vector-inspector 0.2.0__py3-none-any.whl → 0.2.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -282,7 +282,7 @@ class MainWindow(QMainWindow):
282
282
  "<h2>Vector Inspector 0.1.0</h2>"
283
283
  "<p>A comprehensive desktop application for visualizing, "
284
284
  "querying, and managing vector database data.</p>"
285
- '<p><a href="https://github.com/anthonypdawson/vector-viewer" style="color:#2980b9;">GitHub Project Page</a></p>'
285
+ '<p><a href="https://github.com/anthonypdawson/vector-inspector" style="color:#2980b9;">GitHub Project Page</a></p>'
286
286
  "<hr />"
287
287
  "<p>Built with PySide6 and ChromaDB</p>"
288
288
  )
@@ -1,9 +1,13 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: vector-inspector
3
- Version: 0.2.0
3
+ Version: 0.2.2
4
4
  Summary: A comprehensive desktop application for visualizing, querying, and managing vector database data
5
5
  Author-Email: Anthony Dawson <anthonypdawson+github@gmail.com>
6
6
  License: MIT
7
+ Project-URL: Homepage, https://github.com/anthony-dawson/vector-inspector
8
+ Project-URL: Source, https://github.com/anthony-dawson/vector-inspector
9
+ Project-URL: Issues, https://github.com/anthony-dawson/vector-inspector/issues
10
+ Project-URL: Documentation, https://github.com/anthony-dawson/vector-inspector#readme
7
11
  Requires-Python: ==3.12.*
8
12
  Requires-Dist: chromadb>=0.4.22
9
13
  Requires-Dist: qdrant-client>=1.7.0
@@ -26,24 +30,23 @@ A comprehensive desktop application for visualizing, querying, and managing vect
26
30
 
27
31
  ## Overview
28
32
 
33
+ Vector Inspector bridges the gap between vector databases and user-friendly data exploration tools. While vector databases are powerful for semantic search and AI applications, they often lack the intuitive inspection and management tools that traditional SQL databases have. This project aims to provide that missing layer.
34
+
29
35
  ## Table of Contents
30
36
 
31
37
  - [Overview](#overview)
32
38
  - [Key Features](#key-features)
33
39
  - [Architecture](#architecture)
34
- - [Application Structure](#application-structure)
35
40
  - [Use Cases](#use-cases)
36
- - [Feature Access (Free vs Pro)](#feature-access-free-vs-pro)
37
- - [Planned Roadmap](#planned-roadmap)
38
- - [Installation (Planned)](#installation-planned)
41
+ - [Feature Access](#feature-access)
42
+ - [Roadmap](#roadmap)
43
+ - [Installation](#installation)
39
44
  - [Configuration](#configuration)
40
45
  - [Development Setup](#development-setup)
41
46
  - [Contributing](#contributing)
42
47
  - [License](#license)
43
48
  - [Acknowledgments](#acknowledgments)
44
49
 
45
- Vector Inspector bridges the gap between vector databases and user-friendly data exploration tools. While vector databases are powerful for semantic search and AI applications, they often lack the intuitive inspection and management tools that traditional SQL databases have. This project aims to provide that missing layer.
46
-
47
50
  ## Key Features
48
51
 
49
52
  ### 1. **Multi-Provider Support**
@@ -119,58 +122,9 @@ Vector Inspector bridges the gap between vector databases and user-friendly data
119
122
 
120
123
  ## Architecture
121
124
 
122
- ### Technology Stack
123
-
124
- #### Frontend (GUI)
125
- - **Framework**: PySide6 (Qt for Python) - native desktop application
126
- - **UI Components**: Qt Widgets for forms, dialogs, and application structure
127
- - **Visualization**:
128
- - Plotly for interactive charts (embedded via QWebEngineView)
129
- - matplotlib for static visualizations
130
- - **Data Grid**: QTableView with custom models for high-performance data display
131
-
132
- #### Backend
133
- - **Language**: Python 3.12
134
- - **Core Libraries**:
135
- - Vector DB clients: `chromadb`, `qdrant-client` (implemented), `pinecone-client`, `weaviate-client`, `pymilvus` (planned)
136
- - Embeddings: `sentence-transformers`, `fastembed` (implemented), `openai`, `cohere` (planned)
137
- - Data processing: `pandas`, `numpy`
138
- - Dimensionality reduction: `scikit-learn`, `umap-learn`
139
- - **API Layer**: FastAPI (planned for programmatic access) or direct Python integration
140
-
141
- #### Data Layer
142
- - **Connection Management**: Provider-specific connection classes with unified interface
143
- - **Query Abstraction**: Base connection interface that each provider implements
144
- - **Storage Modes**:
145
- - ChromaDB: Persistent local storage
146
- - Qdrant Remote: Connect via host/port (e.g., localhost:6333)
147
- - Qdrant Embedded: Local path storage without separate server
148
- - **Caching**: Redis or in-memory cache for frequently accessed data (planned)
149
- - **Settings Persistence**: User settings saved to ~/.vector-viewer/settings.json
150
-
151
- ### Application Structure
125
+ Vector Inspector is built with PySide6 (Qt for Python) for the GUI, providing a native desktop experience. The backend uses Python with support for multiple vector database providers through a unified interface.
152
126
 
153
- ```
154
- vector-viewer/
155
- ├── src/
156
- │ └── vector_viewer/
157
- │ ├── core/
158
- │ │ └── connections/ # Connection managers for each provider
159
- │ ├── ui/
160
- │ │ ├── components/ # Reusable UI components
161
- │ │ └── views/ # Main application views
162
- │ ├── services/ # Business logic services
163
- │ └── main.py # Application entry point
164
- ├── tests/
165
- ├── docs/
166
- ├── data/ # Local database storage
167
- │ ├── chroma_db/
168
- │ └── qdrant/
169
- ├── run.sh / run.bat # Launch scripts
170
- └── pyproject.toml
171
- ```
172
-
173
- User settings are saved to `~/.vector-viewer/settings.json`
127
+ For detailed architecture information, see [docs/architecture.md](docs/architecture.md).
174
128
 
175
129
  ## Use Cases
176
130
 
@@ -181,120 +135,33 @@ User settings are saved to `~/.vector-viewer/settings.json`
181
135
  5. **Data Migration**: Transfer data between vector database providers
182
136
  6. **Education**: Learn and experiment with vector databases interactively
183
137
 
184
- ## Feature Access (Free vs Pro)
185
-
186
- | Feature | Access |
187
- |----------------------------------------------|----------|
188
- | Connection to ChromaDB | Free |
189
- | Basic metadata browsing and filtering | Free |
190
- | Simple similarity search interface | Free |
191
- | 2D vector visualization (PCA/t-SNE) | Free |
192
- | Basic CRUD operations | Free |
193
- | Metadata filtering (advanced) | Free |
194
- | Item editing | Free |
195
- | Import/export (CSV, JSON, Parquet) | Free |
196
- | Provider abstraction layer | Free |
197
- | Pinecone support | Free |
198
- | Weaviate support | Free |
199
- | Qdrant support (basic/experimental) | Free |
200
- | Milvus support | Pro |
201
- | ChromaDB advanced support | Pro |
202
- | FAISS (local files) support | Pro |
203
- | pgvector (PostgreSQL extension) support | Pro |
204
- | Elasticsearch with vector search support | Pro |
205
- | Advanced query builder | Free |
206
- | 3D visualization | Free |
207
- | Embedding model integration (basic) | Free |
208
- | Query history and saved queries | Free |
209
- | Model Comparison Mode | Pro |
210
- | Cluster Explorer | Pro |
211
- | Embedding Inspector | Pro |
212
- | Embedding Provenance Graph | Pro |
213
- | Semantic Drift Timeline | Pro |
214
- | Cross-Collection Similarity | Pro |
215
- | Vector Surgery | Pro |
216
- | Custom plugin system | Pro |
217
- | Team collaboration features | Pro |
218
-
219
- > **Note:** Qdrant support is available for free users in the open source version (basic/experimental). Advanced Qdrant features (e.g., payload filtering, geo, cloud auth) may be reserved for Pro in the future.
220
-
221
- ## Planned Roadmap
222
-
223
- ### Phase 1: Foundation (MVP)
224
- - [x] Connection to ChromaDB
225
- - [x] Basic metadata browsing and filtering
226
- - [x] Simple similarity search interface
227
- - [x] 2D vector visualization (PCA/t-SNE)
228
- - [x] Basic CRUD operations
229
-
230
- ### Phase 2: Core Features
231
- - [x] Metadata filtering (advanced filtering, combine with search)
232
- - [x] Item editing (update metadata and documents)
233
- - [x] Import/export (CSV, JSON, Parquet, backup/restore)
234
- - [x] Provider abstraction layer (unified interface for all supported vector DBs)
235
- - [x] Qdrant support (basic/experimental, free)
236
-
237
- ### Phase 3: UX & Professional Polish
238
- - [ ] **Unified Information Panel** (new "Info" tab as default view)
239
- - [ ] Database and collection metadata display
240
- - [ ] Connection health and version information
241
- - [ ] Schema visualization and index configuration display
242
-
243
- ### Phase 4: Modular/Plugin System & Hybrid Model
244
- - [ ] Implement modular/plugin system for feature extensions
245
- - [ ] Migrate paid/advanced features to commercial modules
246
- - [ ] Add licensing/access control for commercial features
247
-
248
- ### Phase 5: Provider Expansion (Incremental)
249
- - [ ] Pinecone support (free)
250
- - [ ] Weaviate support (free)
251
- - [ ] Qdrant support (paid)
252
-
253
- #### Future/Backlog Providers
254
- - [ ] Milvus support (paid)
255
- - [ ] ChromaDB advanced support (paid)
256
- - [ ] FAISS (local files) support (paid)
257
- - [ ] pgvector (PostgreSQL extension) support (paid)
258
- - [ ] Elasticsearch with vector search support (paid)
259
-
260
-
261
- ### Phase 6A: Advanced Usability & Visualization
262
- - [ ] Advanced query builder (free)
263
- - [ ] 3D visualization (free)
264
- - [ ] Embedding model integration (free)
265
- - [ ] Query history and saved queries (free)
266
- - [ ] Metadata Type Detection & Rich Media Preview (free)
267
-
268
- ### Phase 6B: Analytical & Comparison Tools
269
- - [ ] Model Comparison Mode (paid)
270
- - [ ] Cluster Explorer (paid)
271
- - [ ] Embedding Inspector (paid)
272
- - [ ] Embedding Provenance Graph (paid)
273
-
274
- ### Phase 6C: Temporal & Cross-Collection Analytics
275
- - [ ] Semantic Drift Timeline (paid)
276
- - [ ] Cross-Collection Similarity (paid)
277
-
278
- ### Phase 6D: Experimental & Power Features
279
- - [ ] Vector Surgery (paid)
280
- - [ ] Custom plugin system (paid)
281
- - [ ] Team collaboration features (paid)
282
-
283
- ### Phase 7: Enterprise Features
284
- - [ ] Multi-user support with auth
285
- - [ ] Audit logging
286
- - [ ] Advanced security features
287
- - [ ] Custom reporting
288
- - [ ] API for programmatic access (FastAPI backend)
289
- - [ ] Caching layer (Redis/in-memory) for performance
290
- - [ ] Connection pooling and optimization
138
+ ## Feature Access
139
+
140
+ Vector Inspector is available in both free (open source) and Pro versions. The free version includes all core features for ChromaDB and basic Qdrant support, while Pro adds advanced analytics and additional providers.
141
+
142
+ See [FEATURES.md](FEATURES.md) for a complete feature comparison.
143
+
144
+ ## Roadmap
145
+
146
+ **Current Status**: Phase 2 Complete
147
+
148
+ See [ROADMAP.md](ROADMAP.md) for the complete development roadmap and planned features.
291
149
 
292
150
  ## Installation
293
151
 
152
+ ### From PyPI (Recommended)
153
+
154
+ ```bash
155
+ pip install vector-inspector
156
+ vector-inspector
157
+ ```
158
+
159
+ ### From Source
160
+
294
161
  ```bash
295
162
  # Clone the repository
296
- git clone https://github.com/anthonypdawson/vector-viewer.git
297
- cd vector-viewer
163
+ git clone https://github.com/anthonypdawson/vector-inspector.git
164
+ cd vector-inspector
298
165
 
299
166
  # Install dependencies using PDM
300
167
  pdm install
@@ -1,6 +1,6 @@
1
- vector_inspector-0.2.0.dist-info/METADATA,sha256=HQuVCvuWJ6B4AR6QX8EQDc8nV6F0PjLTeSRjzJN8t00,14669
2
- vector_inspector-0.2.0.dist-info/WHEEL,sha256=tsUv_t7BDeJeRHaSrczbGeuK-TtDpGsWi_JfpzD255I,90
3
- vector_inspector-0.2.0.dist-info/entry_points.txt,sha256=u96envMI2NFImZUJDFutiiWl7ZoHrrev9joAgtyvTxo,80
1
+ vector_inspector-0.2.2.dist-info/METADATA,sha256=WNWWn9t2UTMQyv2a531Z9ol-AZayujB6fFzBCZn4-u4,8926
2
+ vector_inspector-0.2.2.dist-info/WHEEL,sha256=tsUv_t7BDeJeRHaSrczbGeuK-TtDpGsWi_JfpzD255I,90
3
+ vector_inspector-0.2.2.dist-info/entry_points.txt,sha256=u96envMI2NFImZUJDFutiiWl7ZoHrrev9joAgtyvTxo,80
4
4
  vector_inspector/__init__.py,sha256=Q8XbXn98o0eliQWPePhy-aGUz2KNnVg7bQq-sBPl7zQ,119
5
5
  vector_inspector/__main__.py,sha256=Vdhw8YA1K3wPMlbJQYL5WqvRzAKVeZ16mZQFO9VRmCo,62
6
6
  vector_inspector/core/__init__.py,sha256=hjOqiJwF1P0rXjiOKhK4qDTvBY7G3m4kq8taH-gKrFM,57
@@ -22,11 +22,11 @@ vector_inspector/ui/components/backup_restore_dialog.py,sha256=CrZ2u8vXzggv3aBkY
22
22
  vector_inspector/ui/components/filter_builder.py,sha256=NSR_hp-rzUZVAca6dIJhTxZA3igOKFM1g-YXiYPhFos,13360
23
23
  vector_inspector/ui/components/item_dialog.py,sha256=VMwehEjQ6xrdxWygR9J-hHsLfzOVb_E3ePUGYO_c7XA,3951
24
24
  vector_inspector/ui/components/loading_dialog.py,sha256=YEKYGU-R-Zz4CjXSArJtkNxgTy4O9hI5Bbt6qlIzD8U,1018
25
- vector_inspector/ui/main_window.py,sha256=7_SOn7DaO9ZzzNXNQ5G3C8TcOVFYWZwK2zPahiv1COc,11351
25
+ vector_inspector/ui/main_window.py,sha256=zHL7V_0pxyL_Bw2421GOJ-2X1jNphQdhwTX9s8m3WPY,11354
26
26
  vector_inspector/ui/views/__init__.py,sha256=FeMtVzSbVFBMjdwLQSQqD0FRW4ieJ4ZKXtTBci2e_bw,30
27
27
  vector_inspector/ui/views/collection_browser.py,sha256=oG9_YGPoVuMs-f_zSd4EcITmEU9caxvwuubsFUrNf-c,3991
28
28
  vector_inspector/ui/views/connection_view.py,sha256=5TL28JMfb0W42eUDDNbj6bIaj6m7WpalpdUEcd37qmM,16903
29
29
  vector_inspector/ui/views/metadata_view.py,sha256=1prg0ZFkPbA2PxUzr5Z-WlW8nTXa-_WSNlLIU-RTLME,21286
30
30
  vector_inspector/ui/views/search_view.py,sha256=p6vt2heSpEbiRge46VSedTZjg7i3-AWdS0f96JXzlEU,10527
31
31
  vector_inspector/ui/views/visualization_view.py,sha256=389lKOOqz4_7I-pUIIu86ZbA2ttq8Tuwflbb5W-W4g0,9038
32
- vector_inspector-0.2.0.dist-info/RECORD,,
32
+ vector_inspector-0.2.2.dist-info/RECORD,,