vectara-agentic 0.4.0__py3-none-any.whl → 0.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vectara-agentic might be problematic. Click here for more details.

vectara_agentic/types.py CHANGED
@@ -18,8 +18,6 @@ class AgentType(Enum):
18
18
 
19
19
  REACT = "REACT"
20
20
  FUNCTION_CALLING = "FUNCTION_CALLING"
21
- LLMCOMPILER = "LLMCOMPILER"
22
- LATS = "LATS"
23
21
 
24
22
 
25
23
  class ObserverType(Enum):
@@ -142,8 +140,16 @@ class AgentStreamingResponse:
142
140
  resp = cast(AgentResponse, self.base.get_response())
143
141
  elif hasattr(self.base, "to_response"):
144
142
  resp = cast(AgentResponse, self.base.to_response())
145
- else:
143
+ elif hasattr(self.base, "get_final_response"):
146
144
  resp = cast(AgentResponse, self.base.get_final_response())
145
+ else:
146
+ # Fallback for StreamingAgentChatResponse objects that don't have standard methods
147
+ # Try to get the response directly from the object's response attribute
148
+ if hasattr(self.base, "response"):
149
+ response_text = self.base.response if isinstance(self.base.response, str) else str(self.base.response)
150
+ resp = AgentResponse(response=response_text, metadata=getattr(self.base, "metadata", {}))
151
+ else:
152
+ resp = AgentResponse(response="", metadata={})
147
153
 
148
154
  resp.metadata = (resp.metadata or {}) | self.metadata
149
155
  return resp
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: vectara_agentic
3
- Version: 0.4.0
3
+ Version: 0.4.1
4
4
  Summary: A Python package for creating AI Assistants and AI Agents with Vectara
5
5
  Home-page: https://github.com/vectara/py-vectara-agentic
6
6
  Author: Ofer Mendelevitch
@@ -16,13 +16,11 @@ Classifier: Topic :: Software Development :: Libraries :: Python Modules
16
16
  Requires-Python: >=3.10
17
17
  Description-Content-Type: text/markdown
18
18
  License-File: LICENSE
19
- Requires-Dist: llama-index==0.12.49
20
- Requires-Dist: llama-index-core==0.12.49
19
+ Requires-Dist: llama-index==0.12.52
20
+ Requires-Dist: llama-index-core==0.12.52.post1
21
21
  Requires-Dist: llama-index-workflow==1.0.1
22
22
  Requires-Dist: llama-index-cli==0.4.4
23
23
  Requires-Dist: llama-index-indices-managed-vectara==0.4.5
24
- Requires-Dist: llama-index-agent-llm-compiler==0.3.2
25
- Requires-Dist: llama-index-agent-lats==0.3.2
26
24
  Requires-Dist: llama-index-agent-openai==0.4.12
27
25
  Requires-Dist: llama-index-llms-openai==0.4.7
28
26
  Requires-Dist: llama-index-llms-openai-like==0.4.0
@@ -53,7 +51,7 @@ Requires-Dist: openinference-instrumentation-llama-index==4.3.1
53
51
  Requires-Dist: opentelemetry-proto>=1.31.0
54
52
  Requires-Dist: arize-phoenix==10.9.1
55
53
  Requires-Dist: arize-phoenix-otel==0.10.3
56
- Requires-Dist: protobuf==5.29.3
54
+ Requires-Dist: protobuf==5.29.5
57
55
  Requires-Dist: tokenizers>=0.20
58
56
  Requires-Dist: pydantic==2.11.5
59
57
  Requires-Dist: pandas==2.2.3
@@ -125,7 +123,7 @@ Dynamic: summary
125
123
  - **Rapid Tool Creation:**
126
124
  Build Vectara RAG tools or search tools with a single line of code.
127
125
  - **Agent Flexibility:**
128
- Supports multiple agent types including `ReAct`, `Function Calling`, `LATS`, and `LLMCompiler`.
126
+ Supports multiple agent types including `ReAct` and `Function Calling`.
129
127
  - **Pre-Built Domain Tools:**
130
128
  Tools tailored for finance, legal, and other verticals.
131
129
  - **Multi-LLM Integration:**
@@ -532,6 +530,49 @@ Built-in formatters include `format_as_table`, `format_as_json`, and `format_as_
532
530
 
533
531
  The human-readable format, if available, is used when using Vectara Hallucination Correction.
534
532
 
533
+ ## 🔍 Vectara Hallucination Correction (VHC)
534
+
535
+ `vectara-agentic` provides built-in support for Vectara Hallucination Correction (VHC), which analyzes agent responses and corrects any detected hallucinations based on the factual content retrieved by VHC-eligible tools.
536
+
537
+ ### Computing VHC
538
+
539
+ After a chat interaction, you can compute VHC to analyze and correct the agent's response:
540
+
541
+ ```python
542
+ # Chat with the agent
543
+ response = agent.chat("What was Apple's revenue in 2022?")
544
+ print(response.response)
545
+
546
+ # Compute VHC analysis
547
+ vhc_result = agent.compute_vhc()
548
+
549
+ # Access corrected text and corrections
550
+ if vhc_result["corrected_text"]:
551
+ print("Original:", response.response)
552
+ print("Corrected:", vhc_result["corrected_text"])
553
+ print("Corrections:", vhc_result["corrections"])
554
+ else:
555
+ print("No corrections needed or VHC not available")
556
+ ```
557
+
558
+ ### Async VHC Computation
559
+
560
+ For async applications, use `acompute_vhc()`:
561
+
562
+ ```python
563
+ # Async chat
564
+ response = await agent.achat("What was Apple's revenue in 2022?")
565
+
566
+ # Async VHC computation
567
+ vhc_result = await agent.acompute_vhc()
568
+ ```
569
+
570
+ ### VHC Requirements
571
+
572
+ - VHC requires a valid `VECTARA_API_KEY` environment variable
573
+ - Only VHC-eligible tools (those marked with `vhc_eligible=True`) contribute to the analysis
574
+ - VHC results are cached for each query/response pair to avoid redundant computation
575
+
535
576
  ### Tool Validation
536
577
 
537
578
  When creating an agent, you can enable tool validation by setting `validate_tools=True`. This will check that any tools mentioned in your custom instructions actually exist in the agent's tool set:
@@ -745,7 +786,7 @@ agent = Agent(
745
786
  ```
746
787
 
747
788
  The `AgentConfig` object may include the following items:
748
- - `agent_type`: the agent type. Valid values are `REACT`, `LLMCOMPILER`, `LATS` or `FUNCTION_CALLING` (default: `FUNCTION_CALLING`).
789
+ - `agent_type`: the agent type. Valid values are `REACT` or `FUNCTION_CALLING` (default: `FUNCTION_CALLING`).
749
790
  - `main_llm_provider` and `tool_llm_provider`: the LLM provider for main agent and for the tools. Valid values are `OPENAI`, `ANTHROPIC`, `TOGETHER`, `GROQ`, `COHERE`, `BEDROCK`, `GEMINI` (default: `OPENAI`).
750
791
 
751
792
  > **Note:** Fireworks AI support has been removed. If you were using Fireworks, please migrate to one of the supported providers listed above.
@@ -0,0 +1,53 @@
1
+ tests/__init__.py,sha256=vXhQJCyD1Uhx2NP8b8vIUG3RUhkXyvn7oOir2bmctQU,175
2
+ tests/conftest.py,sha256=PlHevWpkOP1F9pG9GJSf8ewYW_1FsFYcx3CQyjxAziY,9286
3
+ tests/endpoint.py,sha256=0URgtz8uydhP_rtpGn_59P1LiWkd3idNlI85LzXnlUE,2744
4
+ tests/run_tests.py,sha256=2dKDJ2uhz6SKlr72Zkh7PTVb2F52_FpirM_wKiIFuiw,3232
5
+ tests/test_agent.py,sha256=dwCHul-GnpURAmSMJlNo9_k_Aizr4KhkJKccKwDvZ38,5778
6
+ tests/test_agent_fallback_memory.py,sha256=1LoRHxUM767bGmCeusPlGubX_pIeP5KxIABRwdWLJGo,10862
7
+ tests/test_agent_memory_consistency.py,sha256=D8ivCGp5reJyOK7Q6wDiZlv3bKX4-SEchnqocyib1Po,8966
8
+ tests/test_agent_type.py,sha256=d5Zs0iM12DxregfwkJ6UxERWcR5eLgy2ona1znwvK3I,5153
9
+ tests/test_api_endpoint.py,sha256=I2UDamPMSLLkgw0pZ5QMM0o_8vVga9-F6ql-S3zlMBs,5136
10
+ tests/test_bedrock.py,sha256=74M4k4MWFfZV-mD75R_27HQGTfWcPQ40ijLanT54y-E,1979
11
+ tests/test_fallback.py,sha256=6wkyiyAvsibIdr33aXdsuU9nzDeJt0XSz5yiyuisUEQ,2963
12
+ tests/test_gemini.py,sha256=pvCcfTf79-R49H_WVZou1xx-vVmZEY-19zRtxZeUdD4,2581
13
+ tests/test_groq.py,sha256=OmO-VBrKfZYUc11QfZH25jT3FySQrSpv_FS488IqSik,1970
14
+ tests/test_private_llm.py,sha256=P6sldeAWcHg29u_Nu4FdHVUyNaRe5ULE-hjNJz6WKHc,2620
15
+ tests/test_return_direct.py,sha256=QsCw-ZGp06cutLkyrLh1U1rggoH7iBiFz4SQ9MIx-Xk,1521
16
+ tests/test_serialization.py,sha256=wdVRoy6hoPqCF7SGpYbC2TM7iR2o_IKIRKOBZFAChp0,4824
17
+ tests/test_session_memory.py,sha256=hnADl59agjpXySY-CBjw6sDPn3s6JketIK6XbLZsLzU,9691
18
+ tests/test_streaming.py,sha256=EBihBb_ZQiGCCvv7Us7YqHN4CxDIQy-XsUSDVO1n5wU,3302
19
+ tests/test_together.py,sha256=s0ywOxL-XT_iq970ucamVAPR_CIS9OT72vJB7degNdc,1983
20
+ tests/test_tools.py,sha256=869Fl54kmLc44ijykO2QpfcXyAWLDqJ9Niq3XNzhzv8,13621
21
+ tests/test_vectara_llms.py,sha256=H1M9OaDvD8_GCFRBm6IdvWejYKn-zm3-Rzt_noCBbiQ,2496
22
+ tests/test_vhc.py,sha256=MXyFxckQzfdXcULqwoao4taoQ93qLDvkcf-h2LwUQnE,1974
23
+ tests/test_workflow.py,sha256=dwQnHSxvRMVqUtFV8O2KvuyaSKJXFDkVhcffn8mSuJs,3555
24
+ vectara_agentic/__init__.py,sha256=CfS3QR4drKygcTcyH5zUUDuXXQ3WZtTCytz8W4-loeE,1077
25
+ vectara_agentic/_callback.py,sha256=ueckIfLNa9ykmmEyLqrrZwfDNWrEfyZzJeWktpnkwJQ,12970
26
+ vectara_agentic/_observability.py,sha256=c_1WuP8rS9sPuMH6twzcz6CGLqfTT5y4fyOHvDVdxsg,4423
27
+ vectara_agentic/_version.py,sha256=dWTo8m6tq_yNZLAER4W8gWnDQib4KBI28u8pwf8jiRM,65
28
+ vectara_agentic/agent.py,sha256=2laHGTp1D2ve96zdxdN3wtq0MMIe5B8RxTxDXrJDTOE,46779
29
+ vectara_agentic/agent_config.py,sha256=njqEX2qHJjAp2KpNuJglgZhyWXPK74wjIjBPACD6w7w,4074
30
+ vectara_agentic/agent_endpoint.py,sha256=E_AF-YwxaKqd1-p43X62e1e4ugwOWKIyNq4RWOfsO7A,7402
31
+ vectara_agentic/db_tools.py,sha256=nVZkpGdG63ooGngjX9g7YWyBZRtYMDpvzNasbO696nM,11498
32
+ vectara_agentic/llm_utils.py,sha256=dgomwK7FOVmH_prgOR60CjhG6kwt-AxxMLlFa8vWspY,7449
33
+ vectara_agentic/sub_query_workflow.py,sha256=wm2Lb2wbKrYx5bSq-npb3XbaxWzTcvK5BkW3NZ9vuIc,12968
34
+ vectara_agentic/tool_utils.py,sha256=whnQlk9coeIt01sqUnKnzUorefgn96yWqhtRfHxNL84,25921
35
+ vectara_agentic/tools.py,sha256=8gmC6UnHFTUr_hWWbuMyRNMMLkeY5Sb1FTgCsb7Hx1w,35689
36
+ vectara_agentic/tools_catalog.py,sha256=p6eRram-diJyMz5dZI703auSAm97FfW5wLAMyz_2sB0,4634
37
+ vectara_agentic/types.py,sha256=qKkK8vRNiLvEcMInMyOClK2bD7iFlrWGTkl3fGC6Xic,6117
38
+ vectara_agentic/utils.py,sha256=R9HitEG5K3Q_p2M_teosT181OUxkhs1-hnj98qDYGbE,2545
39
+ vectara_agentic/agent_core/__init__.py,sha256=R3KGbSOiY21FOjbeQ_GyIi6uR9Rz7PTfudO9RjSuEZQ,722
40
+ vectara_agentic/agent_core/factory.py,sha256=AMlUuAwUVocqwfOYkW-HJuUr81Kj0kUjcG4pPXmCZMM,14201
41
+ vectara_agentic/agent_core/prompts.py,sha256=HJ8b-5OEn6-suqWqQgeAVOZNEiPr7wKHeaczNdL-XN8,10127
42
+ vectara_agentic/agent_core/serialization.py,sha256=Ag9Ux497_IyxrexYP90wbG-UJy-lTH1ec_ANmpPmQjo,11731
43
+ vectara_agentic/agent_core/streaming.py,sha256=Xzz0kgt1LFeKlnhlDTsZmBze-asvYauwIlYJi2hgHjk,17772
44
+ vectara_agentic/agent_core/utils/__init__.py,sha256=y5Xf0IH-5TRxMBRA9IyhmWnGZOVIyqV45P6lX4c2Qsc,762
45
+ vectara_agentic/agent_core/utils/hallucination.py,sha256=XmV7tW-MBN9BrzM79zu0T7zaWil7fIkNQjLfDZE43v4,5312
46
+ vectara_agentic/agent_core/utils/logging.py,sha256=-Ll8iUelml92WuhNWScuY6H-RheyZOTBHNxXQ1UGy0M,1701
47
+ vectara_agentic/agent_core/utils/schemas.py,sha256=e7xhJBevgK7IM8cRT5hoO67T-Ep_FhNGp72Zo0OC_Jo,2853
48
+ vectara_agentic/agent_core/utils/tools.py,sha256=k9Gm-UUQ3ZeGxrkjyrjmjcGxOkvnpylcm_Krnr-0fsY,4748
49
+ vectara_agentic-0.4.1.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
50
+ vectara_agentic-0.4.1.dist-info/METADATA,sha256=PuM3HoXyagcOndjlq7XM5gPAGkjntAgIxI72OkHCLhw,35059
51
+ vectara_agentic-0.4.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
52
+ vectara_agentic-0.4.1.dist-info/top_level.txt,sha256=Y7TQTFdOYGYodQRltUGRieZKIYuzeZj2kHqAUpfCUfg,22
53
+ vectara_agentic-0.4.1.dist-info/RECORD,,
@@ -1,56 +0,0 @@
1
- """
2
- Prompt formatting and templating utilities.
3
-
4
- This module handles prompt template processing, placeholder replacement,
5
- and LLM-specific prompt formatting for different agent types.
6
- """
7
-
8
- from datetime import date
9
-
10
- def format_prompt(
11
- prompt_template: str,
12
- general_instructions: str,
13
- topic: str,
14
- custom_instructions: str,
15
- ) -> str:
16
- """
17
- Generate a prompt by replacing placeholders with topic and date.
18
-
19
- Args:
20
- prompt_template: The template for the prompt
21
- general_instructions: General instructions to be included in the prompt
22
- topic: The topic to be included in the prompt
23
- custom_instructions: The custom instructions to be included in the prompt
24
-
25
- Returns:
26
- str: The formatted prompt
27
- """
28
- return (
29
- prompt_template.replace("{chat_topic}", topic)
30
- .replace("{today}", date.today().strftime("%A, %B %d, %Y"))
31
- .replace("{custom_instructions}", custom_instructions)
32
- .replace("{INSTRUCTIONS}", general_instructions)
33
- )
34
-
35
-
36
- def format_llm_compiler_prompt(
37
- prompt: str, general_instructions: str, topic: str, custom_instructions: str
38
- ) -> str:
39
- """
40
- Add custom instructions to the prompt for LLM compiler agents.
41
-
42
- Args:
43
- prompt: The base prompt to which custom instructions should be added
44
- general_instructions: General instructions for the agent
45
- topic: Topic expertise for the agent
46
- custom_instructions: Custom user instructions
47
-
48
- Returns:
49
- str: The prompt with custom instructions added
50
- """
51
- prompt += "\nAdditional Instructions:\n"
52
- prompt += f"You have expertise in {topic}.\n"
53
- prompt += general_instructions
54
- prompt += custom_instructions
55
- prompt += f"Today is {date.today().strftime('%A, %B %d, %Y')}"
56
- return prompt
@@ -1,50 +0,0 @@
1
- tests/__init__.py,sha256=vXhQJCyD1Uhx2NP8b8vIUG3RUhkXyvn7oOir2bmctQU,175
2
- tests/conftest.py,sha256=WHK_SxlhU2EN55w8wXUMMHhks8yriOab5nK1y8HXe3g,9276
3
- tests/endpoint.py,sha256=0URgtz8uydhP_rtpGn_59P1LiWkd3idNlI85LzXnlUE,2744
4
- tests/run_tests.py,sha256=eZd50pV4FIbr8riDaqXvDheoW3mOcO3ZRGloGUNusAM,3197
5
- tests/test_agent.py,sha256=V5r7Cqe0iqV8VmeDJdE2lvB5tBLQUqcX182HIXTNYQQ,5721
6
- tests/test_agent_type.py,sha256=WNUwyUxC431BTtQPSfKpG42IxsPnexdbXQTM3P6itBk,5085
7
- tests/test_api_endpoint.py,sha256=I2UDamPMSLLkgw0pZ5QMM0o_8vVga9-F6ql-S3zlMBs,5136
8
- tests/test_bedrock.py,sha256=lXIHGtH0otjOqCkCSnanEUM6HavSkbail1900drfJiU,1358
9
- tests/test_fallback.py,sha256=6wkyiyAvsibIdr33aXdsuU9nzDeJt0XSz5yiyuisUEQ,2963
10
- tests/test_gemini.py,sha256=ksHd8JA7ZMuzs8W40Fb4RBoen1rniXDghSfQImw_3nk,3016
11
- tests/test_groq.py,sha256=m6HpJEeqmDQqYCQwg9_bCyGJ3ek1tK-aLBktxgRGGJ0,1346
12
- tests/test_private_llm.py,sha256=P6sldeAWcHg29u_Nu4FdHVUyNaRe5ULE-hjNJz6WKHc,2620
13
- tests/test_return_direct.py,sha256=QsCw-ZGp06cutLkyrLh1U1rggoH7iBiFz4SQ9MIx-Xk,1521
14
- tests/test_serialization.py,sha256=CsW7qEXgGE24oEqo85c-GEbzn_mZjbF3er_juL9JbF8,4896
15
- tests/test_streaming.py,sha256=e_XztBLCWf39HgfN1zsUz_vFNblzmMC2zfYHB8JM-zQ,2795
16
- tests/test_tools.py,sha256=869Fl54kmLc44ijykO2QpfcXyAWLDqJ9Niq3XNzhzv8,13621
17
- tests/test_vectara_llms.py,sha256=H1M9OaDvD8_GCFRBm6IdvWejYKn-zm3-Rzt_noCBbiQ,2496
18
- tests/test_vhc.py,sha256=oDZzx1AdtDO0K5MHpzrCegw7wfc3h9E0V7boVFoMWXs,1945
19
- tests/test_workflow.py,sha256=FXUM4hKh-La9FRJD0ir2sOiXsvkDFe2kI0r1faRAlMc,3873
20
- vectara_agentic/__init__.py,sha256=CfS3QR4drKygcTcyH5zUUDuXXQ3WZtTCytz8W4-loeE,1077
21
- vectara_agentic/_callback.py,sha256=ueckIfLNa9ykmmEyLqrrZwfDNWrEfyZzJeWktpnkwJQ,12970
22
- vectara_agentic/_observability.py,sha256=c_1WuP8rS9sPuMH6twzcz6CGLqfTT5y4fyOHvDVdxsg,4423
23
- vectara_agentic/_version.py,sha256=tSVqctgqLCPSvb0zkh8BNhEaR1d92yEJqmdCvwJzdKQ,65
24
- vectara_agentic/agent.py,sha256=ga-8Flc01EX6xUhEx-MHArjb8bUeAYlRK_cKioihxdk,38667
25
- vectara_agentic/agent_config.py,sha256=njqEX2qHJjAp2KpNuJglgZhyWXPK74wjIjBPACD6w7w,4074
26
- vectara_agentic/agent_endpoint.py,sha256=E_AF-YwxaKqd1-p43X62e1e4ugwOWKIyNq4RWOfsO7A,7402
27
- vectara_agentic/db_tools.py,sha256=nVZkpGdG63ooGngjX9g7YWyBZRtYMDpvzNasbO696nM,11498
28
- vectara_agentic/llm_utils.py,sha256=s0g04lqQkX27njAKPAM-H0ZFEmohaC0VO7hs_ByaGaQ,7460
29
- vectara_agentic/sub_query_workflow.py,sha256=wm2Lb2wbKrYx5bSq-npb3XbaxWzTcvK5BkW3NZ9vuIc,12968
30
- vectara_agentic/tool_utils.py,sha256=whnQlk9coeIt01sqUnKnzUorefgn96yWqhtRfHxNL84,25921
31
- vectara_agentic/tools.py,sha256=8gmC6UnHFTUr_hWWbuMyRNMMLkeY5Sb1FTgCsb7Hx1w,35689
32
- vectara_agentic/tools_catalog.py,sha256=p6eRram-diJyMz5dZI703auSAm97FfW5wLAMyz_2sB0,4634
33
- vectara_agentic/types.py,sha256=V04L8Man79qI9SmnKhlR3verJjm7yhcEE1RHPq9ADpc,5580
34
- vectara_agentic/utils.py,sha256=R9HitEG5K3Q_p2M_teosT181OUxkhs1-hnj98qDYGbE,2545
35
- vectara_agentic/agent_core/__init__.py,sha256=R3KGbSOiY21FOjbeQ_GyIi6uR9Rz7PTfudO9RjSuEZQ,722
36
- vectara_agentic/agent_core/factory.py,sha256=yIoA-GumyuoUu-tmfAp79v2kAujUj7D7a7d5vx3_kj8,17697
37
- vectara_agentic/agent_core/prompts.py,sha256=JGyAyZyLd__hTuEeBBuCHFdIS1nTIQJZJPGbxRpxY7A,9414
38
- vectara_agentic/agent_core/serialization.py,sha256=Kxa7irtaeOhw2NbPpPkT3R7rKe-imx13XCL1V63eRqI,11634
39
- vectara_agentic/agent_core/streaming.py,sha256=0mN5qpDP9evXOG_vj65GINhmUkbSQsWmGUsVDkNVPFE,18134
40
- vectara_agentic/agent_core/utils/__init__.py,sha256=kLdT0Idw0xhT1zOJIhx13T4qsWh01O3taNC7aN2SEI4,958
41
- vectara_agentic/agent_core/utils/hallucination.py,sha256=KG-ELY9ZzCwBjj4KMyncPkgvEg190Pw2D612O9fHE-Q,7037
42
- vectara_agentic/agent_core/utils/logging.py,sha256=-Ll8iUelml92WuhNWScuY6H-RheyZOTBHNxXQ1UGy0M,1701
43
- vectara_agentic/agent_core/utils/prompt_formatting.py,sha256=C0WqmSHZ-r_asRi2mkMsFOlqrOVrmADqNudidS6CU3s,1801
44
- vectara_agentic/agent_core/utils/schemas.py,sha256=e7xhJBevgK7IM8cRT5hoO67T-Ep_FhNGp72Zo0OC_Jo,2853
45
- vectara_agentic/agent_core/utils/tools.py,sha256=k9Gm-UUQ3ZeGxrkjyrjmjcGxOkvnpylcm_Krnr-0fsY,4748
46
- vectara_agentic-0.4.0.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
47
- vectara_agentic-0.4.0.dist-info/METADATA,sha256=BAILIhLZFOZAo71UTsWlzDPnUGfmq8nhJDRfAwzEgEc,33857
48
- vectara_agentic-0.4.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
49
- vectara_agentic-0.4.0.dist-info/top_level.txt,sha256=Y7TQTFdOYGYodQRltUGRieZKIYuzeZj2kHqAUpfCUfg,22
50
- vectara_agentic-0.4.0.dist-info/RECORD,,