vectara-agentic 0.4.2__py3-none-any.whl → 0.4.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (40) hide show
  1. tests/__init__.py +1 -0
  2. tests/benchmark_models.py +547 -372
  3. tests/conftest.py +14 -12
  4. tests/endpoint.py +9 -5
  5. tests/run_tests.py +1 -0
  6. tests/test_agent.py +22 -9
  7. tests/test_agent_fallback_memory.py +4 -4
  8. tests/test_agent_memory_consistency.py +4 -4
  9. tests/test_agent_type.py +2 -0
  10. tests/test_api_endpoint.py +13 -13
  11. tests/test_bedrock.py +9 -1
  12. tests/test_fallback.py +18 -7
  13. tests/test_gemini.py +14 -40
  14. tests/test_groq.py +9 -1
  15. tests/test_private_llm.py +19 -6
  16. tests/test_react_error_handling.py +293 -0
  17. tests/test_react_memory.py +257 -0
  18. tests/test_react_streaming.py +135 -0
  19. tests/test_react_workflow_events.py +395 -0
  20. tests/test_return_direct.py +1 -0
  21. tests/test_serialization.py +58 -20
  22. tests/test_session_memory.py +11 -11
  23. tests/test_together.py +9 -1
  24. tests/test_tools.py +3 -1
  25. tests/test_vectara_llms.py +2 -2
  26. tests/test_vhc.py +7 -2
  27. tests/test_workflow.py +17 -11
  28. vectara_agentic/_callback.py +79 -21
  29. vectara_agentic/_version.py +1 -1
  30. vectara_agentic/agent.py +65 -27
  31. vectara_agentic/agent_core/serialization.py +5 -9
  32. vectara_agentic/agent_core/streaming.py +245 -64
  33. vectara_agentic/agent_core/utils/schemas.py +2 -2
  34. vectara_agentic/llm_utils.py +4 -2
  35. {vectara_agentic-0.4.2.dist-info → vectara_agentic-0.4.3.dist-info}/METADATA +127 -31
  36. vectara_agentic-0.4.3.dist-info/RECORD +58 -0
  37. vectara_agentic-0.4.2.dist-info/RECORD +0 -54
  38. {vectara_agentic-0.4.2.dist-info → vectara_agentic-0.4.3.dist-info}/WHEEL +0 -0
  39. {vectara_agentic-0.4.2.dist-info → vectara_agentic-0.4.3.dist-info}/licenses/LICENSE +0 -0
  40. {vectara_agentic-0.4.2.dist-info → vectara_agentic-0.4.3.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: vectara_agentic
3
- Version: 0.4.2
3
+ Version: 0.4.3
4
4
  Summary: A Python package for creating AI Assistants and AI Agents with Vectara
5
5
  Home-page: https://github.com/vectara/py-vectara-agentic
6
6
  Author: Ofer Mendelevitch
@@ -16,9 +16,9 @@ Classifier: Topic :: Software Development :: Libraries :: Python Modules
16
16
  Requires-Python: >=3.10
17
17
  Description-Content-Type: text/markdown
18
18
  License-File: LICENSE
19
- Requires-Dist: llama-index==0.13.1
20
- Requires-Dist: llama-index-core==0.13.1
21
- Requires-Dist: llama-index-workflow==1.0.1
19
+ Requires-Dist: llama-index==0.13.2
20
+ Requires-Dist: llama-index-core==0.13.2
21
+ Requires-Dist: llama-index-workflows==1.3.0
22
22
  Requires-Dist: llama-index-cli==0.5.0
23
23
  Requires-Dist: llama-index-indices-managed-vectara==0.5.0
24
24
  Requires-Dist: llama-index-llms-openai==0.5.2
@@ -100,16 +100,17 @@ Dynamic: summary
100
100
 
101
101
  ## 📑 Table of Contents
102
102
 
103
- - [Overview](#-overview)
104
- - [Quick Start](#-quick-start)
105
- - [Using Tools](#using-tools)
106
- - [Advanced Usage: Workflows](#advanced-usage-workflows)
107
- - [Configuration](#️-configuration)
108
- - [Migrating from v0.3.x](#-migrating-from-v03x)
109
- - [Contributing](#-contributing)
110
- - [License](#-license)
103
+ - [Overview](#overview)
104
+ - [🚀 Quick Start](#quick-start)
105
+ - [🗒️ Agent Instructions](#agent-instructions)
106
+ - [🧰 Defining Tools](#defining-tools)
107
+ - [🌊 Streaming & Real-time Responses](#streaming--real-time-responses)
108
+ - [🔍 Vectara Hallucination Correction (VHC)](#vectara-hallucination-correction-vhc)
109
+ - [🔄 Advanced Usage: Workflows](#advanced-usage-workflows)
110
+ - [🛠️ Configuration](#configuration)
111
+ - [📝 Migrating from v0.3.x](#migrating-from-v03x)
111
112
 
112
- ## Overview
113
+ ## Overview
113
114
 
114
115
  `vectara-agentic` is a Python library for developing powerful AI assistants and agents using Vectara and Agentic-RAG. It leverages the LlamaIndex Agent framework and provides helper functions to quickly create tools that connect to Vectara corpora.
115
116
 
@@ -158,7 +159,7 @@ Check out our example AI assistants:
158
159
  pip install vectara-agentic
159
160
  ```
160
161
 
161
- ## 🚀 Quick Start
162
+ ## Quick Start
162
163
 
163
164
  Let's see how we create a simple AI assistant to answer questions about financial data ingested into Vectara, using `vectara-agentic`.
164
165
 
@@ -181,7 +182,7 @@ A RAG tool calls the full Vectara RAG pipeline to provide summarized responses t
181
182
  ```python
182
183
  from pydantic import BaseModel, Field
183
184
 
184
- years = list(range(2020, 2024))
185
+ years = list(range(2020, 2025))
185
186
  tickers = {
186
187
  "AAPL": "Apple Computer",
187
188
  "GOOG": "Google",
@@ -213,7 +214,7 @@ To learn about additional arguments `create_rag_tool`, please see the full [docs
213
214
  In addition to RAG tools or search tools, you can generate additional tools the agent can use. These could be mathematical tools, tools
214
215
  that call other APIs to get more information, or any other type of tool.
215
216
 
216
- See [Agent Tools](#️-agent-tools-at-a-glance) for more information.
217
+ See [Agent Tools](#agent-tools-at-a-glance) for more information.
217
218
 
218
219
  ### 4. Create your agent
219
220
 
@@ -247,26 +248,67 @@ agent = Agent(
247
248
 
248
249
  The `topic` parameter helps identify the agent's area of expertise, while `custom_instructions` lets you customize how the agent behaves and presents information. The agent will combine these with its default general instructions to determine its complete behavior.
249
250
 
250
- The `agent_progress_callback` argument is an optional function that will be called when various Agent events occur, and can be used to track agent steps.
251
+ The `agent_progress_callback` argument is an optional function that will be called when various Agent events occur (tool calls, tool outputs, etc.), and can be used to track agent steps in real-time. This works with both regular chat methods (`chat()`, `achat()`) and streaming methods (`stream_chat()`, `astream_chat()`).
251
252
 
252
253
  ### 5. Run a chat interaction
253
254
 
255
+ You have multiple ways to interact with your agent:
256
+
257
+ **Standard Chat (synchronous)**
254
258
  ```python
255
259
  res = agent.chat("What was the revenue for Apple in 2021?")
256
260
  print(res.response)
257
261
  ```
258
262
 
263
+ **Async Chat**
264
+ ```python
265
+ res = await agent.achat("What was the revenue for Apple in 2021?")
266
+ print(res.response)
267
+ ```
268
+
269
+ **Streaming Chat with AgentStreamingResponse**
270
+ ```python
271
+ # Synchronous streaming
272
+ stream_response = agent.stream_chat("What was the revenue for Apple in 2021?")
273
+
274
+ # Option 1: Process stream manually
275
+ async for chunk in stream_response.async_response_gen():
276
+ print(chunk, end="", flush=True)
277
+
278
+ # Option 2: Get final response without streaming
279
+ # (Note: stream still executes, just not processed chunk by chunk)
280
+
281
+ # Get final response after streaming
282
+ final_response = stream_response.get_response()
283
+ print(f"\nFinal response: {final_response.response}")
284
+ ```
285
+
286
+ **Async Streaming Chat**
287
+ ```python
288
+ # Asynchronous streaming
289
+ stream_response = await agent.astream_chat("What was the revenue for Apple in 2021?")
290
+
291
+ # Process chunks manually
292
+ async for chunk in stream_response.async_response_gen():
293
+ print(chunk, end="", flush=True)
294
+
295
+ # Get final response after streaming
296
+ final_response = await stream_response.aget_response()
297
+ print(f"\nFinal response: {final_response.response}")
298
+ ```
299
+
259
300
  > **Note:**
260
- > 1. `vectara-agentic` also supports `achat()` as well as two streaming variants `stream_chat()` and `astream_chat()`.
261
- > 2. The response types from `chat()` and `achat()` are of type `AgentResponse`. If you just need the actual string
262
- > response it's available as the `response` variable, or just use `str()`. For advanced use-cases you can look
263
- > at other `AgentResponse` variables [such as `sources`](https://github.com/run-llama/llama_index/blob/659f9faaafbecebb6e6c65f42143c0bf19274a37/llama-index-core/llama_index/core/chat_engine/types.py#L53).
301
+ > 1. Both `chat()` and `achat()` return `AgentResponse` objects. Access the text with `.response` or use `str()`.
302
+ > 2. Streaming methods return `AgentStreamingResponse` objects that provide both real-time chunks and final responses.
303
+ > 3. For advanced use-cases, explore other `AgentResponse` properties like `sources` and `metadata`.
304
+ > 4. Streaming is ideal for long responses and real-time user interfaces. See [Streaming & Real-time Responses](#streaming--real-time-responses) for detailed examples.
305
+ > 5. The `agent_progress_callback` works with both regular chat methods (`chat()`, `achat()`) and streaming methods to track tool calls in real-time.
264
306
 
265
307
  ## Agent Instructions
266
308
 
267
- When creating an agent, it already comes with a set of general base instructions, designed carefully to enhance its operation and improve how the agent works.
309
+ When creating an agent, it already comes with a set of general base instructions, designed to enhance its operation and improve how the agent works.
268
310
 
269
- In addition, you can add `custom_instructions` that are specific to your use case that customize how the agent behaves.
311
+ In addition, you can add `custom_instructions` that are specific to your use case to customize how the agent behaves.
270
312
 
271
313
  When writing custom instructions:
272
314
  - Focus on behavior and presentation rather than tool usage (that's what tool descriptions are for)
@@ -279,7 +321,7 @@ The agent will combine both the general instructions and your custom instruction
279
321
 
280
322
  It is not recommended to change the general instructions, but it is possible as well to override them with the optional `general_instructions` parameter. If you do change them, your agent may not work as intended, so be careful if overriding these instructions.
281
323
 
282
- ## 🧰 Defining Tools
324
+ ## Defining Tools
283
325
 
284
326
  ### Vectara tools
285
327
 
@@ -333,7 +375,7 @@ The Vectara search tool allows the agent to list documents that match a query.
333
375
  This can be helpful to the agent to answer queries like "how many documents discuss the iPhone?" or other
334
376
  similar queries that require a response in terms of a list of matching documents.
335
377
 
336
- ### 🛠️ Agent Tools at a Glance
378
+ ### Agent Tools at a Glance
337
379
 
338
380
  `vectara-agentic` provides a few tools out of the box (see `ToolsCatalog` for details):
339
381
 
@@ -481,7 +523,7 @@ mult_tool = ToolsFactory().create_tool(mult_func)
481
523
 
482
524
  #### VHC Eligibility
483
525
 
484
- When creating tools, you can control whether they participate in Vectara Hallucination Correction, by using the `vhc_eligible` parameter:
526
+ When creating tools, you can control whether their output is eligible for Vectara Hallucination Correction, by using the `vhc_eligible` parameter:
485
527
 
486
528
  ```python
487
529
  # Tool that provides factual data - should participate in VHC
@@ -529,7 +571,61 @@ Built-in formatters include `format_as_table`, `format_as_json`, and `format_as_
529
571
 
530
572
  The human-readable format, if available, is used when using Vectara Hallucination Correction.
531
573
 
532
- ## 🔍 Vectara Hallucination Correction (VHC)
574
+ ## Streaming & Real-time Responses
575
+
576
+ `vectara-agentic` provides powerful streaming capabilities for real-time response generation, ideal for interactive applications and long-form content.
577
+
578
+ ### Why Use Streaming?
579
+
580
+ - **Better User Experience**: Users see responses as they're generated instead of waiting for completion
581
+ - **Real-time Feedback**: Perfect for chat interfaces, web applications, and interactive demos
582
+ - **Progress Visibility**: Combined with callbacks, users can see both tool usage and response generation
583
+ - **Reduced Perceived Latency**: Streaming makes applications feel faster and more responsive
584
+
585
+ ### Quick Streaming Example
586
+
587
+ ```python
588
+ # Create streaming response
589
+ stream_response = agent.stream_chat("Analyze the financial performance of tech companies in 2022")
590
+ async for chunk in stream_response.async_response_gen():
591
+ print(chunk, end="", flush=True) # Update your UI here
592
+
593
+ # Get complete response with metadata after streaming completes
594
+ final_response = stream_response.get_response()
595
+ print(f"\nSources consulted: {len(final_response.sources)}")
596
+ ```
597
+
598
+ ### Tool Call Progress Tracking
599
+
600
+ You can track tool calls and outputs in real-time with `agent_progress_callback` - this works with both regular chat and streaming methods:
601
+
602
+ ```python
603
+ from vectara_agentic import AgentStatusType
604
+
605
+ def tool_tracker(status_type, msg, event_id):
606
+ if status_type == AgentStatusType.TOOL_CALL:
607
+ print(f"🔧 Using {msg['tool_name']} with {msg['arguments']}")
608
+ elif status_type == AgentStatusType.TOOL_OUTPUT:
609
+ print(f"📊 {msg['tool_name']} completed")
610
+
611
+ agent = Agent(
612
+ tools=[your_tools],
613
+ agent_progress_callback=tool_tracker
614
+ )
615
+
616
+ # With streaming - see tool calls as they happen, plus streaming response
617
+ stream_response = await agent.astream_chat("Analyze Apple's finances")
618
+ async for chunk in stream_response.async_response_gen():
619
+ print(chunk, end="", flush=True)
620
+
621
+ # With regular chat - see tool calls as they happen, then get final response
622
+ response = await agent.achat("Analyze Apple's finances")
623
+ print(response.response)
624
+ ```
625
+
626
+ For detailed examples including FastAPI integration, Streamlit apps, and decision guidelines, see our [comprehensive streaming documentation](https://vectara.github.io/py-vectara-agentic/latest/usage/#streaming-chat-methods).
627
+
628
+ ## Vectara Hallucination Correction (VHC)
533
629
 
534
630
  `vectara-agentic` provides built-in support for Vectara Hallucination Correction (VHC), which analyzes agent responses and corrects any detected hallucinations based on the factual content retrieved by VHC-eligible tools.
535
631
 
@@ -587,7 +683,7 @@ agent = Agent(
587
683
 
588
684
  This helps catch errors where your instructions reference tools that aren't available to the agent.
589
685
 
590
- ## 🔄 Advanced Usage: Workflows
686
+ ## Advanced Usage: Workflows
591
687
 
592
688
  In addition to standard chat interactions, `vectara-agentic` supports custom workflows via the `run()` method.
593
689
  Workflows allow you to structure multi-step interactions where inputs and outputs are validated using Pydantic models.
@@ -758,7 +854,7 @@ The workflow works in two steps:
758
854
  - You need to implement complex business logic
759
855
  - You want to integrate with external systems or APIs in a specific way
760
856
 
761
- ## 🛠️ Configuration
857
+ ## Configuration
762
858
 
763
859
  ### Configuring Vectara-agentic
764
860
 
@@ -789,7 +885,7 @@ The `AgentConfig` object may include the following items:
789
885
  - `main_llm_provider` and `tool_llm_provider`: the LLM provider for main agent and for the tools. Valid values are `OPENAI`, `ANTHROPIC`, `TOGETHER`, `GROQ`, `COHERE`, `BEDROCK`, `GEMINI` (default: `OPENAI`).
790
886
 
791
887
  > **Note:** Fireworks AI support has been removed. If you were using Fireworks, please migrate to one of the supported providers listed above.
792
- - `main_llm_model_name` and `tool_llm_model_name`: agent model name for agent and tools (default depends on provider: OpenAI uses gpt-4.1-mini, Gemini uses gemini-2.5-flash).
888
+ - `main_llm_model_name` and `tool_llm_model_name`: agent model name for agent and tools (default depends on provider: OpenAI uses gpt-4.1-mini, Gemini uses gemini-2.5-flash-lite).
793
889
  - `observer`: the observer type; should be `ARIZE_PHOENIX` or if undefined no observation framework will be used.
794
890
  - `endpoint_api_key`: a secret key if using the API endpoint option (defaults to `dev-api-key`)
795
891
 
@@ -826,7 +922,7 @@ agent = Agent(
826
922
  )
827
923
  ```
828
924
 
829
- ## 🚀 Migrating from v0.3.x
925
+ ## Migrating from v0.3.x
830
926
 
831
927
  If you're upgrading from v0.3.x, please note the following breaking changes in v0.4.0:
832
928
 
@@ -0,0 +1,58 @@
1
+ tests/__init__.py,sha256=Bmsv0bLu2Hx-b7RZVvEzoodqYxE37hHd7fXCF2cT5pg,176
2
+ tests/benchmark_models.py,sha256=f9SMmPc4h8WL9TQUJaeA22fcbu2oSx8lhhm1ht3fjDE,44125
3
+ tests/conftest.py,sha256=Y9lOptmjCFQ4VI0zmlOF80ERbkskwAn2XEWOk5CwMaQ,9362
4
+ tests/endpoint.py,sha256=bOmjEjLt7PIR3s74M0HOtFj43l4k1s0urBUQNMUVKS0,2749
5
+ tests/run_tests.py,sha256=juM7vnTz7B8Gr6DKD8L5zBPbgBQf_RQnjRkmsQPeWYw,3338
6
+ tests/test_agent.py,sha256=7SvDAvXsy6z3k7YaYVhyzF-Jc6cIBzrZhNXHSOpzwEI,6935
7
+ tests/test_agent_fallback_memory.py,sha256=1LoRHxUM767bGmCeusPlGubX_pIeP5KxIABRwdWLJGo,10862
8
+ tests/test_agent_memory_consistency.py,sha256=D8ivCGp5reJyOK7Q6wDiZlv3bKX4-SEchnqocyib1Po,8966
9
+ tests/test_agent_type.py,sha256=hx0FPKhhP-zaT2Z7MYlrZw10srws8VUQgBoZk2-vUxY,5155
10
+ tests/test_api_endpoint.py,sha256=PrfV6kWvq5icm3zLgrse9isBsR6EkwfUtSdz1ADSUUs,5115
11
+ tests/test_bedrock.py,sha256=4qBip3plouQkHTRU01_sYebop6fiVe3Fnx5vjkMl3H4,2003
12
+ tests/test_fallback.py,sha256=LQtnYoK-NohJL3D3pQnlY0yrIGs2B25j6B3gX3wGM1c,3073
13
+ tests/test_gemini.py,sha256=HVTWmwPFxJ-hjketCkbXa_mOyWXpE-1dG9fu47z00bU,1632
14
+ tests/test_groq.py,sha256=Ch9rnziGp4FbrVK8r1dqVW5lKa-JqaqRLwYqM0R7avg,1994
15
+ tests/test_private_llm.py,sha256=O5sQfZ_NgE2S1-YJ6eMRn1Gz17XkRjEk9O0iHGACRu0,2752
16
+ tests/test_react_error_handling.py,sha256=xAozh77qNSvaEzMDHjw2blbDNVUY-5qfvBldD_YHCQQ,11198
17
+ tests/test_react_memory.py,sha256=3YAPhrWAjmDcT2jm2IfxBx2LSWJGkpYUhWQiVt-qXFs,10177
18
+ tests/test_react_streaming.py,sha256=ZM79HTEvv9sln82vTt9uHfTB0aLLs26PkGf3k4swY4Q,5045
19
+ tests/test_react_workflow_events.py,sha256=sd7CZbgaQIEhb7d0E8VMXC-ivKTQzZvZaRt5QAPFUyA,15118
20
+ tests/test_return_direct.py,sha256=ZhcgkRNGqPQFAYm8moY3HLLIpwdFuAyjShE3F6L16lQ,1522
21
+ tests/test_serialization.py,sha256=DJZ2E_K54t8INwZR0Q8gS1wi-MGbLIheOBcbRmZNcro,5383
22
+ tests/test_session_memory.py,sha256=hnADl59agjpXySY-CBjw6sDPn3s6JketIK6XbLZsLzU,9691
23
+ tests/test_streaming.py,sha256=EBihBb_ZQiGCCvv7Us7YqHN4CxDIQy-XsUSDVO1n5wU,3302
24
+ tests/test_together.py,sha256=G4_gHVXKSFyqyDf189MX6_Mqoc71f9k-gmPmxKDQbrY,2007
25
+ tests/test_tools.py,sha256=vvi3FC4SDOwpyKJUFOWCWJ5i3Y474FrKFHnZpo4aFQg,13643
26
+ tests/test_vectara_llms.py,sha256=WoswpfPGhQlBXyOijn5EBX0F2NL1Oq3FDB4wxu7mwXs,2485
27
+ tests/test_vhc.py,sha256=jVojp8ZUDF60yJaYp5pBRdAdNYK1hhhPz_RTmlTEm4g,1980
28
+ tests/test_workflow.py,sha256=43YUF-0YDbiiJrTSYjnyqrC4gvHYuHQp7uuzV2jMdTE,3553
29
+ vectara_agentic/__init__.py,sha256=CfS3QR4drKygcTcyH5zUUDuXXQ3WZtTCytz8W4-loeE,1077
30
+ vectara_agentic/_callback.py,sha256=hYbHU_3sMF4-h0YMierZ9EEWspakNixk7wXAAWztlmU,15364
31
+ vectara_agentic/_observability.py,sha256=rApfdndB2R021iM0xG4MumTSDX1Ba6qbNM0N_AOTbR0,4884
32
+ vectara_agentic/_version.py,sha256=qs-0KHxeB9E6hJ4i743gXRLriP2E5HKFA9AKqTxuWXE,65
33
+ vectara_agentic/agent.py,sha256=5eC4BkMPWep8c_LIHSB2N1CvsFLdX6qPAhIpgLR08Gc,49125
34
+ vectara_agentic/agent_config.py,sha256=njqEX2qHJjAp2KpNuJglgZhyWXPK74wjIjBPACD6w7w,4074
35
+ vectara_agentic/agent_endpoint.py,sha256=E_AF-YwxaKqd1-p43X62e1e4ugwOWKIyNq4RWOfsO7A,7402
36
+ vectara_agentic/db_tools.py,sha256=nVZkpGdG63ooGngjX9g7YWyBZRtYMDpvzNasbO696nM,11498
37
+ vectara_agentic/llm_utils.py,sha256=MosOvvNmWkg-8igr01DiXlAb7HOUIauOqbt92anrdZg,7664
38
+ vectara_agentic/sub_query_workflow.py,sha256=1y0fBoUem4i-R34QYlSzcMwM8YhmYgj6S_bWynUtL6w,13001
39
+ vectara_agentic/tool_utils.py,sha256=whnQlk9coeIt01sqUnKnzUorefgn96yWqhtRfHxNL84,25921
40
+ vectara_agentic/tools.py,sha256=pb828u-tDps98N_R3U3_bCcnD9L3w5jdmhScduai74I,34852
41
+ vectara_agentic/tools_catalog.py,sha256=p6eRram-diJyMz5dZI703auSAm97FfW5wLAMyz_2sB0,4634
42
+ vectara_agentic/types.py,sha256=qKkK8vRNiLvEcMInMyOClK2bD7iFlrWGTkl3fGC6Xic,6117
43
+ vectara_agentic/utils.py,sha256=R9HitEG5K3Q_p2M_teosT181OUxkhs1-hnj98qDYGbE,2545
44
+ vectara_agentic/agent_core/__init__.py,sha256=R3KGbSOiY21FOjbeQ_GyIi6uR9Rz7PTfudO9RjSuEZQ,722
45
+ vectara_agentic/agent_core/factory.py,sha256=Nmmhl98r2Op4qJwq9cgfy7DfrWI62JUfxFXHoBxKHBo,14158
46
+ vectara_agentic/agent_core/prompts.py,sha256=al7SF5pNzOG-KK0lCtTS-HCwVStB6yvE34dgHWJQ_bA,9989
47
+ vectara_agentic/agent_core/serialization.py,sha256=Npfcgm9j8B0ck74uIUgqTGljt8HTpcMCdnWV6CKYBZE,11878
48
+ vectara_agentic/agent_core/streaming.py,sha256=OmjTNEJ25SR788ltyvekVpP83hnv6Tw-MixCwOUK9Kc,26452
49
+ vectara_agentic/agent_core/utils/__init__.py,sha256=y5Xf0IH-5TRxMBRA9IyhmWnGZOVIyqV45P6lX4c2Qsc,762
50
+ vectara_agentic/agent_core/utils/hallucination.py,sha256=XmV7tW-MBN9BrzM79zu0T7zaWil7fIkNQjLfDZE43v4,5312
51
+ vectara_agentic/agent_core/utils/logging.py,sha256=-Ll8iUelml92WuhNWScuY6H-RheyZOTBHNxXQ1UGy0M,1701
52
+ vectara_agentic/agent_core/utils/schemas.py,sha256=4sEyQ-_z-eZJzgxCJf62AuBgV7RN1Azc9mLPPlj6IWg,2769
53
+ vectara_agentic/agent_core/utils/tools.py,sha256=k9Gm-UUQ3ZeGxrkjyrjmjcGxOkvnpylcm_Krnr-0fsY,4748
54
+ vectara_agentic-0.4.3.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
55
+ vectara_agentic-0.4.3.dist-info/METADATA,sha256=D-HoLTva17z9CzsUuc4gm1GnKQ-s7EqmQZLf3fYe6Z8,38886
56
+ vectara_agentic-0.4.3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
57
+ vectara_agentic-0.4.3.dist-info/top_level.txt,sha256=Y7TQTFdOYGYodQRltUGRieZKIYuzeZj2kHqAUpfCUfg,22
58
+ vectara_agentic-0.4.3.dist-info/RECORD,,
@@ -1,54 +0,0 @@
1
- tests/__init__.py,sha256=vXhQJCyD1Uhx2NP8b8vIUG3RUhkXyvn7oOir2bmctQU,175
2
- tests/benchmark_models.py,sha256=RSdgnGFA7s2mOIRvi50ChZXwk677QMLbJ1glsv1lcDg,38454
3
- tests/conftest.py,sha256=KjX0iDJIjbj7tsCUXLojZg5lA0PXWLTiuo0ij1Ckew8,9308
4
- tests/endpoint.py,sha256=0URgtz8uydhP_rtpGn_59P1LiWkd3idNlI85LzXnlUE,2744
5
- tests/run_tests.py,sha256=HL7JfRtQHBWj44tbs-WL7vEiehIaAynHO1KmhjqLmpw,3337
6
- tests/test_agent.py,sha256=ntnVDATF3b6mRE9edWeLTexAndW09Kje2SYCo1fn56Q,6775
7
- tests/test_agent_fallback_memory.py,sha256=dWk_lFLEwDUE4moeoJB5ecPUKZSiFt4RryCcKgq1XtQ,10878
8
- tests/test_agent_memory_consistency.py,sha256=bnBEpoT1XIVOfd45PVRtRe5ts2kBYKc0Jk0XSjhNMMo,8982
9
- tests/test_agent_type.py,sha256=d5Zs0iM12DxregfwkJ6UxERWcR5eLgy2ona1znwvK3I,5153
10
- tests/test_api_endpoint.py,sha256=I2UDamPMSLLkgw0pZ5QMM0o_8vVga9-F6ql-S3zlMBs,5136
11
- tests/test_bedrock.py,sha256=74M4k4MWFfZV-mD75R_27HQGTfWcPQ40ijLanT54y-E,1979
12
- tests/test_fallback.py,sha256=SA1d8VymYl3d_tJlq-CSezf43PpBEKwnMTBMFFSe1HU,2969
13
- tests/test_gemini.py,sha256=pvCcfTf79-R49H_WVZou1xx-vVmZEY-19zRtxZeUdD4,2581
14
- tests/test_groq.py,sha256=OmO-VBrKfZYUc11QfZH25jT3FySQrSpv_FS488IqSik,1970
15
- tests/test_private_llm.py,sha256=kVwRUR9gHCiQcTNg01zf50GVvGHuniL6D1xvYWGr0eg,2625
16
- tests/test_return_direct.py,sha256=QsCw-ZGp06cutLkyrLh1U1rggoH7iBiFz4SQ9MIx-Xk,1521
17
- tests/test_serialization.py,sha256=wdVRoy6hoPqCF7SGpYbC2TM7iR2o_IKIRKOBZFAChp0,4824
18
- tests/test_session_memory.py,sha256=lw9SNuLSXDG6MNOBu_4kTPP0XgfZH6E8XCOT-Vrs78I,9786
19
- tests/test_streaming.py,sha256=EBihBb_ZQiGCCvv7Us7YqHN4CxDIQy-XsUSDVO1n5wU,3302
20
- tests/test_together.py,sha256=s0ywOxL-XT_iq970ucamVAPR_CIS9OT72vJB7degNdc,1983
21
- tests/test_tools.py,sha256=869Fl54kmLc44ijykO2QpfcXyAWLDqJ9Niq3XNzhzv8,13621
22
- tests/test_vectara_llms.py,sha256=H1M9OaDvD8_GCFRBm6IdvWejYKn-zm3-Rzt_noCBbiQ,2496
23
- tests/test_vhc.py,sha256=MXyFxckQzfdXcULqwoao4taoQ93qLDvkcf-h2LwUQnE,1974
24
- tests/test_workflow.py,sha256=dwQnHSxvRMVqUtFV8O2KvuyaSKJXFDkVhcffn8mSuJs,3555
25
- vectara_agentic/__init__.py,sha256=CfS3QR4drKygcTcyH5zUUDuXXQ3WZtTCytz8W4-loeE,1077
26
- vectara_agentic/_callback.py,sha256=ueckIfLNa9ykmmEyLqrrZwfDNWrEfyZzJeWktpnkwJQ,12970
27
- vectara_agentic/_observability.py,sha256=rApfdndB2R021iM0xG4MumTSDX1Ba6qbNM0N_AOTbR0,4884
28
- vectara_agentic/_version.py,sha256=AO7HR7HGdC4KVBKvdlO8C1VoiedQvDhEZLC7dDHiuJg,65
29
- vectara_agentic/agent.py,sha256=7tXqdrUGZ0bGIpxoiM7K847o0ktiuwMZ-FmCb6N_4n0,47839
30
- vectara_agentic/agent_config.py,sha256=njqEX2qHJjAp2KpNuJglgZhyWXPK74wjIjBPACD6w7w,4074
31
- vectara_agentic/agent_endpoint.py,sha256=E_AF-YwxaKqd1-p43X62e1e4ugwOWKIyNq4RWOfsO7A,7402
32
- vectara_agentic/db_tools.py,sha256=nVZkpGdG63ooGngjX9g7YWyBZRtYMDpvzNasbO696nM,11498
33
- vectara_agentic/llm_utils.py,sha256=Ac14_lHGvog-hYGGX4e7yZMRnp2ZXcPrpOnnUy7oBZE,7604
34
- vectara_agentic/sub_query_workflow.py,sha256=1y0fBoUem4i-R34QYlSzcMwM8YhmYgj6S_bWynUtL6w,13001
35
- vectara_agentic/tool_utils.py,sha256=whnQlk9coeIt01sqUnKnzUorefgn96yWqhtRfHxNL84,25921
36
- vectara_agentic/tools.py,sha256=pb828u-tDps98N_R3U3_bCcnD9L3w5jdmhScduai74I,34852
37
- vectara_agentic/tools_catalog.py,sha256=p6eRram-diJyMz5dZI703auSAm97FfW5wLAMyz_2sB0,4634
38
- vectara_agentic/types.py,sha256=qKkK8vRNiLvEcMInMyOClK2bD7iFlrWGTkl3fGC6Xic,6117
39
- vectara_agentic/utils.py,sha256=R9HitEG5K3Q_p2M_teosT181OUxkhs1-hnj98qDYGbE,2545
40
- vectara_agentic/agent_core/__init__.py,sha256=R3KGbSOiY21FOjbeQ_GyIi6uR9Rz7PTfudO9RjSuEZQ,722
41
- vectara_agentic/agent_core/factory.py,sha256=Nmmhl98r2Op4qJwq9cgfy7DfrWI62JUfxFXHoBxKHBo,14158
42
- vectara_agentic/agent_core/prompts.py,sha256=al7SF5pNzOG-KK0lCtTS-HCwVStB6yvE34dgHWJQ_bA,9989
43
- vectara_agentic/agent_core/serialization.py,sha256=WwV40KGdN_cC6kACjdHuRCmyDBGhV5YOJ5KoHLXpSlg,12053
44
- vectara_agentic/agent_core/streaming.py,sha256=ViCYos_08o-TQZtNORFs8gr5PNkN4X0hBTNVH32tNAw,17665
45
- vectara_agentic/agent_core/utils/__init__.py,sha256=y5Xf0IH-5TRxMBRA9IyhmWnGZOVIyqV45P6lX4c2Qsc,762
46
- vectara_agentic/agent_core/utils/hallucination.py,sha256=XmV7tW-MBN9BrzM79zu0T7zaWil7fIkNQjLfDZE43v4,5312
47
- vectara_agentic/agent_core/utils/logging.py,sha256=-Ll8iUelml92WuhNWScuY6H-RheyZOTBHNxXQ1UGy0M,1701
48
- vectara_agentic/agent_core/utils/schemas.py,sha256=e7xhJBevgK7IM8cRT5hoO67T-Ep_FhNGp72Zo0OC_Jo,2853
49
- vectara_agentic/agent_core/utils/tools.py,sha256=k9Gm-UUQ3ZeGxrkjyrjmjcGxOkvnpylcm_Krnr-0fsY,4748
50
- vectara_agentic-0.4.2.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
51
- vectara_agentic-0.4.2.dist-info/METADATA,sha256=QeXPh5PCHd76YKrrs7rI6hCYFGEWtJCYhZtPneWM5Gg,35010
52
- vectara_agentic-0.4.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
53
- vectara_agentic-0.4.2.dist-info/top_level.txt,sha256=Y7TQTFdOYGYodQRltUGRieZKIYuzeZj2kHqAUpfCUfg,22
54
- vectara_agentic-0.4.2.dist-info/RECORD,,