vectara-agentic 0.4.2__py3-none-any.whl → 0.4.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/__init__.py +1 -0
- tests/benchmark_models.py +547 -372
- tests/conftest.py +14 -12
- tests/endpoint.py +9 -5
- tests/run_tests.py +1 -0
- tests/test_agent.py +22 -9
- tests/test_agent_fallback_memory.py +4 -4
- tests/test_agent_memory_consistency.py +4 -4
- tests/test_agent_type.py +2 -0
- tests/test_api_endpoint.py +13 -13
- tests/test_bedrock.py +9 -1
- tests/test_fallback.py +18 -7
- tests/test_gemini.py +14 -40
- tests/test_groq.py +9 -1
- tests/test_private_llm.py +19 -6
- tests/test_react_error_handling.py +293 -0
- tests/test_react_memory.py +257 -0
- tests/test_react_streaming.py +135 -0
- tests/test_react_workflow_events.py +395 -0
- tests/test_return_direct.py +1 -0
- tests/test_serialization.py +58 -20
- tests/test_session_memory.py +11 -11
- tests/test_together.py +9 -1
- tests/test_tools.py +3 -1
- tests/test_vectara_llms.py +2 -2
- tests/test_vhc.py +7 -2
- tests/test_workflow.py +17 -11
- vectara_agentic/_callback.py +79 -21
- vectara_agentic/_version.py +1 -1
- vectara_agentic/agent.py +65 -27
- vectara_agentic/agent_core/serialization.py +5 -9
- vectara_agentic/agent_core/streaming.py +245 -64
- vectara_agentic/agent_core/utils/schemas.py +2 -2
- vectara_agentic/llm_utils.py +4 -2
- {vectara_agentic-0.4.2.dist-info → vectara_agentic-0.4.3.dist-info}/METADATA +127 -31
- vectara_agentic-0.4.3.dist-info/RECORD +58 -0
- vectara_agentic-0.4.2.dist-info/RECORD +0 -54
- {vectara_agentic-0.4.2.dist-info → vectara_agentic-0.4.3.dist-info}/WHEEL +0 -0
- {vectara_agentic-0.4.2.dist-info → vectara_agentic-0.4.3.dist-info}/licenses/LICENSE +0 -0
- {vectara_agentic-0.4.2.dist-info → vectara_agentic-0.4.3.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: vectara_agentic
|
|
3
|
-
Version: 0.4.
|
|
3
|
+
Version: 0.4.3
|
|
4
4
|
Summary: A Python package for creating AI Assistants and AI Agents with Vectara
|
|
5
5
|
Home-page: https://github.com/vectara/py-vectara-agentic
|
|
6
6
|
Author: Ofer Mendelevitch
|
|
@@ -16,9 +16,9 @@ Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
|
|
16
16
|
Requires-Python: >=3.10
|
|
17
17
|
Description-Content-Type: text/markdown
|
|
18
18
|
License-File: LICENSE
|
|
19
|
-
Requires-Dist: llama-index==0.13.
|
|
20
|
-
Requires-Dist: llama-index-core==0.13.
|
|
21
|
-
Requires-Dist: llama-index-
|
|
19
|
+
Requires-Dist: llama-index==0.13.2
|
|
20
|
+
Requires-Dist: llama-index-core==0.13.2
|
|
21
|
+
Requires-Dist: llama-index-workflows==1.3.0
|
|
22
22
|
Requires-Dist: llama-index-cli==0.5.0
|
|
23
23
|
Requires-Dist: llama-index-indices-managed-vectara==0.5.0
|
|
24
24
|
Requires-Dist: llama-index-llms-openai==0.5.2
|
|
@@ -100,16 +100,17 @@ Dynamic: summary
|
|
|
100
100
|
|
|
101
101
|
## 📑 Table of Contents
|
|
102
102
|
|
|
103
|
-
- [Overview](
|
|
104
|
-
- [Quick Start](
|
|
105
|
-
- [
|
|
106
|
-
- [
|
|
107
|
-
- [
|
|
108
|
-
- [
|
|
109
|
-
- [
|
|
110
|
-
- [
|
|
103
|
+
- [✨ Overview](#overview)
|
|
104
|
+
- [🚀 Quick Start](#quick-start)
|
|
105
|
+
- [🗒️ Agent Instructions](#agent-instructions)
|
|
106
|
+
- [🧰 Defining Tools](#defining-tools)
|
|
107
|
+
- [🌊 Streaming & Real-time Responses](#streaming--real-time-responses)
|
|
108
|
+
- [🔍 Vectara Hallucination Correction (VHC)](#vectara-hallucination-correction-vhc)
|
|
109
|
+
- [🔄 Advanced Usage: Workflows](#advanced-usage-workflows)
|
|
110
|
+
- [🛠️ Configuration](#configuration)
|
|
111
|
+
- [📝 Migrating from v0.3.x](#migrating-from-v03x)
|
|
111
112
|
|
|
112
|
-
##
|
|
113
|
+
## Overview
|
|
113
114
|
|
|
114
115
|
`vectara-agentic` is a Python library for developing powerful AI assistants and agents using Vectara and Agentic-RAG. It leverages the LlamaIndex Agent framework and provides helper functions to quickly create tools that connect to Vectara corpora.
|
|
115
116
|
|
|
@@ -158,7 +159,7 @@ Check out our example AI assistants:
|
|
|
158
159
|
pip install vectara-agentic
|
|
159
160
|
```
|
|
160
161
|
|
|
161
|
-
##
|
|
162
|
+
## Quick Start
|
|
162
163
|
|
|
163
164
|
Let's see how we create a simple AI assistant to answer questions about financial data ingested into Vectara, using `vectara-agentic`.
|
|
164
165
|
|
|
@@ -181,7 +182,7 @@ A RAG tool calls the full Vectara RAG pipeline to provide summarized responses t
|
|
|
181
182
|
```python
|
|
182
183
|
from pydantic import BaseModel, Field
|
|
183
184
|
|
|
184
|
-
years = list(range(2020,
|
|
185
|
+
years = list(range(2020, 2025))
|
|
185
186
|
tickers = {
|
|
186
187
|
"AAPL": "Apple Computer",
|
|
187
188
|
"GOOG": "Google",
|
|
@@ -213,7 +214,7 @@ To learn about additional arguments `create_rag_tool`, please see the full [docs
|
|
|
213
214
|
In addition to RAG tools or search tools, you can generate additional tools the agent can use. These could be mathematical tools, tools
|
|
214
215
|
that call other APIs to get more information, or any other type of tool.
|
|
215
216
|
|
|
216
|
-
See [Agent Tools](
|
|
217
|
+
See [Agent Tools](#agent-tools-at-a-glance) for more information.
|
|
217
218
|
|
|
218
219
|
### 4. Create your agent
|
|
219
220
|
|
|
@@ -247,26 +248,67 @@ agent = Agent(
|
|
|
247
248
|
|
|
248
249
|
The `topic` parameter helps identify the agent's area of expertise, while `custom_instructions` lets you customize how the agent behaves and presents information. The agent will combine these with its default general instructions to determine its complete behavior.
|
|
249
250
|
|
|
250
|
-
The `agent_progress_callback` argument is an optional function that will be called when various Agent events occur, and can be used to track agent steps.
|
|
251
|
+
The `agent_progress_callback` argument is an optional function that will be called when various Agent events occur (tool calls, tool outputs, etc.), and can be used to track agent steps in real-time. This works with both regular chat methods (`chat()`, `achat()`) and streaming methods (`stream_chat()`, `astream_chat()`).
|
|
251
252
|
|
|
252
253
|
### 5. Run a chat interaction
|
|
253
254
|
|
|
255
|
+
You have multiple ways to interact with your agent:
|
|
256
|
+
|
|
257
|
+
**Standard Chat (synchronous)**
|
|
254
258
|
```python
|
|
255
259
|
res = agent.chat("What was the revenue for Apple in 2021?")
|
|
256
260
|
print(res.response)
|
|
257
261
|
```
|
|
258
262
|
|
|
263
|
+
**Async Chat**
|
|
264
|
+
```python
|
|
265
|
+
res = await agent.achat("What was the revenue for Apple in 2021?")
|
|
266
|
+
print(res.response)
|
|
267
|
+
```
|
|
268
|
+
|
|
269
|
+
**Streaming Chat with AgentStreamingResponse**
|
|
270
|
+
```python
|
|
271
|
+
# Synchronous streaming
|
|
272
|
+
stream_response = agent.stream_chat("What was the revenue for Apple in 2021?")
|
|
273
|
+
|
|
274
|
+
# Option 1: Process stream manually
|
|
275
|
+
async for chunk in stream_response.async_response_gen():
|
|
276
|
+
print(chunk, end="", flush=True)
|
|
277
|
+
|
|
278
|
+
# Option 2: Get final response without streaming
|
|
279
|
+
# (Note: stream still executes, just not processed chunk by chunk)
|
|
280
|
+
|
|
281
|
+
# Get final response after streaming
|
|
282
|
+
final_response = stream_response.get_response()
|
|
283
|
+
print(f"\nFinal response: {final_response.response}")
|
|
284
|
+
```
|
|
285
|
+
|
|
286
|
+
**Async Streaming Chat**
|
|
287
|
+
```python
|
|
288
|
+
# Asynchronous streaming
|
|
289
|
+
stream_response = await agent.astream_chat("What was the revenue for Apple in 2021?")
|
|
290
|
+
|
|
291
|
+
# Process chunks manually
|
|
292
|
+
async for chunk in stream_response.async_response_gen():
|
|
293
|
+
print(chunk, end="", flush=True)
|
|
294
|
+
|
|
295
|
+
# Get final response after streaming
|
|
296
|
+
final_response = await stream_response.aget_response()
|
|
297
|
+
print(f"\nFinal response: {final_response.response}")
|
|
298
|
+
```
|
|
299
|
+
|
|
259
300
|
> **Note:**
|
|
260
|
-
> 1. `
|
|
261
|
-
> 2.
|
|
262
|
-
>
|
|
263
|
-
>
|
|
301
|
+
> 1. Both `chat()` and `achat()` return `AgentResponse` objects. Access the text with `.response` or use `str()`.
|
|
302
|
+
> 2. Streaming methods return `AgentStreamingResponse` objects that provide both real-time chunks and final responses.
|
|
303
|
+
> 3. For advanced use-cases, explore other `AgentResponse` properties like `sources` and `metadata`.
|
|
304
|
+
> 4. Streaming is ideal for long responses and real-time user interfaces. See [Streaming & Real-time Responses](#streaming--real-time-responses) for detailed examples.
|
|
305
|
+
> 5. The `agent_progress_callback` works with both regular chat methods (`chat()`, `achat()`) and streaming methods to track tool calls in real-time.
|
|
264
306
|
|
|
265
307
|
## Agent Instructions
|
|
266
308
|
|
|
267
|
-
When creating an agent, it already comes with a set of general base instructions, designed
|
|
309
|
+
When creating an agent, it already comes with a set of general base instructions, designed to enhance its operation and improve how the agent works.
|
|
268
310
|
|
|
269
|
-
In addition, you can add `custom_instructions` that are specific to your use case
|
|
311
|
+
In addition, you can add `custom_instructions` that are specific to your use case to customize how the agent behaves.
|
|
270
312
|
|
|
271
313
|
When writing custom instructions:
|
|
272
314
|
- Focus on behavior and presentation rather than tool usage (that's what tool descriptions are for)
|
|
@@ -279,7 +321,7 @@ The agent will combine both the general instructions and your custom instruction
|
|
|
279
321
|
|
|
280
322
|
It is not recommended to change the general instructions, but it is possible as well to override them with the optional `general_instructions` parameter. If you do change them, your agent may not work as intended, so be careful if overriding these instructions.
|
|
281
323
|
|
|
282
|
-
##
|
|
324
|
+
## Defining Tools
|
|
283
325
|
|
|
284
326
|
### Vectara tools
|
|
285
327
|
|
|
@@ -333,7 +375,7 @@ The Vectara search tool allows the agent to list documents that match a query.
|
|
|
333
375
|
This can be helpful to the agent to answer queries like "how many documents discuss the iPhone?" or other
|
|
334
376
|
similar queries that require a response in terms of a list of matching documents.
|
|
335
377
|
|
|
336
|
-
###
|
|
378
|
+
### Agent Tools at a Glance
|
|
337
379
|
|
|
338
380
|
`vectara-agentic` provides a few tools out of the box (see `ToolsCatalog` for details):
|
|
339
381
|
|
|
@@ -481,7 +523,7 @@ mult_tool = ToolsFactory().create_tool(mult_func)
|
|
|
481
523
|
|
|
482
524
|
#### VHC Eligibility
|
|
483
525
|
|
|
484
|
-
When creating tools, you can control whether
|
|
526
|
+
When creating tools, you can control whether their output is eligible for Vectara Hallucination Correction, by using the `vhc_eligible` parameter:
|
|
485
527
|
|
|
486
528
|
```python
|
|
487
529
|
# Tool that provides factual data - should participate in VHC
|
|
@@ -529,7 +571,61 @@ Built-in formatters include `format_as_table`, `format_as_json`, and `format_as_
|
|
|
529
571
|
|
|
530
572
|
The human-readable format, if available, is used when using Vectara Hallucination Correction.
|
|
531
573
|
|
|
532
|
-
##
|
|
574
|
+
## Streaming & Real-time Responses
|
|
575
|
+
|
|
576
|
+
`vectara-agentic` provides powerful streaming capabilities for real-time response generation, ideal for interactive applications and long-form content.
|
|
577
|
+
|
|
578
|
+
### Why Use Streaming?
|
|
579
|
+
|
|
580
|
+
- **Better User Experience**: Users see responses as they're generated instead of waiting for completion
|
|
581
|
+
- **Real-time Feedback**: Perfect for chat interfaces, web applications, and interactive demos
|
|
582
|
+
- **Progress Visibility**: Combined with callbacks, users can see both tool usage and response generation
|
|
583
|
+
- **Reduced Perceived Latency**: Streaming makes applications feel faster and more responsive
|
|
584
|
+
|
|
585
|
+
### Quick Streaming Example
|
|
586
|
+
|
|
587
|
+
```python
|
|
588
|
+
# Create streaming response
|
|
589
|
+
stream_response = agent.stream_chat("Analyze the financial performance of tech companies in 2022")
|
|
590
|
+
async for chunk in stream_response.async_response_gen():
|
|
591
|
+
print(chunk, end="", flush=True) # Update your UI here
|
|
592
|
+
|
|
593
|
+
# Get complete response with metadata after streaming completes
|
|
594
|
+
final_response = stream_response.get_response()
|
|
595
|
+
print(f"\nSources consulted: {len(final_response.sources)}")
|
|
596
|
+
```
|
|
597
|
+
|
|
598
|
+
### Tool Call Progress Tracking
|
|
599
|
+
|
|
600
|
+
You can track tool calls and outputs in real-time with `agent_progress_callback` - this works with both regular chat and streaming methods:
|
|
601
|
+
|
|
602
|
+
```python
|
|
603
|
+
from vectara_agentic import AgentStatusType
|
|
604
|
+
|
|
605
|
+
def tool_tracker(status_type, msg, event_id):
|
|
606
|
+
if status_type == AgentStatusType.TOOL_CALL:
|
|
607
|
+
print(f"🔧 Using {msg['tool_name']} with {msg['arguments']}")
|
|
608
|
+
elif status_type == AgentStatusType.TOOL_OUTPUT:
|
|
609
|
+
print(f"📊 {msg['tool_name']} completed")
|
|
610
|
+
|
|
611
|
+
agent = Agent(
|
|
612
|
+
tools=[your_tools],
|
|
613
|
+
agent_progress_callback=tool_tracker
|
|
614
|
+
)
|
|
615
|
+
|
|
616
|
+
# With streaming - see tool calls as they happen, plus streaming response
|
|
617
|
+
stream_response = await agent.astream_chat("Analyze Apple's finances")
|
|
618
|
+
async for chunk in stream_response.async_response_gen():
|
|
619
|
+
print(chunk, end="", flush=True)
|
|
620
|
+
|
|
621
|
+
# With regular chat - see tool calls as they happen, then get final response
|
|
622
|
+
response = await agent.achat("Analyze Apple's finances")
|
|
623
|
+
print(response.response)
|
|
624
|
+
```
|
|
625
|
+
|
|
626
|
+
For detailed examples including FastAPI integration, Streamlit apps, and decision guidelines, see our [comprehensive streaming documentation](https://vectara.github.io/py-vectara-agentic/latest/usage/#streaming-chat-methods).
|
|
627
|
+
|
|
628
|
+
## Vectara Hallucination Correction (VHC)
|
|
533
629
|
|
|
534
630
|
`vectara-agentic` provides built-in support for Vectara Hallucination Correction (VHC), which analyzes agent responses and corrects any detected hallucinations based on the factual content retrieved by VHC-eligible tools.
|
|
535
631
|
|
|
@@ -587,7 +683,7 @@ agent = Agent(
|
|
|
587
683
|
|
|
588
684
|
This helps catch errors where your instructions reference tools that aren't available to the agent.
|
|
589
685
|
|
|
590
|
-
##
|
|
686
|
+
## Advanced Usage: Workflows
|
|
591
687
|
|
|
592
688
|
In addition to standard chat interactions, `vectara-agentic` supports custom workflows via the `run()` method.
|
|
593
689
|
Workflows allow you to structure multi-step interactions where inputs and outputs are validated using Pydantic models.
|
|
@@ -758,7 +854,7 @@ The workflow works in two steps:
|
|
|
758
854
|
- You need to implement complex business logic
|
|
759
855
|
- You want to integrate with external systems or APIs in a specific way
|
|
760
856
|
|
|
761
|
-
##
|
|
857
|
+
## Configuration
|
|
762
858
|
|
|
763
859
|
### Configuring Vectara-agentic
|
|
764
860
|
|
|
@@ -789,7 +885,7 @@ The `AgentConfig` object may include the following items:
|
|
|
789
885
|
- `main_llm_provider` and `tool_llm_provider`: the LLM provider for main agent and for the tools. Valid values are `OPENAI`, `ANTHROPIC`, `TOGETHER`, `GROQ`, `COHERE`, `BEDROCK`, `GEMINI` (default: `OPENAI`).
|
|
790
886
|
|
|
791
887
|
> **Note:** Fireworks AI support has been removed. If you were using Fireworks, please migrate to one of the supported providers listed above.
|
|
792
|
-
- `main_llm_model_name` and `tool_llm_model_name`: agent model name for agent and tools (default depends on provider: OpenAI uses gpt-4.1-mini, Gemini uses gemini-2.5-flash).
|
|
888
|
+
- `main_llm_model_name` and `tool_llm_model_name`: agent model name for agent and tools (default depends on provider: OpenAI uses gpt-4.1-mini, Gemini uses gemini-2.5-flash-lite).
|
|
793
889
|
- `observer`: the observer type; should be `ARIZE_PHOENIX` or if undefined no observation framework will be used.
|
|
794
890
|
- `endpoint_api_key`: a secret key if using the API endpoint option (defaults to `dev-api-key`)
|
|
795
891
|
|
|
@@ -826,7 +922,7 @@ agent = Agent(
|
|
|
826
922
|
)
|
|
827
923
|
```
|
|
828
924
|
|
|
829
|
-
##
|
|
925
|
+
## Migrating from v0.3.x
|
|
830
926
|
|
|
831
927
|
If you're upgrading from v0.3.x, please note the following breaking changes in v0.4.0:
|
|
832
928
|
|
|
@@ -0,0 +1,58 @@
|
|
|
1
|
+
tests/__init__.py,sha256=Bmsv0bLu2Hx-b7RZVvEzoodqYxE37hHd7fXCF2cT5pg,176
|
|
2
|
+
tests/benchmark_models.py,sha256=f9SMmPc4h8WL9TQUJaeA22fcbu2oSx8lhhm1ht3fjDE,44125
|
|
3
|
+
tests/conftest.py,sha256=Y9lOptmjCFQ4VI0zmlOF80ERbkskwAn2XEWOk5CwMaQ,9362
|
|
4
|
+
tests/endpoint.py,sha256=bOmjEjLt7PIR3s74M0HOtFj43l4k1s0urBUQNMUVKS0,2749
|
|
5
|
+
tests/run_tests.py,sha256=juM7vnTz7B8Gr6DKD8L5zBPbgBQf_RQnjRkmsQPeWYw,3338
|
|
6
|
+
tests/test_agent.py,sha256=7SvDAvXsy6z3k7YaYVhyzF-Jc6cIBzrZhNXHSOpzwEI,6935
|
|
7
|
+
tests/test_agent_fallback_memory.py,sha256=1LoRHxUM767bGmCeusPlGubX_pIeP5KxIABRwdWLJGo,10862
|
|
8
|
+
tests/test_agent_memory_consistency.py,sha256=D8ivCGp5reJyOK7Q6wDiZlv3bKX4-SEchnqocyib1Po,8966
|
|
9
|
+
tests/test_agent_type.py,sha256=hx0FPKhhP-zaT2Z7MYlrZw10srws8VUQgBoZk2-vUxY,5155
|
|
10
|
+
tests/test_api_endpoint.py,sha256=PrfV6kWvq5icm3zLgrse9isBsR6EkwfUtSdz1ADSUUs,5115
|
|
11
|
+
tests/test_bedrock.py,sha256=4qBip3plouQkHTRU01_sYebop6fiVe3Fnx5vjkMl3H4,2003
|
|
12
|
+
tests/test_fallback.py,sha256=LQtnYoK-NohJL3D3pQnlY0yrIGs2B25j6B3gX3wGM1c,3073
|
|
13
|
+
tests/test_gemini.py,sha256=HVTWmwPFxJ-hjketCkbXa_mOyWXpE-1dG9fu47z00bU,1632
|
|
14
|
+
tests/test_groq.py,sha256=Ch9rnziGp4FbrVK8r1dqVW5lKa-JqaqRLwYqM0R7avg,1994
|
|
15
|
+
tests/test_private_llm.py,sha256=O5sQfZ_NgE2S1-YJ6eMRn1Gz17XkRjEk9O0iHGACRu0,2752
|
|
16
|
+
tests/test_react_error_handling.py,sha256=xAozh77qNSvaEzMDHjw2blbDNVUY-5qfvBldD_YHCQQ,11198
|
|
17
|
+
tests/test_react_memory.py,sha256=3YAPhrWAjmDcT2jm2IfxBx2LSWJGkpYUhWQiVt-qXFs,10177
|
|
18
|
+
tests/test_react_streaming.py,sha256=ZM79HTEvv9sln82vTt9uHfTB0aLLs26PkGf3k4swY4Q,5045
|
|
19
|
+
tests/test_react_workflow_events.py,sha256=sd7CZbgaQIEhb7d0E8VMXC-ivKTQzZvZaRt5QAPFUyA,15118
|
|
20
|
+
tests/test_return_direct.py,sha256=ZhcgkRNGqPQFAYm8moY3HLLIpwdFuAyjShE3F6L16lQ,1522
|
|
21
|
+
tests/test_serialization.py,sha256=DJZ2E_K54t8INwZR0Q8gS1wi-MGbLIheOBcbRmZNcro,5383
|
|
22
|
+
tests/test_session_memory.py,sha256=hnADl59agjpXySY-CBjw6sDPn3s6JketIK6XbLZsLzU,9691
|
|
23
|
+
tests/test_streaming.py,sha256=EBihBb_ZQiGCCvv7Us7YqHN4CxDIQy-XsUSDVO1n5wU,3302
|
|
24
|
+
tests/test_together.py,sha256=G4_gHVXKSFyqyDf189MX6_Mqoc71f9k-gmPmxKDQbrY,2007
|
|
25
|
+
tests/test_tools.py,sha256=vvi3FC4SDOwpyKJUFOWCWJ5i3Y474FrKFHnZpo4aFQg,13643
|
|
26
|
+
tests/test_vectara_llms.py,sha256=WoswpfPGhQlBXyOijn5EBX0F2NL1Oq3FDB4wxu7mwXs,2485
|
|
27
|
+
tests/test_vhc.py,sha256=jVojp8ZUDF60yJaYp5pBRdAdNYK1hhhPz_RTmlTEm4g,1980
|
|
28
|
+
tests/test_workflow.py,sha256=43YUF-0YDbiiJrTSYjnyqrC4gvHYuHQp7uuzV2jMdTE,3553
|
|
29
|
+
vectara_agentic/__init__.py,sha256=CfS3QR4drKygcTcyH5zUUDuXXQ3WZtTCytz8W4-loeE,1077
|
|
30
|
+
vectara_agentic/_callback.py,sha256=hYbHU_3sMF4-h0YMierZ9EEWspakNixk7wXAAWztlmU,15364
|
|
31
|
+
vectara_agentic/_observability.py,sha256=rApfdndB2R021iM0xG4MumTSDX1Ba6qbNM0N_AOTbR0,4884
|
|
32
|
+
vectara_agentic/_version.py,sha256=qs-0KHxeB9E6hJ4i743gXRLriP2E5HKFA9AKqTxuWXE,65
|
|
33
|
+
vectara_agentic/agent.py,sha256=5eC4BkMPWep8c_LIHSB2N1CvsFLdX6qPAhIpgLR08Gc,49125
|
|
34
|
+
vectara_agentic/agent_config.py,sha256=njqEX2qHJjAp2KpNuJglgZhyWXPK74wjIjBPACD6w7w,4074
|
|
35
|
+
vectara_agentic/agent_endpoint.py,sha256=E_AF-YwxaKqd1-p43X62e1e4ugwOWKIyNq4RWOfsO7A,7402
|
|
36
|
+
vectara_agentic/db_tools.py,sha256=nVZkpGdG63ooGngjX9g7YWyBZRtYMDpvzNasbO696nM,11498
|
|
37
|
+
vectara_agentic/llm_utils.py,sha256=MosOvvNmWkg-8igr01DiXlAb7HOUIauOqbt92anrdZg,7664
|
|
38
|
+
vectara_agentic/sub_query_workflow.py,sha256=1y0fBoUem4i-R34QYlSzcMwM8YhmYgj6S_bWynUtL6w,13001
|
|
39
|
+
vectara_agentic/tool_utils.py,sha256=whnQlk9coeIt01sqUnKnzUorefgn96yWqhtRfHxNL84,25921
|
|
40
|
+
vectara_agentic/tools.py,sha256=pb828u-tDps98N_R3U3_bCcnD9L3w5jdmhScduai74I,34852
|
|
41
|
+
vectara_agentic/tools_catalog.py,sha256=p6eRram-diJyMz5dZI703auSAm97FfW5wLAMyz_2sB0,4634
|
|
42
|
+
vectara_agentic/types.py,sha256=qKkK8vRNiLvEcMInMyOClK2bD7iFlrWGTkl3fGC6Xic,6117
|
|
43
|
+
vectara_agentic/utils.py,sha256=R9HitEG5K3Q_p2M_teosT181OUxkhs1-hnj98qDYGbE,2545
|
|
44
|
+
vectara_agentic/agent_core/__init__.py,sha256=R3KGbSOiY21FOjbeQ_GyIi6uR9Rz7PTfudO9RjSuEZQ,722
|
|
45
|
+
vectara_agentic/agent_core/factory.py,sha256=Nmmhl98r2Op4qJwq9cgfy7DfrWI62JUfxFXHoBxKHBo,14158
|
|
46
|
+
vectara_agentic/agent_core/prompts.py,sha256=al7SF5pNzOG-KK0lCtTS-HCwVStB6yvE34dgHWJQ_bA,9989
|
|
47
|
+
vectara_agentic/agent_core/serialization.py,sha256=Npfcgm9j8B0ck74uIUgqTGljt8HTpcMCdnWV6CKYBZE,11878
|
|
48
|
+
vectara_agentic/agent_core/streaming.py,sha256=OmjTNEJ25SR788ltyvekVpP83hnv6Tw-MixCwOUK9Kc,26452
|
|
49
|
+
vectara_agentic/agent_core/utils/__init__.py,sha256=y5Xf0IH-5TRxMBRA9IyhmWnGZOVIyqV45P6lX4c2Qsc,762
|
|
50
|
+
vectara_agentic/agent_core/utils/hallucination.py,sha256=XmV7tW-MBN9BrzM79zu0T7zaWil7fIkNQjLfDZE43v4,5312
|
|
51
|
+
vectara_agentic/agent_core/utils/logging.py,sha256=-Ll8iUelml92WuhNWScuY6H-RheyZOTBHNxXQ1UGy0M,1701
|
|
52
|
+
vectara_agentic/agent_core/utils/schemas.py,sha256=4sEyQ-_z-eZJzgxCJf62AuBgV7RN1Azc9mLPPlj6IWg,2769
|
|
53
|
+
vectara_agentic/agent_core/utils/tools.py,sha256=k9Gm-UUQ3ZeGxrkjyrjmjcGxOkvnpylcm_Krnr-0fsY,4748
|
|
54
|
+
vectara_agentic-0.4.3.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
55
|
+
vectara_agentic-0.4.3.dist-info/METADATA,sha256=D-HoLTva17z9CzsUuc4gm1GnKQ-s7EqmQZLf3fYe6Z8,38886
|
|
56
|
+
vectara_agentic-0.4.3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
57
|
+
vectara_agentic-0.4.3.dist-info/top_level.txt,sha256=Y7TQTFdOYGYodQRltUGRieZKIYuzeZj2kHqAUpfCUfg,22
|
|
58
|
+
vectara_agentic-0.4.3.dist-info/RECORD,,
|
|
@@ -1,54 +0,0 @@
|
|
|
1
|
-
tests/__init__.py,sha256=vXhQJCyD1Uhx2NP8b8vIUG3RUhkXyvn7oOir2bmctQU,175
|
|
2
|
-
tests/benchmark_models.py,sha256=RSdgnGFA7s2mOIRvi50ChZXwk677QMLbJ1glsv1lcDg,38454
|
|
3
|
-
tests/conftest.py,sha256=KjX0iDJIjbj7tsCUXLojZg5lA0PXWLTiuo0ij1Ckew8,9308
|
|
4
|
-
tests/endpoint.py,sha256=0URgtz8uydhP_rtpGn_59P1LiWkd3idNlI85LzXnlUE,2744
|
|
5
|
-
tests/run_tests.py,sha256=HL7JfRtQHBWj44tbs-WL7vEiehIaAynHO1KmhjqLmpw,3337
|
|
6
|
-
tests/test_agent.py,sha256=ntnVDATF3b6mRE9edWeLTexAndW09Kje2SYCo1fn56Q,6775
|
|
7
|
-
tests/test_agent_fallback_memory.py,sha256=dWk_lFLEwDUE4moeoJB5ecPUKZSiFt4RryCcKgq1XtQ,10878
|
|
8
|
-
tests/test_agent_memory_consistency.py,sha256=bnBEpoT1XIVOfd45PVRtRe5ts2kBYKc0Jk0XSjhNMMo,8982
|
|
9
|
-
tests/test_agent_type.py,sha256=d5Zs0iM12DxregfwkJ6UxERWcR5eLgy2ona1znwvK3I,5153
|
|
10
|
-
tests/test_api_endpoint.py,sha256=I2UDamPMSLLkgw0pZ5QMM0o_8vVga9-F6ql-S3zlMBs,5136
|
|
11
|
-
tests/test_bedrock.py,sha256=74M4k4MWFfZV-mD75R_27HQGTfWcPQ40ijLanT54y-E,1979
|
|
12
|
-
tests/test_fallback.py,sha256=SA1d8VymYl3d_tJlq-CSezf43PpBEKwnMTBMFFSe1HU,2969
|
|
13
|
-
tests/test_gemini.py,sha256=pvCcfTf79-R49H_WVZou1xx-vVmZEY-19zRtxZeUdD4,2581
|
|
14
|
-
tests/test_groq.py,sha256=OmO-VBrKfZYUc11QfZH25jT3FySQrSpv_FS488IqSik,1970
|
|
15
|
-
tests/test_private_llm.py,sha256=kVwRUR9gHCiQcTNg01zf50GVvGHuniL6D1xvYWGr0eg,2625
|
|
16
|
-
tests/test_return_direct.py,sha256=QsCw-ZGp06cutLkyrLh1U1rggoH7iBiFz4SQ9MIx-Xk,1521
|
|
17
|
-
tests/test_serialization.py,sha256=wdVRoy6hoPqCF7SGpYbC2TM7iR2o_IKIRKOBZFAChp0,4824
|
|
18
|
-
tests/test_session_memory.py,sha256=lw9SNuLSXDG6MNOBu_4kTPP0XgfZH6E8XCOT-Vrs78I,9786
|
|
19
|
-
tests/test_streaming.py,sha256=EBihBb_ZQiGCCvv7Us7YqHN4CxDIQy-XsUSDVO1n5wU,3302
|
|
20
|
-
tests/test_together.py,sha256=s0ywOxL-XT_iq970ucamVAPR_CIS9OT72vJB7degNdc,1983
|
|
21
|
-
tests/test_tools.py,sha256=869Fl54kmLc44ijykO2QpfcXyAWLDqJ9Niq3XNzhzv8,13621
|
|
22
|
-
tests/test_vectara_llms.py,sha256=H1M9OaDvD8_GCFRBm6IdvWejYKn-zm3-Rzt_noCBbiQ,2496
|
|
23
|
-
tests/test_vhc.py,sha256=MXyFxckQzfdXcULqwoao4taoQ93qLDvkcf-h2LwUQnE,1974
|
|
24
|
-
tests/test_workflow.py,sha256=dwQnHSxvRMVqUtFV8O2KvuyaSKJXFDkVhcffn8mSuJs,3555
|
|
25
|
-
vectara_agentic/__init__.py,sha256=CfS3QR4drKygcTcyH5zUUDuXXQ3WZtTCytz8W4-loeE,1077
|
|
26
|
-
vectara_agentic/_callback.py,sha256=ueckIfLNa9ykmmEyLqrrZwfDNWrEfyZzJeWktpnkwJQ,12970
|
|
27
|
-
vectara_agentic/_observability.py,sha256=rApfdndB2R021iM0xG4MumTSDX1Ba6qbNM0N_AOTbR0,4884
|
|
28
|
-
vectara_agentic/_version.py,sha256=AO7HR7HGdC4KVBKvdlO8C1VoiedQvDhEZLC7dDHiuJg,65
|
|
29
|
-
vectara_agentic/agent.py,sha256=7tXqdrUGZ0bGIpxoiM7K847o0ktiuwMZ-FmCb6N_4n0,47839
|
|
30
|
-
vectara_agentic/agent_config.py,sha256=njqEX2qHJjAp2KpNuJglgZhyWXPK74wjIjBPACD6w7w,4074
|
|
31
|
-
vectara_agentic/agent_endpoint.py,sha256=E_AF-YwxaKqd1-p43X62e1e4ugwOWKIyNq4RWOfsO7A,7402
|
|
32
|
-
vectara_agentic/db_tools.py,sha256=nVZkpGdG63ooGngjX9g7YWyBZRtYMDpvzNasbO696nM,11498
|
|
33
|
-
vectara_agentic/llm_utils.py,sha256=Ac14_lHGvog-hYGGX4e7yZMRnp2ZXcPrpOnnUy7oBZE,7604
|
|
34
|
-
vectara_agentic/sub_query_workflow.py,sha256=1y0fBoUem4i-R34QYlSzcMwM8YhmYgj6S_bWynUtL6w,13001
|
|
35
|
-
vectara_agentic/tool_utils.py,sha256=whnQlk9coeIt01sqUnKnzUorefgn96yWqhtRfHxNL84,25921
|
|
36
|
-
vectara_agentic/tools.py,sha256=pb828u-tDps98N_R3U3_bCcnD9L3w5jdmhScduai74I,34852
|
|
37
|
-
vectara_agentic/tools_catalog.py,sha256=p6eRram-diJyMz5dZI703auSAm97FfW5wLAMyz_2sB0,4634
|
|
38
|
-
vectara_agentic/types.py,sha256=qKkK8vRNiLvEcMInMyOClK2bD7iFlrWGTkl3fGC6Xic,6117
|
|
39
|
-
vectara_agentic/utils.py,sha256=R9HitEG5K3Q_p2M_teosT181OUxkhs1-hnj98qDYGbE,2545
|
|
40
|
-
vectara_agentic/agent_core/__init__.py,sha256=R3KGbSOiY21FOjbeQ_GyIi6uR9Rz7PTfudO9RjSuEZQ,722
|
|
41
|
-
vectara_agentic/agent_core/factory.py,sha256=Nmmhl98r2Op4qJwq9cgfy7DfrWI62JUfxFXHoBxKHBo,14158
|
|
42
|
-
vectara_agentic/agent_core/prompts.py,sha256=al7SF5pNzOG-KK0lCtTS-HCwVStB6yvE34dgHWJQ_bA,9989
|
|
43
|
-
vectara_agentic/agent_core/serialization.py,sha256=WwV40KGdN_cC6kACjdHuRCmyDBGhV5YOJ5KoHLXpSlg,12053
|
|
44
|
-
vectara_agentic/agent_core/streaming.py,sha256=ViCYos_08o-TQZtNORFs8gr5PNkN4X0hBTNVH32tNAw,17665
|
|
45
|
-
vectara_agentic/agent_core/utils/__init__.py,sha256=y5Xf0IH-5TRxMBRA9IyhmWnGZOVIyqV45P6lX4c2Qsc,762
|
|
46
|
-
vectara_agentic/agent_core/utils/hallucination.py,sha256=XmV7tW-MBN9BrzM79zu0T7zaWil7fIkNQjLfDZE43v4,5312
|
|
47
|
-
vectara_agentic/agent_core/utils/logging.py,sha256=-Ll8iUelml92WuhNWScuY6H-RheyZOTBHNxXQ1UGy0M,1701
|
|
48
|
-
vectara_agentic/agent_core/utils/schemas.py,sha256=e7xhJBevgK7IM8cRT5hoO67T-Ep_FhNGp72Zo0OC_Jo,2853
|
|
49
|
-
vectara_agentic/agent_core/utils/tools.py,sha256=k9Gm-UUQ3ZeGxrkjyrjmjcGxOkvnpylcm_Krnr-0fsY,4748
|
|
50
|
-
vectara_agentic-0.4.2.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
51
|
-
vectara_agentic-0.4.2.dist-info/METADATA,sha256=QeXPh5PCHd76YKrrs7rI6hCYFGEWtJCYhZtPneWM5Gg,35010
|
|
52
|
-
vectara_agentic-0.4.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
53
|
-
vectara_agentic-0.4.2.dist-info/top_level.txt,sha256=Y7TQTFdOYGYodQRltUGRieZKIYuzeZj2kHqAUpfCUfg,22
|
|
54
|
-
vectara_agentic-0.4.2.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|