vectordb_bench/frontend/const/dbPrices.py,sha256=
|
53
|
-
vectordb_bench/frontend/const/styles.py,sha256=
|
53
|
+
vectordb_bench/frontend/const/dbCaseConfigs.py,sha256=XQkmKiGtxd4cC0r1aWgBWbSrsJWTBYJ_11VBqRBHg3Y,8382
|
54
|
+
vectordb_bench/frontend/const/dbPrices.py,sha256=10aBKjVcEg8y7TPSda28opmBM1KmXNrvbU9WM_BsZcE,176
|
55
|
+
vectordb_bench/frontend/const/styles.py,sha256=3xpIV7YfD19y_qLz73m19YpeU0gAY1HRURmJwWjGVIc,1935
|
54
56
|
vectordb_bench/frontend/pages/quries_per_dollar.py,sha256=SpXwKwdarwPz7RtF_qxyODfwARBb3VI9iKElYtnwEVs,2422
|
55
57
|
vectordb_bench/frontend/pages/run_test.py,sha256=nkXTVBauuCgkJ6WRSQ_-qa83RAmc0Z3VH2uTDrNCQL8,2045
|
56
|
-
vectordb_bench/results/
|
57
|
-
vectordb_bench
|
58
|
-
vectordb_bench
|
59
|
-
vectordb_bench
|
60
|
-
vectordb_bench-0.0.
|
61
|
-
vectordb_bench-0.0.
|
62
|
-
vectordb_bench-0.0.
|
58
|
+
vectordb_bench/results/dbPrices.json,sha256=VoaOjqbWyTdEMLXuzerL5xR46QbxOWFmxCf2mPhjJV4,576
|
59
|
+
vectordb_bench/results/getLeaderboardData.py,sha256=5aWBNb7hfp2rGjOrBTKeHUA8Uyr0MsDNUuHDF6u1DPQ,1707
|
60
|
+
vectordb_bench/results/leaderboard.json,sha256=QRE1S8FSIduD4hMqohKuibmcqHnNR61tRFkA4HKgOk4,26502
|
61
|
+
vectordb_bench/results/result_20230705_standard.json,sha256=qzCAfyBL4tk2eyhMDo8PM6tK2xklr3RpFztwCbNceNg,96237
|
62
|
+
vectordb_bench-0.0.3.dist-info/LICENSE,sha256=HXbxhrb5u5SegVzeLNF_voVgRsJMavcLaOmD1N0lZkM,1067
|
63
|
+
vectordb_bench-0.0.3.dist-info/METADATA,sha256=iULpZuFtVq34JXEL1Y8ipRC1gXwxYfnf3vtLupzzT5k,18933
|
64
|
+
vectordb_bench-0.0.3.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
|
65
|
+
vectordb_bench-0.0.3.dist-info/entry_points.txt,sha256=RVG6ppvzIsstAM199pDqeKu8lnxntjwYapn0smVQY7A,60
|
66
|
+
vectordb_bench-0.0.3.dist-info/top_level.txt,sha256=jnhZFZAuKX1J60yt-XOeBZ__ctiZMvoC_s0RFq29lpM,15
|
67
|
+
vectordb_bench-0.0.3.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|