vectordb-bench 0.0.29__py3-none-any.whl → 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (90) hide show
  1. vectordb_bench/__init__.py +14 -27
  2. vectordb_bench/backend/assembler.py +19 -6
  3. vectordb_bench/backend/cases.py +186 -23
  4. vectordb_bench/backend/clients/__init__.py +32 -0
  5. vectordb_bench/backend/clients/api.py +22 -1
  6. vectordb_bench/backend/clients/aws_opensearch/aws_opensearch.py +249 -43
  7. vectordb_bench/backend/clients/aws_opensearch/cli.py +51 -21
  8. vectordb_bench/backend/clients/aws_opensearch/config.py +58 -16
  9. vectordb_bench/backend/clients/chroma/chroma.py +6 -2
  10. vectordb_bench/backend/clients/elastic_cloud/config.py +19 -1
  11. vectordb_bench/backend/clients/elastic_cloud/elastic_cloud.py +133 -45
  12. vectordb_bench/backend/clients/lancedb/cli.py +62 -8
  13. vectordb_bench/backend/clients/lancedb/config.py +14 -1
  14. vectordb_bench/backend/clients/lancedb/lancedb.py +21 -9
  15. vectordb_bench/backend/clients/memorydb/memorydb.py +2 -2
  16. vectordb_bench/backend/clients/milvus/cli.py +30 -9
  17. vectordb_bench/backend/clients/milvus/config.py +3 -0
  18. vectordb_bench/backend/clients/milvus/milvus.py +81 -23
  19. vectordb_bench/backend/clients/oceanbase/cli.py +100 -0
  20. vectordb_bench/backend/clients/oceanbase/config.py +125 -0
  21. vectordb_bench/backend/clients/oceanbase/oceanbase.py +215 -0
  22. vectordb_bench/backend/clients/pinecone/pinecone.py +39 -25
  23. vectordb_bench/backend/clients/qdrant_cloud/config.py +59 -3
  24. vectordb_bench/backend/clients/qdrant_cloud/qdrant_cloud.py +100 -33
  25. vectordb_bench/backend/clients/qdrant_local/cli.py +60 -0
  26. vectordb_bench/backend/clients/qdrant_local/config.py +47 -0
  27. vectordb_bench/backend/clients/qdrant_local/qdrant_local.py +232 -0
  28. vectordb_bench/backend/clients/weaviate_cloud/cli.py +29 -3
  29. vectordb_bench/backend/clients/weaviate_cloud/config.py +2 -0
  30. vectordb_bench/backend/clients/weaviate_cloud/weaviate_cloud.py +5 -0
  31. vectordb_bench/backend/dataset.py +143 -27
  32. vectordb_bench/backend/filter.py +76 -0
  33. vectordb_bench/backend/runner/__init__.py +3 -3
  34. vectordb_bench/backend/runner/mp_runner.py +52 -39
  35. vectordb_bench/backend/runner/rate_runner.py +68 -52
  36. vectordb_bench/backend/runner/read_write_runner.py +125 -68
  37. vectordb_bench/backend/runner/serial_runner.py +56 -23
  38. vectordb_bench/backend/task_runner.py +48 -20
  39. vectordb_bench/cli/batch_cli.py +121 -0
  40. vectordb_bench/cli/cli.py +59 -1
  41. vectordb_bench/cli/vectordbbench.py +7 -0
  42. vectordb_bench/config-files/batch_sample_config.yml +17 -0
  43. vectordb_bench/frontend/components/check_results/data.py +16 -11
  44. vectordb_bench/frontend/components/check_results/filters.py +53 -25
  45. vectordb_bench/frontend/components/check_results/headerIcon.py +16 -13
  46. vectordb_bench/frontend/components/check_results/nav.py +20 -0
  47. vectordb_bench/frontend/components/custom/displayCustomCase.py +43 -8
  48. vectordb_bench/frontend/components/custom/displaypPrams.py +10 -5
  49. vectordb_bench/frontend/components/custom/getCustomConfig.py +10 -0
  50. vectordb_bench/frontend/components/label_filter/charts.py +60 -0
  51. vectordb_bench/frontend/components/run_test/caseSelector.py +48 -52
  52. vectordb_bench/frontend/components/run_test/dbSelector.py +9 -5
  53. vectordb_bench/frontend/components/run_test/inputWidget.py +48 -0
  54. vectordb_bench/frontend/components/run_test/submitTask.py +3 -1
  55. vectordb_bench/frontend/components/streaming/charts.py +253 -0
  56. vectordb_bench/frontend/components/streaming/data.py +62 -0
  57. vectordb_bench/frontend/components/tables/data.py +1 -1
  58. vectordb_bench/frontend/components/welcome/explainPrams.py +66 -0
  59. vectordb_bench/frontend/components/welcome/pagestyle.py +106 -0
  60. vectordb_bench/frontend/components/welcome/welcomePrams.py +147 -0
  61. vectordb_bench/frontend/config/dbCaseConfigs.py +420 -41
  62. vectordb_bench/frontend/config/styles.py +32 -2
  63. vectordb_bench/frontend/pages/concurrent.py +5 -1
  64. vectordb_bench/frontend/pages/custom.py +4 -0
  65. vectordb_bench/frontend/pages/label_filter.py +56 -0
  66. vectordb_bench/frontend/pages/quries_per_dollar.py +5 -1
  67. vectordb_bench/frontend/pages/results.py +60 -0
  68. vectordb_bench/frontend/pages/run_test.py +3 -3
  69. vectordb_bench/frontend/pages/streaming.py +135 -0
  70. vectordb_bench/frontend/pages/tables.py +4 -0
  71. vectordb_bench/frontend/vdb_benchmark.py +16 -41
  72. vectordb_bench/interface.py +6 -2
  73. vectordb_bench/metric.py +15 -1
  74. vectordb_bench/models.py +38 -11
  75. vectordb_bench/results/ElasticCloud/result_20250318_standard_elasticcloud.json +5890 -0
  76. vectordb_bench/results/Milvus/result_20250509_standard_milvus.json +6138 -0
  77. vectordb_bench/results/OpenSearch/result_20250224_standard_opensearch.json +7319 -0
  78. vectordb_bench/results/Pinecone/result_20250124_standard_pinecone.json +2365 -0
  79. vectordb_bench/results/QdrantCloud/result_20250602_standard_qdrantcloud.json +3556 -0
  80. vectordb_bench/results/ZillizCloud/result_20250613_standard_zillizcloud.json +6290 -0
  81. vectordb_bench/results/dbPrices.json +12 -4
  82. {vectordb_bench-0.0.29.dist-info → vectordb_bench-1.0.0.dist-info}/METADATA +131 -32
  83. {vectordb_bench-0.0.29.dist-info → vectordb_bench-1.0.0.dist-info}/RECORD +87 -65
  84. {vectordb_bench-0.0.29.dist-info → vectordb_bench-1.0.0.dist-info}/WHEEL +1 -1
  85. vectordb_bench/results/ZillizCloud/result_20230727_standard_zillizcloud.json +0 -791
  86. vectordb_bench/results/ZillizCloud/result_20230808_standard_zillizcloud.json +0 -679
  87. vectordb_bench/results/ZillizCloud/result_20240105_standard_202401_zillizcloud.json +0 -1352
  88. {vectordb_bench-0.0.29.dist-info → vectordb_bench-1.0.0.dist-info}/entry_points.txt +0 -0
  89. {vectordb_bench-0.0.29.dist-info → vectordb_bench-1.0.0.dist-info}/licenses/LICENSE +0 -0
  90. {vectordb_bench-0.0.29.dist-info → vectordb_bench-1.0.0.dist-info}/top_level.txt +0 -0
@@ -11,13 +11,16 @@
11
11
  "bus_crit": 32.6
12
12
  },
13
13
  "ElasticCloud": {
14
- "upTo2.5c8g": 0.4793
14
+ "upTo2.5c8g": 0.4793,
15
+ "8c60g": 1.26,
16
+ "8c60g-force_merge": 1.26
15
17
  },
16
18
  "QdrantCloud": {
17
19
  "0.5c4g-1node": 0.052,
18
20
  "2c8g-1node": 0.166,
19
21
  "4c16g-1node": 0.2852,
20
- "4c16g-5node": 1.426
22
+ "4c16g-5node": 1.426,
23
+ "16c64g": 1.14
21
24
  },
22
25
  "Pinecone": {
23
26
  "s1.x1": 0.0973,
@@ -26,7 +29,12 @@
26
29
  "p2.x1": 0.146,
27
30
  "p2.x1-8node": 1.168,
28
31
  "p1.x1-8node": 0.779,
29
- "s1.x1-2node": 0.195
32
+ "s1.x1-2node": 0.195,
33
+ "p2.x8-1node": 1.31
30
34
  },
31
- "PgVector": {}
35
+ "PgVector": {},
36
+ "OpenSearch": {
37
+ "16c128g": 1.418,
38
+ "16c128g-force_merge": 1.418
39
+ }
32
40
  }
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: vectordb-bench
3
- Version: 0.0.29
3
+ Version: 1.0.0
4
4
  Summary: VectorDBBench is not just an offering of benchmark results for mainstream vector databases and cloud services, it's your go-to tool for the ultimate performance and cost-effectiveness comparison. Designed with ease-of-use in mind, VectorDBBench is devised to help users, even non-professionals, reproduce results or test new systems, making the hunt for the optimal choice amongst a plethora of cloud services and open-source vector databases a breeze.
5
5
  Author-email: XuanYang-cn <xuan.yang@zilliz.com>
6
6
  Project-URL: repository, https://github.com/zilliztech/VectorDBBench
@@ -21,7 +21,7 @@ Requires-Dist: oss2
21
21
  Requires-Dist: psutil
22
22
  Requires-Dist: polars
23
23
  Requires-Dist: plotly
24
- Requires-Dist: environs<14.1.0
24
+ Requires-Dist: environs
25
25
  Requires-Dist: pydantic<v2
26
26
  Requires-Dist: scikit-learn
27
27
  Requires-Dist: pymilvus
@@ -53,6 +53,7 @@ Requires-Dist: PyMySQL; extra == "all"
53
53
  Requires-Dist: clickhouse-connect; extra == "all"
54
54
  Requires-Dist: pyvespa; extra == "all"
55
55
  Requires-Dist: lancedb; extra == "all"
56
+ Requires-Dist: mysql-connector-python; extra == "all"
56
57
  Provides-Extra: qdrant
57
58
  Requires-Dist: qdrant-client; extra == "qdrant"
58
59
  Provides-Extra: pinecone
@@ -90,6 +91,8 @@ Provides-Extra: vespa
90
91
  Requires-Dist: pyvespa; extra == "vespa"
91
92
  Provides-Extra: lancedb
92
93
  Requires-Dist: lancedb; extra == "lancedb"
94
+ Provides-Extra: oceanbase
95
+ Requires-Dist: mysql-connector-python; extra == "oceanbase"
93
96
  Dynamic: license-file
94
97
 
95
98
  # VectorDBBench(VDBBench): A Benchmark Tool for VectorDB
@@ -151,6 +154,7 @@ All the database client supported
151
154
  | mongodb | `pip install vectordb-bench[mongodb]` |
152
155
  | tidb | `pip install vectordb-bench[tidb]` |
153
156
  | vespa | `pip install vectordb-bench[vespa]` |
157
+ | oceanbase | `pip install vectordb-bench[oceanbase]` |
154
158
 
155
159
  ### Run
156
160
 
@@ -295,12 +299,81 @@ Options:
295
299
  --force-merge-enabled BOOLEAN Whether to perform force merge operation
296
300
  --flush-threshold-size TEXT Size threshold for flushing the transaction
297
301
  log
302
+ --engine TEXT type of engine to use valid values [faiss, lucene]
298
303
  # Memory Management
299
304
  --cb-threshold TEXT k-NN Memory circuit breaker threshold
305
+
306
+ # Quantization Type
307
+ --quantization-type TEXT which type of quantization to use valid values [fp32, fp16]
308
+ --help Show this message and exit.
309
+ ```
310
+ ### Run OceanBase from command line
311
+
312
+ Execute tests for the index types: HNSW, HNSW_SQ, or HNSW_BQ.
313
+
314
+ ```shell
315
+ vectordbbench oceanbasehnsw --host xxx --port xxx --user root@mysql_tenant --database test \
316
+ --m 16 --ef-construction 200 --case-type Performance1536D50K \
317
+ --index-type HNSW --ef-search 100
318
+ ```
300
319
 
320
+ To list the options for oceanbase, execute `vectordbbench oceanbasehnsw --help`, The following are some OceanBase-specific command-line options.
321
+
322
+ ```text
323
+ $ vectordbbench oceanbasehnsw --help
324
+ Usage: vectordbbench oceanbasehnsw [OPTIONS]
325
+
326
+ Options:
327
+ [...]
328
+ --host TEXT OceanBase host
329
+ --user TEXT OceanBase username [required]
330
+ --password TEXT OceanBase database password
331
+ --database TEXT DataBase name [required]
332
+ --port INTEGER OceanBase port [required]
333
+ --m INTEGER hnsw m [required]
334
+ --ef-construction INTEGER hnsw ef-construction [required]
335
+ --ef-search INTEGER hnsw ef-search [required]
336
+ --index-type [HNSW|HNSW_SQ|HNSW_BQ]
337
+ Type of index to use. Supported values:
338
+ HNSW, HNSW_SQ, HNSW_BQ [required]
301
339
  --help Show this message and exit.
302
340
  ```
303
341
 
342
+ Execute tests for the index types: IVF_FLAT, IVF_SQ8, or IVF_PQ.
343
+
344
+ ```shell
345
+ vectordbbench oceanbaseivf --host xxx --port xxx --user root@mysql_tenant --database test \
346
+ --nlist 1000 --sample_per_nlist 256 --case-type Performance768D1M \
347
+ --index-type IVF_FLAT --ivf_nprobes 100
348
+ ```
349
+
350
+ To list the options for oceanbase, execute `vectordbbench oceanbaseivf --help`, The following are some OceanBase-specific command-line options.
351
+
352
+ ```text
353
+ $ vectordbbench oceanbaseivf --help
354
+ Usage: vectordbbench oceanbaseivf [OPTIONS]
355
+
356
+ Options:
357
+ [...]
358
+ --host TEXT OceanBase host
359
+ --user TEXT OceanBase username [required]
360
+ --password TEXT OceanBase database password
361
+ --database TEXT DataBase name [required]
362
+ --port INTEGER OceanBase port [required]
363
+ --index-type [IVF_FLAT|IVF_SQ8|IVF_PQ]
364
+ Type of index to use. Supported values:
365
+ IVF_FLAT, IVF_SQ8, IVF_PQ [required]
366
+ --nlist INTEGER Number of cluster centers [required]
367
+ --sample_per_nlist INTEGER The cluster centers are calculated by total
368
+ sampling sample_per_nlist * nlist vectors
369
+ [required]
370
+ --ivf_nprobes TEXT How many clustering centers to search during
371
+ the query [required]
372
+ --m INTEGER The number of sub-vectors that each data
373
+ vector is divided into during IVF-PQ
374
+ --help Show this message and exit. Show this message and exit.
375
+ ```
376
+
304
377
  #### Using a configuration file.
305
378
 
306
379
  The vectordbbench command can optionally read some or all the options from a yaml formatted configuration file.
@@ -339,6 +412,49 @@ milvushnsw:
339
412
  > - Options passed on the command line will override the configuration file*
340
413
  > - Parameter names use an _ not -
341
414
 
415
+ #### Using a batch configuration file.
416
+
417
+ The vectordbbench command can read a batch configuration file to run all the test cases in the yaml formatted configuration file.
418
+
419
+ By default, configuration files are expected to be in vectordb_bench/config-files/, this can be overridden by setting
420
+ the environment variable CONFIG_LOCAL_DIR or by passing the full path to the file.
421
+
422
+ The required format is:
423
+ ```yaml
424
+ commandname:
425
+ - parameter_name: parameter_value
426
+ another_parameter_name: parameter_value
427
+ ```
428
+ Example:
429
+ ```yaml
430
+ pgvectorhnsw:
431
+ - db_label: pgConfigTest
432
+ user_name: vectordbbench
433
+ password: vectordbbench
434
+ db_name: vectordbbench
435
+ host: localhost
436
+ m: 16
437
+ ef_construction: 128
438
+ ef_search: 128
439
+ milvushnsw:
440
+ - skip_search_serial: True
441
+ case_type: Performance1536D50K
442
+ uri: http://localhost:19530
443
+ m: 16
444
+ ef_construction: 128
445
+ ef_search: 128
446
+ drop_old: False
447
+ load: False
448
+ ```
449
+ > Notes:
450
+ > - Options can only be passed through configuration files
451
+ > - Parameter names use an _ not -
452
+
453
+ How to use?
454
+ ```shell
455
+ vectordbbench batchcli --batch-config-file <your-yaml-configuration-file>
456
+ ```
457
+
342
458
  ## Leaderboard
343
459
  ### Introduction
344
460
  To facilitate the presentation of test results and provide a comprehensive performance analysis report, we offer a [leaderboard page](https://zilliz.com/benchmark). It allows us to choose from QPS, QP$, and latency metrics, and provides a comprehensive assessment of a system's performance based on the test results of various cases and a set of scoring mechanisms (to be introduced later). On this leaderboard, we can select the systems and models to be compared, and filter out cases we do not want to consider. Comprehensive scores are always ranked from best to worst, and the specific test results of each query will be presented in the list below.
@@ -407,52 +523,35 @@ The standard benchmark results displayed here include all 15 cases that we curre
407
523
 
408
524
  All standard benchmark results are generated by a client running on an 8 core, 32 GB host, which is located in the same region as the server being tested. The client host is equipped with an `Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz` processor. Also all the servers for the open-source systems tested in our benchmarks run on hosts with the same type of processor.
409
525
  ### Run Test Page
410
- ![image](https://github.com/zilliztech/VectorDBBench/assets/105927039/f3135a29-8f12-4aac-bbb3-f2f55e2a2ff0)
411
- This is the page to run a test:
412
526
  1. Initially, you select the systems to be tested - multiple selections are allowed. Once selected, corresponding forms will pop up to gather necessary information for using the chosen databases. The db_label is used to differentiate different instances of the same system. We recommend filling in the host size or instance type here (as we do in our standard results).
413
527
  2. The next step is to select the test cases you want to perform. You can select multiple cases at once, and a form to collect corresponding parameters will appear.
414
528
  3. Finally, you'll need to provide a task label to distinguish different test results. Using the same label for different tests will result in the previous results being overwritten.
415
529
  Now we can only run one task at the same time.
530
+ ![image](fig/run_test_select_db.png)
531
+ ![image](fig/run_test_select_case.png)
532
+ ![image](fig/run_test_submit.png)
533
+
416
534
 
417
535
  ## Module
418
536
  ### Code Structure
419
537
  ![image](https://github.com/zilliztech/VectorDBBench/assets/105927039/8c06512e-5419-4381-b084-9c93aed59639)
420
538
  ### Client
421
- Our client module is designed with flexibility and extensibility in mind, aiming to integrate APIs from different systems seamlessly. As of now, it supports Milvus, Zilliz Cloud, Elastic Search, Pinecone, Qdrant Cloud, Weaviate Cloud, PgVector, Redis, and Chroma. Stay tuned for more options, as we are consistently working on extending our reach to other systems.
539
+ Our client module is designed with flexibility and extensibility in mind, aiming to integrate APIs from different systems seamlessly. As of now, it supports Milvus, Zilliz Cloud, Elastic Search, Pinecone, Qdrant Cloud, Weaviate Cloud, PgVector, Redis, Chroma, etc. Stay tuned for more options, as we are consistently working on extending our reach to other systems.
422
540
  ### Benchmark Cases
423
- We've developed an array of 15 comprehensive benchmark cases to test vector databases' various capabilities, each designed to give you a different piece of the puzzle. These cases are categorized into three main types:
541
+ We've developed lots of comprehensive benchmark cases to test vector databases' various capabilities, each designed to give you a different piece of the puzzle. These cases are categorized into four main types:
424
542
  #### Capacity Case
425
543
  - **Large Dim:** Tests the database's loading capacity by inserting large-dimension vectors (GIST 100K vectors, 960 dimensions) until fully loaded. The final number of inserted vectors is reported.
426
544
  - **Small Dim:** Similar to the Large Dim case but uses small-dimension vectors (SIFT 500K vectors, 128 dimensions).
427
545
  #### Search Performance Case
428
546
  - **XLarge Dataset:** Measures search performance with a massive dataset (LAION 100M vectors, 768 dimensions) at varying parallel levels. The results include index building time, recall, latency, and maximum QPS.
429
- - **Large Dataset:** Similar to the XLarge Dataset case, but uses a slightly smaller dataset (10M-768dim, 5M-1536dim).
430
- - **Medium Dataset:** A case using a medium dataset (1M-768dim, 500K-1536dim).
547
+ - **Large Dataset:** Similar to the XLarge Dataset case, but uses a slightly smaller dataset (10M-1024dim, 10M-768dim, 5M-1536dim).
548
+ - **Medium Dataset:** A case using a medium dataset (1M-1024dim, 1M-768dim, 500K-1536dim).
549
+ - **Small Dataset:** For development (100K-768dim, 50K-1536dim).
431
550
  #### Filtering Search Performance Case
432
- - **Large Dataset, Low Filtering Rate:** Evaluates search performance with a large dataset (10M-768dim, 5M-1536dim) under a low filtering rate (1% vectors) at different parallel levels.
433
- - **Medium Dataset, Low Filtering Rate:** This case uses a medium dataset (1M-768dim, 500K-1536dim) with a similar low filtering rate.
434
- - **Large Dataset, High Filtering Rate:** It tests with a large dataset (10M-768dim, 5M-1536dim) but under a high filtering rate (99% vectors).
435
- - **Medium Dataset, High Filtering Rate:** This case uses a medium dataset (1M-768dim, 500K-1536dim) with a high filtering rate.
436
- For a quick reference, here is a table summarizing the key aspects of each case:
437
-
438
- Case No. | Case Type | Dataset Size | Filtering Rate | Results |
439
- |----------|-----------|--------------|----------------|---------|
440
- 1 | Capacity Case | SIFT 500K vectors, 128 dimensions | N/A | Number of inserted vectors |
441
- 2 | Capacity Case | GIST 100K vectors, 960 dimensions | N/A | Number of inserted vectors |
442
- 3 | Search Performance Case | LAION 100M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
443
- 4 | Search Performance Case | Cohere 10M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
444
- 5 | Search Performance Case | Cohere 1M vectors, 768 dimensions | N/A | Index building time, recall, latency, maximum QPS |
445
- 6 | Filtering Search Performance Case | Cohere 10M vectors, 768 dimensions | 1% vectors | Index building time, recall, latency, maximum QPS |
446
- 7 | Filtering Search Performance Case | Cohere 1M vectors, 768 dimensions | 1% vectors | Index building time, recall, latency, maximum QPS |
447
- 8 | Filtering Search Performance Case | Cohere 10M vectors, 768 dimensions | 99% vectors | Index building time, recall, latency, maximum QPS |
448
- 9 | Filtering Search Performance Case | Cohere 1M vectors, 768 dimensions | 99% vectors | Index building time, recall, latency, maximum QPS |
449
- 10 | Search Performance Case | OpenAI generated 500K vectors, 1536 dimensions | N/A | Index building time, recall, latency, maximum QPS |
450
- 11 | Search Performance Case | OpenAI generated 5M vectors, 1536 dimensions | N/A | Index building time, recall, latency, maximum QPS |
451
- 12 | Filtering Search Performance Case | OpenAI generated 500K vectors, 1536 dimensions | 1% vectors | Index building time, recall, latency, maximum QPS |
452
- 13 | Filtering Search Performance Case | OpenAI generated 5M vectors, 1536 dimensions | 1% vectors | Index building time, recall, latency, maximum QPS |
453
- 14 | Filtering Search Performance Case | OpenAI generated 500K vectors, 1536 dimensions | 99% vectors | Index building time, recall, latency, maximum QPS |
454
- 15 | Filtering Search Performance Case | OpenAI generated 5M vectors, 1536 dimensions | 99% vectors | Index building time, recall, latency, maximum QPS |
455
-
551
+ - **Int-Filter Cases:** Evaluates search performance with int-based filter expression (e.g. "id >= 2,000").
552
+ - **Label-Filter Cases:** Evaluates search performance with label-based filter expressions (e.g., "color == 'red'"). The test includes randomly generated labels to simulate real-world filtering scenarios.
553
+ #### Streaming Cases
554
+ - **Insertion-Under-Load Case:** Evaluates search performance while maintaining a constant insertion workload. VectorDBBench applies a steady stream of insert requests at a fixed rate to simulate real-world scenarios where search operations must perform reliably under continuous data ingestion.
456
555
 
457
556
  Each case provides an in-depth examination of a vector database's abilities, providing you a comprehensive view of the database's performance.
458
557
 
@@ -1,20 +1,21 @@
1
- vectordb_bench/__init__.py,sha256=PBGSIdgzof6UMeWbgjFUjTRgUcbu0Tg5njbGo0oU88g,2420
1
+ vectordb_bench/__init__.py,sha256=tNYi1E35lvYGeSgTPnhbJfV2zL5pGcO60vbwY8TSHYc,2497
2
2
  vectordb_bench/__main__.py,sha256=cyYbVSU-zA1AgzneGKcRRuzR4ftRDr9sIi9Ei9NZnhI,858
3
3
  vectordb_bench/base.py,sha256=AgavIF0P9ku_RmCRk1KKziba-wI4ZpA2aJvjJzNhRSs,129
4
- vectordb_bench/interface.py,sha256=XaCjTgUeI17uVjsgOauPeVlkvnkuCyQOWyOaWhrgCt8,9811
4
+ vectordb_bench/interface.py,sha256=eGObqYzbDICiiRDHsnjmoPIq33liET6N81vc7SDurZA,9985
5
5
  vectordb_bench/log_util.py,sha256=wDNaU_JBBOfKi_Z4vq7LDa0kOlLjoNNzDX3VZQn_Dxo,3239
6
- vectordb_bench/metric.py,sha256=pj-AxQHyIRHTaJY-wTIkTbC6TqEqMzt3kcEmMWEv71w,2063
7
- vectordb_bench/models.py,sha256=b-DaUopaf6qwuuEbl9wAHKZjuosmOi6gpebYz6iWvBU,12221
6
+ vectordb_bench/metric.py,sha256=p7vf7H8MBP7YQmIwy2wPYJPwMBalCy7rblshoD1R3kY,2693
7
+ vectordb_bench/models.py,sha256=ul3zoNj1btO_FClTw0wEGBUMGA2JreWIO-1hQ77Ek4o,13246
8
8
  vectordb_bench/backend/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
9
- vectordb_bench/backend/assembler.py,sha256=6GInRT7yBgfTaIPmo-XMkYX4pA8PJQmjMQInynwaunE,2047
10
- vectordb_bench/backend/cases.py,sha256=obDdY6g3p9Z2fog7qDwLLDuRMwo3LGQKMHsP66QZd2M,16296
9
+ vectordb_bench/backend/assembler.py,sha256=MdAOXVhCrRGT76Q21xBusCmDc4mXS7yMrhSYAlKPQVA,2785
10
+ vectordb_bench/backend/cases.py,sha256=TdILp-UBrogsx0xYTkq6P4NLo-zx1SsdbE_hud1k9-A,23368
11
11
  vectordb_bench/backend/data_source.py,sha256=bfa_Zg4O9fRP2ENmVZ_2-NISKozoFN-TocyxOlw1JtE,5524
12
- vectordb_bench/backend/dataset.py,sha256=lH2Q01AEJxA-sYfZHzH2BM019mwuy9mB_i0VLhIgDJ8,9020
12
+ vectordb_bench/backend/dataset.py,sha256=qP9LiPTlq_AuGyryqZ6dHGDIOSNkDGgLeVt3eSJ3-7M,13891
13
+ vectordb_bench/backend/filter.py,sha256=fDaq8SUab6KfwfGlkIQNGjE0k1gRjyXovQaTKzsUo4U,1922
13
14
  vectordb_bench/backend/result_collector.py,sha256=mpROVdZ-HChKBVyMV5TZ5v7YGRb69bvfT7Gezn5F5sY,819
14
- vectordb_bench/backend/task_runner.py,sha256=HYZ5B9-qOKAKmrsk-nwVhmXEddf451o4P3xQuSiCTt8,11595
15
+ vectordb_bench/backend/task_runner.py,sha256=sKE-Rer6LS_gFH57TFOiTOvAguX1VK3-u-n25A0jnNU,12738
15
16
  vectordb_bench/backend/utils.py,sha256=R6THuJdZhiQYSSJTqv0Uegl2B20taV_QjwvFrun2yxE,1949
16
- vectordb_bench/backend/clients/__init__.py,sha256=4P4Y7qOIYBJqJENsfMNzD5L0C651ypcPr05M1-ph0LU,10549
17
- vectordb_bench/backend/clients/api.py,sha256=3AfO-EPNzosaIBfYX3U9HeOMO7Uw0muOZ0x4cqqSH34,6534
17
+ vectordb_bench/backend/clients/__init__.py,sha256=VTbkRw9HpLowKDRp_FxRwobZmIe6uRJatm4rH9zVfPI,11429
18
+ vectordb_bench/backend/clients/api.py,sha256=NwO8EIP4Q1vsTxqb1VBIGgrXzASb1xM200ivdVg-Luw,7384
18
19
  vectordb_bench/backend/clients/aliyun_elasticsearch/aliyun_elasticsearch.py,sha256=7yPYaWoHeHNxDMtpReGXsdEPFD1e4vQblFor7TmLq5o,770
19
20
  vectordb_bench/backend/clients/aliyun_elasticsearch/config.py,sha256=d9RCgfCgauKvy6z9ig_wBormgwiGtkh8POyoHloHnJA,505
20
21
  vectordb_bench/backend/clients/aliyun_opensearch/aliyun_opensearch.py,sha256=rwa4rtbbP2Kaczh7Bf0bc_lE_sGG5w9PhtfdFu7rQNs,13237
@@ -22,31 +23,34 @@ vectordb_bench/backend/clients/aliyun_opensearch/config.py,sha256=KSiuRu-p7oL2PE
22
23
  vectordb_bench/backend/clients/alloydb/alloydb.py,sha256=E24hxCUgpBCRiScdcS_iBk8n0wngUgVg8qujOWiUhw0,13009
23
24
  vectordb_bench/backend/clients/alloydb/cli.py,sha256=G6Q0WApoDXDG_pqmK2lEKFIvKB8qAsZFPM8TfsURydE,5086
24
25
  vectordb_bench/backend/clients/alloydb/config.py,sha256=PJs2wIJqwcG6UJ3T8R7Pi3xTMBfxTZiNkcWyhtHv5dc,5313
25
- vectordb_bench/backend/clients/aws_opensearch/aws_opensearch.py,sha256=iRtPmHZoVTpQ-3Q90nE70zy_XsklGlSSNgBOgeAtVzU,10047
26
- vectordb_bench/backend/clients/aws_opensearch/cli.py,sha256=G086STCoaTBkz2J5Qt42bnyhmcYbhl6XxTaLfeirkXQ,4065
27
- vectordb_bench/backend/clients/aws_opensearch/config.py,sha256=9meXQUOVFlk3UOAhvBhaghNm7TasDsA6-fXOY8C9gzU,2295
26
+ vectordb_bench/backend/clients/aws_opensearch/aws_opensearch.py,sha256=TfdJZ_oVrxT4eldIYz5z8SQJbhm5my1xM8M_kfdfWtE,18852
27
+ vectordb_bench/backend/clients/aws_opensearch/cli.py,sha256=YV07EwgCLEyWXifr_PpcroQpNEHVpl5wX7OBSsyo4gQ,4951
28
+ vectordb_bench/backend/clients/aws_opensearch/config.py,sha256=B-uNeELiVSQCqy4u6F-dhFtSqQ58plsjMARcpmAbzKw,4027
28
29
  vectordb_bench/backend/clients/aws_opensearch/run.py,sha256=Ry5aAlielWjq0hx7LnbdShfOwzZhz3Gq9WYu5U43x9s,5001
29
- vectordb_bench/backend/clients/chroma/chroma.py,sha256=Aqo6AlSWd0TG0SR4cr9AEoLzXtOJ5VNhbIucHnm8NxY,3619
30
+ vectordb_bench/backend/clients/chroma/chroma.py,sha256=ifoEgo7jSkJ6pPixiUd2zuV75FvgvODCfZTfC8fK0ak,3759
30
31
  vectordb_bench/backend/clients/chroma/config.py,sha256=8nXpPdecQ5HrNqcsQwAVgacSz6uLgI-BI7v4tB8CeDk,347
31
32
  vectordb_bench/backend/clients/clickhouse/cli.py,sha256=6I0AwUOrqfjQbN_3aSTJHUYE-PAAMAQ4AIZC_8GqoEw,2054
32
33
  vectordb_bench/backend/clients/clickhouse/clickhouse.py,sha256=1i-64mzluloJ3fXT7J3_HXzkUtJ4re7HwuRwiqtGOck,8956
33
34
  vectordb_bench/backend/clients/clickhouse/config.py,sha256=-waHUHrT9WwuSNjHYE7T5j8s8RTsHNTDFuzmqT4nQWI,2649
34
- vectordb_bench/backend/clients/elastic_cloud/config.py,sha256=_5Cz3__CbMU7zCizkhK1pGhH3TLJacn8efVueUZ0lnQ,1573
35
- vectordb_bench/backend/clients/elastic_cloud/elastic_cloud.py,sha256=FSslLDH2Yi9ZdUwaCbKC_IXxFbMvW-L1xB3YMU08MVI,5448
36
- vectordb_bench/backend/clients/lancedb/cli.py,sha256=j5eqb-_CSWF1rdxAj2Byut6albHEj0JF51wCruaJsu8,2688
37
- vectordb_bench/backend/clients/lancedb/config.py,sha256=Udd39FrYmIa9ZztmfAC0BLj0rBaPv3yd9XaF5VkCziU,2950
38
- vectordb_bench/backend/clients/lancedb/lancedb.py,sha256=9hFHtj_Ry44nVY1vX9FSnB_WAL6ih86Rx2qFiZgEkX0,3148
35
+ vectordb_bench/backend/clients/elastic_cloud/config.py,sha256=elKvgJSYksg-TTyO3fapMY6efc7prVVUzY7Hsd_cXx4,2172
36
+ vectordb_bench/backend/clients/elastic_cloud/elastic_cloud.py,sha256=ZdQaR3rbfiGk_ul93H31kvITtcXAuzU6jX5kQ5s8fSg,8888
37
+ vectordb_bench/backend/clients/lancedb/cli.py,sha256=BxTkyNtOPXEogSoqBKrK9m_RF_WTXDvHg8HBFLNa1uw,4429
38
+ vectordb_bench/backend/clients/lancedb/config.py,sha256=NshH3VrJjy78aYBI-di33x4ko5xkTr16mkZ1liNu550,3233
39
+ vectordb_bench/backend/clients/lancedb/lancedb.py,sha256=bmwixs9KO9EObSYTRhM-wCug-jRxvkwrDl3hkXliG2k,4109
39
40
  vectordb_bench/backend/clients/mariadb/cli.py,sha256=nqV9V-gOSKGQ1y6VmxOMxGz0a3jz860Va55x7JBcuPk,2727
40
41
  vectordb_bench/backend/clients/mariadb/config.py,sha256=DNxo0i1c0wIfii78Luv9GeOFq-74yvkkg3Np9sNUyFI,1870
41
42
  vectordb_bench/backend/clients/mariadb/mariadb.py,sha256=O2PY7pP3dYdp-aTOQLDVckdNabCZscw5Xup7Z8LnWIg,7137
42
43
  vectordb_bench/backend/clients/memorydb/cli.py,sha256=mUpBN0VoE6M55AAEwyd20uEtPkOpckJzmcP2XXpue30,2659
43
44
  vectordb_bench/backend/clients/memorydb/config.py,sha256=D2Q-HkDwnmz98ek1e_iNu4o9CIRB14pOQWSZgRvd6oY,1500
44
- vectordb_bench/backend/clients/memorydb/memorydb.py,sha256=WrZhDYJqpwN173sk2lmPnOibHcQCPrq_PEAMFcL62U4,10219
45
- vectordb_bench/backend/clients/milvus/cli.py,sha256=junIvlQtDbOGscKqacferBETDR9SQ9FK3G7oVVO1_2s,9931
46
- vectordb_bench/backend/clients/milvus/config.py,sha256=h4OKAVE5FoSmaoppdFRcgeEMS96YcPWZat04496MrrA,12730
47
- vectordb_bench/backend/clients/milvus/milvus.py,sha256=DmyhqoMgGawwge3CnftaR1x0nmKDvs0rx_nSFbQk0ys,7053
45
+ vectordb_bench/backend/clients/memorydb/memorydb.py,sha256=5PPOSdFLQes6Gq5H3Yfi_q2m32eErMfNVO86qIjlnoc,10219
46
+ vectordb_bench/backend/clients/milvus/cli.py,sha256=Mtrp8mQF6z0PCnBV8hndkO2Rfj5n9qTGbUL1BoVoems,11043
47
+ vectordb_bench/backend/clients/milvus/config.py,sha256=072nqR0EdlGWAM5e_TqyNCBrQXLcGNWpPMcUBz9mCus,12852
48
+ vectordb_bench/backend/clients/milvus/milvus.py,sha256=P8v_IixfpLp-JyKyCaILW7NRkeISNfrerSHs2RwYW6c,9290
48
49
  vectordb_bench/backend/clients/mongodb/config.py,sha256=7DZCh0bjPiqJW2luPypfpNeGfvKxVC4mdHLqgcjF1hA,1745
49
50
  vectordb_bench/backend/clients/mongodb/mongodb.py,sha256=ts2gpAzUTarpkfMFnM5ANi6T-xvcjS8kc4-apPt9jug,7225
51
+ vectordb_bench/backend/clients/oceanbase/cli.py,sha256=4wD9_lFH5p0mZaErfcxS71xP33jZH3RjU7B0GA_ZHhs,3199
52
+ vectordb_bench/backend/clients/oceanbase/config.py,sha256=SbpztM07T6K3arKC8TIEtgazuIzfUEGGMm3FKiqgQbA,3660
53
+ vectordb_bench/backend/clients/oceanbase/oceanbase.py,sha256=1h8fQQTMUHkNMscjzlTcbpXv7lCrwfNhAGm9UCGw4GY,7368
50
54
  vectordb_bench/backend/clients/pgdiskann/cli.py,sha256=o5ddAp1Be2TOnm8Wh9IyIWUxdnw5N6v92Ms1s6CEwBo,3135
51
55
  vectordb_bench/backend/clients/pgdiskann/config.py,sha256=DBsVgLn4edl-irSlP_GV7KW-8jFemns_ujR_CuVnQtE,4412
52
56
  vectordb_bench/backend/clients/pgdiskann/pgdiskann.py,sha256=Z8K74Y6uMi6q8gnnD68doBxc5pWBSpRnNLDhlifseH4,12299
@@ -60,10 +64,13 @@ vectordb_bench/backend/clients/pgvectorscale/cli.py,sha256=3XL2NdBXh9ug8SyUwPD6f
60
64
  vectordb_bench/backend/clients/pgvectorscale/config.py,sha256=ZMcRQPyCMzMJLXw56zODUGJmqOP-sOMA1entNsfE-Ck,3122
61
65
  vectordb_bench/backend/clients/pgvectorscale/pgvectorscale.py,sha256=NONFdcE-b-mt6GsRTru6UbMMu8iqX8PfRF43fY_AODw,10136
62
66
  vectordb_bench/backend/clients/pinecone/config.py,sha256=hzPX1lxDpYI9IdpNs7RYB1vAn2uMlCw9NH4FonQEmfQ,294
63
- vectordb_bench/backend/clients/pinecone/pinecone.py,sha256=SeJ-XnuIZxFDYhgO8FlRNYN65lPXDW2HEQuu5s5Na5Q,3591
67
+ vectordb_bench/backend/clients/pinecone/pinecone.py,sha256=1FuEWCaA9Pco5Qi-NGbUEBzS2BY-troLymECsvay9xY,4231
64
68
  vectordb_bench/backend/clients/qdrant_cloud/cli.py,sha256=QoJ8t76mJmXrj-VJYn6-Atc1EryFhAApvtWUxei0wuo,1095
65
- vectordb_bench/backend/clients/qdrant_cloud/config.py,sha256=UWFctRQ03suEyASlbSg76dEi0s58tp5ERE-d5A9LuLg,1098
66
- vectordb_bench/backend/clients/qdrant_cloud/qdrant_cloud.py,sha256=VvE96WlEqbXCytwUGxLGt8AbuRvu1psF1weydb8MW_4,5431
69
+ vectordb_bench/backend/clients/qdrant_cloud/config.py,sha256=NQzqy_wWcR4AJxurem2QEwtsuNgqLJGTSZiEzopYDJk,2930
70
+ vectordb_bench/backend/clients/qdrant_cloud/qdrant_cloud.py,sha256=RA9NGPlhlxwx48_qEXRLuehttUqLFYXvbCAoOUFj5x0,8425
71
+ vectordb_bench/backend/clients/qdrant_local/cli.py,sha256=V-3zYC7gNEJjCAktJ0JQZ4xuyMfnC1ESey7t95XVnsA,1698
72
+ vectordb_bench/backend/clients/qdrant_local/config.py,sha256=nw14pVVYtFmtm6Wr01m9Pt8Vn4J9twVJ2QwnTKOlbcE,1111
73
+ vectordb_bench/backend/clients/qdrant_local/qdrant_local.py,sha256=V2AAIrMuMoX_Ne-Y5-EpVldGON_OBTo4CSihAgNY1CQ,7891
67
74
  vectordb_bench/backend/clients/redis/cli.py,sha256=tFLXzNyvh_GYUZihqMvj65C5vBKPVVAYIXtbzGaVCcU,2167
68
75
  vectordb_bench/backend/clients/redis/config.py,sha256=xVSVC6xjjAKsiwJuJoLguCGhiiUT9w13Db_Up5ZqljY,1241
69
76
  vectordb_bench/backend/clients/redis/redis.py,sha256=39-JfyMQp584jLN5ltCKqyB-sNwC18VICd6Z1XpJNMg,6769
@@ -77,78 +84,93 @@ vectordb_bench/backend/clients/vespa/cli.py,sha256=beNzffELpFBKprcs33KJ8nhBt1CFN
77
84
  vectordb_bench/backend/clients/vespa/config.py,sha256=tDfGY-IiLGuByHImQY0YQ5ZgxonoJVCqzgQ1Vt5jP6c,1500
78
85
  vectordb_bench/backend/clients/vespa/util.py,sha256=hXTjhyQQsvxY_6GU-xLziMH5nz_O9uYNhDCS__WjlVI,446
79
86
  vectordb_bench/backend/clients/vespa/vespa.py,sha256=cCqVMni7CKsPOkwGjCMihXk9hlESn4vSspHEB-bGIj0,8857
80
- vectordb_bench/backend/clients/weaviate_cloud/cli.py,sha256=Cy9epFJgeImVa3STogZhEyFAePjCZ7LY_iDu8nRpiME,1047
81
- vectordb_bench/backend/clients/weaviate_cloud/config.py,sha256=kLSxWFtEr12WCF610SBGWyVRzXbgnO0PsftNPSIiBMM,1245
82
- vectordb_bench/backend/clients/weaviate_cloud/weaviate_cloud.py,sha256=aZqQcLQoaGl_4Fss93KnkBZos8i7sZnwzlQbCZRs-60,5195
87
+ vectordb_bench/backend/clients/weaviate_cloud/cli.py,sha256=PPkZgSMThFwgJUp8eIwKbJiCB_szP7jcRbYjctLX1cE,1926
88
+ vectordb_bench/backend/clients/weaviate_cloud/config.py,sha256=v7s0RCkg4R6Iw451Jynq2EqmiDqdkTV16DX_TOPLHOo,1315
89
+ vectordb_bench/backend/clients/weaviate_cloud/weaviate_cloud.py,sha256=HEzhkGHgEz2YyEV-6qV_JYx1cbvvol9nuOtSzZU6OxM,5347
83
90
  vectordb_bench/backend/clients/zilliz_cloud/cli.py,sha256=3_eD3ZG-FeTw1cenhbBFniPnVLgT_UQwdIuGmGDroJw,1551
84
91
  vectordb_bench/backend/clients/zilliz_cloud/config.py,sha256=-Qb50m-Hcz86OcMURU21n61Rz-RpFqKfUsmjna85OR8,909
85
92
  vectordb_bench/backend/clients/zilliz_cloud/zilliz_cloud.py,sha256=B9EUDmK11oQ2GIslVkbRVAitHT-NbRGxQD_Weia-vhY,681
86
- vectordb_bench/backend/runner/__init__.py,sha256=mF8YnErTa7MVG37zZb0KFXBSrmMw_afttuiqWcwrVls,228
87
- vectordb_bench/backend/runner/mp_runner.py,sha256=n8IiRs7JUJGQVXwGlVMdvcpotikF9VsjXGFHMMylsS0,10119
88
- vectordb_bench/backend/runner/rate_runner.py,sha256=2coO7qalEh6ZbVKUkyFvip4JWjs1yJM-iiExSrjEp9c,4306
89
- vectordb_bench/backend/runner/read_write_runner.py,sha256=CXYBXEEkS1S7-NurdzN5Wh6N0Vx-rprM9Qehk1WKwl8,7822
90
- vectordb_bench/backend/runner/serial_runner.py,sha256=Y4Y2mSK8nU3hml7gliiF6BXUaW49sD-Ueci0xn62IL0,10290
93
+ vectordb_bench/backend/runner/__init__.py,sha256=lkk-naYS2ai3kQLwNaqSsnudL9SVl0OYy1uCstgUAtM,289
94
+ vectordb_bench/backend/runner/mp_runner.py,sha256=uoPb2LqQ1YVIB_cuNYDwwYtFZV-Uqp3NPPuCFI44EWw,10988
95
+ vectordb_bench/backend/runner/rate_runner.py,sha256=pmRjjKQYVeHNIOxSopZ_Kv68l4Y-PzcyduNIRFFxXxk,5120
96
+ vectordb_bench/backend/runner/read_write_runner.py,sha256=y5CXE1CdYTl_qrlfTpQsHTwZU-hiaSSwZuRxiK62iLk,11216
97
+ vectordb_bench/backend/runner/serial_runner.py,sha256=E4oBlwaG72O4XtrO9oj7h9_g-JjfduQFMI3EjJG5d0k,12119
91
98
  vectordb_bench/backend/runner/util.py,sha256=tjTFUxth6hNnVrlU82TqkHhfeZo4ymj7WlyK4zFyPTg,522
92
99
  vectordb_bench/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
93
- vectordb_bench/cli/cli.py,sha256=1bZzK7uCwAi9ILtvlZiFAAMwJfwQec1HF3RRSpbqxKY,16000
94
- vectordb_bench/cli/vectordbbench.py,sha256=EA0x0vKDGIszAKstbnDtJz26U6_Wnl11W07PDukLNzo,1604
100
+ vectordb_bench/cli/batch_cli.py,sha256=lnVrIP1rweoqfFkrdTLzxnLzy713xP2AnW6xmhd4bu0,3658
101
+ vectordb_bench/cli/cli.py,sha256=T4EAqd5dcPSCyxcEPyT6nnpEMGODwSlYEIItsOQak5s,17773
102
+ vectordb_bench/cli/vectordbbench.py,sha256=MkI1_Lk1Y6o6BPUrGrp6KR-kODTzmv02Xjkkpl7CpgA,1883
103
+ vectordb_bench/config-files/batch_sample_config.yml,sha256=3n0SfLgVWeboAZZcO8j_UP4A9CExHGPE8tOmtVPPFiA,370
95
104
  vectordb_bench/config-files/sample_config.yml,sha256=yw9ZgHczNi9PedNuTVxZKiOTI6AVoQS1h8INNgoDjPk,340
96
105
  vectordb_bench/custom/custom_case.json,sha256=uKo7NJgXDPPLtf_V6y1uc5w1aIcjLp-GCJEYOCty1As,475
97
106
  vectordb_bench/frontend/utils.py,sha256=8eb4I9F0cQdnPQiFX0gMEk1e2fdgultgTKzzY5zS0Q0,489
98
- vectordb_bench/frontend/vdb_benchmark.py,sha256=SVSKCjVCDpp2ZSzPDwPiT9RhVOwTAEdtdYgYg5KIDMM,1728
107
+ vectordb_bench/frontend/vdb_benchmark.py,sha256=3AcdU8ik5ncvbLwv3JrJQzR7UorRW1qYxDtGEmsB6Ig,770
99
108
  vectordb_bench/frontend/components/check_results/charts.py,sha256=TBX89xFrWwWZRjIarVzX_Wctye6JNrMtwI8ih4s_bM8,5108
100
- vectordb_bench/frontend/components/check_results/data.py,sha256=emdGWxW9-w4xPuvoT_y8rHaOZU3NIGG__wH5_njX6Fg,3376
109
+ vectordb_bench/frontend/components/check_results/data.py,sha256=M7AesJwuPn8AALSQ39xAsvdp0aTAbdp3OgXywraRvFU,3663
101
110
  vectordb_bench/frontend/components/check_results/expanderStyle.py,sha256=XLnJlDai8A8TQhr2iYQpZXIB31YUrrjrmFvLFHT5uOg,1299
102
- vectordb_bench/frontend/components/check_results/filters.py,sha256=M2YIWUlE9hYzJpNv30uCt1kUfzGbDfYWfcGlE8-V1fc,4391
111
+ vectordb_bench/frontend/components/check_results/filters.py,sha256=-6DEujUGnKQaHeYYQI8BboMYspZ2pEOkkWk9ii8eIeY,5669
103
112
  vectordb_bench/frontend/components/check_results/footer.py,sha256=Nh1RzorDg-8R5ewp_UGFnUqWaAEZ7xZ1RpqHDew1mGY,395
104
- vectordb_bench/frontend/components/check_results/headerIcon.py,sha256=0uvvSe-oroh58iKzyXeNch0z2Xh7n-plKIGRUmwYnH4,434
105
- vectordb_bench/frontend/components/check_results/nav.py,sha256=Gut3xguhdfYzx_GB95MaS3gU8KFP7OTRx3kIGOJikoQ,653
113
+ vectordb_bench/frontend/components/check_results/headerIcon.py,sha256=MF2oiDYjUXfsNwjGtZ2RZIChuOkVIfsQ_uq9-nkWXqs,569
114
+ vectordb_bench/frontend/components/check_results/nav.py,sha256=uYtxznvBGA-h4G3fJyo7c_1G89KQyBUEZ81R1WtEWH8,1471
106
115
  vectordb_bench/frontend/components/check_results/priceTable.py,sha256=K3NmlNKAb-5ncv488YpVy4i05GfZw5tezh9npO9R2wA,1295
107
116
  vectordb_bench/frontend/components/check_results/stPageConfig.py,sha256=czkqr9NC3UQAxiz8KSCZC8cPmgSnFUhI2lOLHXfuMxo,432
108
117
  vectordb_bench/frontend/components/concurrent/charts.py,sha256=00WI8wxIdHAhnpmFJLd03n5U3LbowmeY4swVbGNzyYg,2874
109
- vectordb_bench/frontend/components/custom/displayCustomCase.py,sha256=aIWKFm13-EPG2XlJ3PWc2znR6q8A5FR93D5ZkGGncrM,1641
110
- vectordb_bench/frontend/components/custom/displaypPrams.py,sha256=mwm74_86YYRbpJ1Hz2Dba0eKvyzkK0DM7uhjBDFoElU,1910
111
- vectordb_bench/frontend/components/custom/getCustomConfig.py,sha256=tSPI2DPJSNxlArLcO5Kf9nhpIBc0_YE2QD9-1cbaLus,1031
118
+ vectordb_bench/frontend/components/custom/displayCustomCase.py,sha256=FM8nCbpq-hLoYVL1Slw5f6gSeE6EgFFN8-ZTy6AIc3Y,3219
119
+ vectordb_bench/frontend/components/custom/displaypPrams.py,sha256=oQa-YnN1BqP-qyj9jJpUGnuGA2HtcaKQhIxe7tbsYs4,2456
120
+ vectordb_bench/frontend/components/custom/getCustomConfig.py,sha256=YEfga7PTv5AjeRWECDA0UY_RLHI4v8IEhkKVT7p2bpk,1396
112
121
  vectordb_bench/frontend/components/custom/initStyle.py,sha256=ortsoUNqH-vVq9ECiw80PnBEcIaUwxR1AQ65DSkBhGs,434
113
122
  vectordb_bench/frontend/components/get_results/saveAsImage.py,sha256=POaFiwKoCGqrY-zhanWC7-tubE64bV_JjqI4lgIuMts,1459
123
+ vectordb_bench/frontend/components/label_filter/charts.py,sha256=l7ktw-ppuD9FCzpq712yKfIIbwc6CLFm1icxlRyIMNE,1836
114
124
  vectordb_bench/frontend/components/run_test/autoRefresh.py,sha256=mjIa43VQQmNjYPkEbOtKNlJ1UfGPcqRKvc2Jh4kx8U0,289
115
- vectordb_bench/frontend/components/run_test/caseSelector.py,sha256=ea3u-NDtCX32Au9YkfqGA8mhF6K_Av9HZvp0Mem3C0o,5328
125
+ vectordb_bench/frontend/components/run_test/caseSelector.py,sha256=VZOZLRK94oDetIl9fuiHwxocDgrmAOZtT6hnTgtIJ-4,4422
116
126
  vectordb_bench/frontend/components/run_test/dbConfigSetting.py,sha256=k0tGoJokTVvI3zofArNxH9NYUu9Hzo1uyobbZ_h9HfM,2895
117
- vectordb_bench/frontend/components/run_test/dbSelector.py,sha256=hzMEIL1DzvpP8xkL6JhELTdcml0ysC70Gw-WLr8vW9A,1123
127
+ vectordb_bench/frontend/components/run_test/dbSelector.py,sha256=J49xus-LW6pOBUl8njGiVXP4czg9IRPqjC4eAN9CvXQ,1336
118
128
  vectordb_bench/frontend/components/run_test/generateTasks.py,sha256=3y8NHtWJMNqoP2SvoWuR7kj84g0OEg68IULebimzz7E,741
119
129
  vectordb_bench/frontend/components/run_test/hideSidebar.py,sha256=vb5kzIMmbMqWX67qFEHek21X4sGO_tPyn_uPqUEtp3Q,234
120
130
  vectordb_bench/frontend/components/run_test/initStyle.py,sha256=osPUgfFfH7rRlVNHSMumvmZxvKWlLxmZiNqgnMiUJEU,723
121
- vectordb_bench/frontend/components/run_test/submitTask.py,sha256=VZjkopkCBNhqLwGqsoM0hbPEeF6Q5UOQcdFUaegerxc,4094
122
- vectordb_bench/frontend/components/tables/data.py,sha256=5DdnC64BB7Aj2z9acht2atsPB4NabzQCZKALfIUnqtQ,1233
123
- vectordb_bench/frontend/config/dbCaseConfigs.py,sha256=DQrSuBVuTCjwS_I1hVNTnYygDu6Zkka7PLfLi7TNN3E,51023
131
+ vectordb_bench/frontend/components/run_test/inputWidget.py,sha256=oWbBlICgvObWwsz_mXRONCaM9KNEw11tJvq6ULX-OLM,1913
132
+ vectordb_bench/frontend/components/run_test/submitTask.py,sha256=fBKUT1U9kN8I1rwYiOEdp0VXAZc9Tr8XNFxMdm5A8fE,4126
133
+ vectordb_bench/frontend/components/streaming/charts.py,sha256=PokoN1pnakhO-lK_NU95gJ6M9LnFktbigmgZrrgD1oQ,8059
134
+ vectordb_bench/frontend/components/streaming/data.py,sha256=ekp58eaxweHCfoPIySGJ35Np4sa1-EJ0s_mymct8EYs,1864
135
+ vectordb_bench/frontend/components/tables/data.py,sha256=Qc9joj8gBlIDebT4B5E5EFY3bwI0E8kTUxCKpJDOeGw,1219
136
+ vectordb_bench/frontend/components/welcome/explainPrams.py,sha256=pNPozWtKDlQNYMZJt07n62TdfzMsK3gKzTU2fLBJGSw,6291
137
+ vectordb_bench/frontend/components/welcome/pagestyle.py,sha256=PMqE0yhDdWKciMIiuF0zSPxHGLEJYj95cYDCN_Knoko,2381
138
+ vectordb_bench/frontend/components/welcome/welcomePrams.py,sha256=wKQIWaX9FYPs8_OL1fYLhfuKmNI0wmDFd3pGwUL_w1g,4820
139
+ vectordb_bench/frontend/config/dbCaseConfigs.py,sha256=XDXSBaop983LjNomalAqknhF024ps4Vy_5CD_2Wlcqo,64919
124
140
  vectordb_bench/frontend/config/dbPrices.py,sha256=10aBKjVcEg8y7TPSda28opmBM1KmXNrvbU9WM_BsZcE,176
125
- vectordb_bench/frontend/config/styles.py,sha256=y-vYXCF4_o0-88BNzbKNKvfhvVxmz8BSr4v_E_Qv37E,2643
126
- vectordb_bench/frontend/pages/concurrent.py,sha256=bvoSafRSIsRzBQkI3uBwwrdg8jnhRUQG-epZbrJhGiE,2082
127
- vectordb_bench/frontend/pages/custom.py,sha256=j7oJ2FHBv5O50D7YbzXTLRuIDgwkGt0iEd0FRHHkYLw,2436
128
- vectordb_bench/frontend/pages/quries_per_dollar.py,sha256=BDukiFwxyqQK_btCSsRR5D_a17PMu0yI8Muw3eRLz6Y,2461
129
- vectordb_bench/frontend/pages/run_test.py,sha256=izWTcNzXtEfV2zuR-0QPR5WXvsNp_Uqu2mepSwOmNrs,2121
130
- vectordb_bench/frontend/pages/tables.py,sha256=VfBzgrgHe68gbSh4MrmVx61l5bQSNOQNrq8xmPlG00c,566
131
- vectordb_bench/results/dbPrices.json,sha256=VoaOjqbWyTdEMLXuzerL5xR46QbxOWFmxCf2mPhjJV4,576
141
+ vectordb_bench/frontend/config/styles.py,sha256=HHU1pS93sq6mKmMEnKyzHA2EhZKnzOeg_vcTdkEu5VA,52878
142
+ vectordb_bench/frontend/pages/concurrent.py,sha256=X1XbLYmKtS9jJCt7xbDyxoqO7N6PwaegtkTrXQG-Gno,2133
143
+ vectordb_bench/frontend/pages/custom.py,sha256=qDG3hr2EN5LYMSR1LkMalHsvBFmpcS6MU_e2DPh4zYM,2547
144
+ vectordb_bench/frontend/pages/label_filter.py,sha256=Pey31DVlHNtHC36Y7ijLIRE2cOI4RT5tCW44-c_pl-0,1526
145
+ vectordb_bench/frontend/pages/quries_per_dollar.py,sha256=CXRqs28AwMMAa00HL8iqwfkowBuObxRn6PFuoBBsiDM,2512
146
+ vectordb_bench/frontend/pages/results.py,sha256=eH3RQkl9ia-1K8Gp64eCcXM6rayP1qZwNH0OZeNfZgk,1779
147
+ vectordb_bench/frontend/pages/run_test.py,sha256=CL0ZaB-uxeL31Tjl4Xplg4r_BhqOAw3DWl7DvTzPRII,2125
148
+ vectordb_bench/frontend/pages/streaming.py,sha256=dndTQhje1RpV8FOXpE4MVnht_-4rzPRjNzaFt9nhaLs,4817
149
+ vectordb_bench/frontend/pages/tables.py,sha256=ANJhrykG94ec3Vs7HJiymvzH5NbjLCei78Sf8nTTG_I,677
150
+ vectordb_bench/results/dbPrices.json,sha256=50y-RrqDN3oAdwiUW4irMKV1IRgzR1iFOQcl8lG7950,749
132
151
  vectordb_bench/results/getLeaderboardData.py,sha256=fuNQmFuWEdm60McaQrXSGLApNOHRnfmvzn1soT3iGHE,2323
133
152
  vectordb_bench/results/leaderboard.json,sha256=OooOar8Pj0hG-HlpOU8N_hNjJS53PaMMRSoSUtqLJ-k,69276
134
153
  vectordb_bench/results/ElasticCloud/result_20230727_standard_elasticcloud.json,sha256=IyJKjHGwTCcqKJAaBgfI_hhvMIGrXMl8S9Z2-19BvEE,5807
135
154
  vectordb_bench/results/ElasticCloud/result_20230808_standard_elasticcloud.json,sha256=sx_B3lbWICcMrePiYqeoJ179pwHD2l78bMf2B880QI0,4431
155
+ vectordb_bench/results/ElasticCloud/result_20250318_standard_elasticcloud.json,sha256=d5cfP-4oEy1VsWFoaNLQ2iUXxqv27zQDEBG80b0QPw0,204853
136
156
  vectordb_bench/results/Milvus/result_20230727_standard_milvus.json,sha256=UqwfO78qx2zRRWp29J-Egw8K8R5j-FFj9vX0iUrNRm8,17709
137
157
  vectordb_bench/results/Milvus/result_20230808_standard_milvus.json,sha256=ck9loRNVUGHnjSyuHWN76lGNRRPtWMW7Cj0zf3uwXEo,16303
158
+ vectordb_bench/results/Milvus/result_20250509_standard_milvus.json,sha256=0v9-x488ikM2c_StMOOHCqqIh0iPxi1HJIUWTIQGSEQ,209904
159
+ vectordb_bench/results/OpenSearch/result_20250224_standard_opensearch.json,sha256=MpqQCo25tjuOwIoJIE2YwBomzI6Nyq8dF6L-i8lh7k4,258858
138
160
  vectordb_bench/results/PgVector/result_20230727_standard_pgvector.json,sha256=gIc05u344PkZf78Dxi8zo0_sjPuKEw9PMXqAOVxzlOo,5686
139
161
  vectordb_bench/results/PgVector/result_20230808_standard_pgvector.json,sha256=vy2wTympKzQae5_fFp7zZ4dsgo607P5phCjqu2lOm3E,4323
140
162
  vectordb_bench/results/Pinecone/result_20230727_standard_pinecone.json,sha256=j9AgPgFwac9IPDnzgfsmiBOcbqM20c9J-OcaRJmf7wo,24938
141
163
  vectordb_bench/results/Pinecone/result_20230808_standard_pinecone.json,sha256=ccQaH5nHcF8MbVb4wOmRtml5PlxRoEOQ-OLEVZ496c4,21387
164
+ vectordb_bench/results/Pinecone/result_20250124_standard_pinecone.json,sha256=-05PkyEt8ZAvwLrihmUsjyURRZ4vMcoc2WrEzURWETs,78862
142
165
  vectordb_bench/results/QdrantCloud/result_20230727_standard_qdrantcloud.json,sha256=2GaPFRiufjLFxx2yekTqLqwJnsga5urNKa16zdZrQng,11187
143
166
  vectordb_bench/results/QdrantCloud/result_20230808_standard_qdrantcloud.json,sha256=tZjJSku1w4IqU-5T0LvxFfDPjf_9e0yCzMG-coiSniM,10241
167
+ vectordb_bench/results/QdrantCloud/result_20250602_standard_qdrantcloud.json,sha256=40O8F99uM0cjxtMjj4e6uaLleCnZTO24MruQY866bxA,123327
144
168
  vectordb_bench/results/WeaviateCloud/result_20230727_standard_weaviatecloud.json,sha256=WBlfjmbO3R4G6F4lDuneEigffUyTU7ti1SyWoff3oNI,15497
145
169
  vectordb_bench/results/WeaviateCloud/result_20230808_standard_weaviatecloud.json,sha256=lXjudo-l-6H0EOIemoB5n4GddOOHJnwndrGwCJIH-EY,7865
146
- vectordb_bench/results/ZillizCloud/result_20230727_standard_zillizcloud.json,sha256=-Mdm4By65XDRCrmVOCF8yQXjcZtH4Xo4shcjoDoBUKU,18293
147
- vectordb_bench/results/ZillizCloud/result_20230808_standard_zillizcloud.json,sha256=77XlHT5zM_K7mG5HfDQKwXZnSCuR37VUbt6-P3J_amI,15737
148
- vectordb_bench/results/ZillizCloud/result_20240105_standard_202401_zillizcloud.json,sha256=TualfJ0664Hs-vdIW68bdkqAEYyzotXmu2P0yIN-GHk,42526
149
- vectordb_bench-0.0.29.dist-info/licenses/LICENSE,sha256=HXbxhrb5u5SegVzeLNF_voVgRsJMavcLaOmD1N0lZkM,1067
150
- vectordb_bench-0.0.29.dist-info/METADATA,sha256=8ekrKUsItuE-dEvCBGOk1ktXNF19qSw8Qat9FRGG-o8,38448
151
- vectordb_bench-0.0.29.dist-info/WHEEL,sha256=Nw36Djuh_5VDukK0H78QzOX-_FQEo6V37m3nkm96gtU,91
152
- vectordb_bench-0.0.29.dist-info/entry_points.txt,sha256=Qzw6gVx96ui8esG21H6yHsI6nboEohRmV424TYhQNrA,113
153
- vectordb_bench-0.0.29.dist-info/top_level.txt,sha256=jnhZFZAuKX1J60yt-XOeBZ__ctiZMvoC_s0RFq29lpM,15
154
- vectordb_bench-0.0.29.dist-info/RECORD,,
170
+ vectordb_bench/results/ZillizCloud/result_20250613_standard_zillizcloud.json,sha256=gZCnDanS5Yb6Uzvb0Q6wDxMl81UAoGzsZRHU8JwqNds,215610
171
+ vectordb_bench-1.0.0.dist-info/licenses/LICENSE,sha256=HXbxhrb5u5SegVzeLNF_voVgRsJMavcLaOmD1N0lZkM,1067
172
+ vectordb_bench-1.0.0.dist-info/METADATA,sha256=oP-ohXExFhd4XSyMTOT6HnnijRcwxs-8MVpEaSoj5AY,40817
173
+ vectordb_bench-1.0.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
174
+ vectordb_bench-1.0.0.dist-info/entry_points.txt,sha256=Qzw6gVx96ui8esG21H6yHsI6nboEohRmV424TYhQNrA,113
175
+ vectordb_bench-1.0.0.dist-info/top_level.txt,sha256=jnhZFZAuKX1J60yt-XOeBZ__ctiZMvoC_s0RFq29lpM,15
176
+ vectordb_bench-1.0.0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.7.1)
2
+ Generator: setuptools (80.9.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5