vectara-agentic 0.1.14__py3-none-any.whl → 0.1.16__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vectara-agentic might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: vectara_agentic
3
- Version: 0.1.14
3
+ Version: 0.1.16
4
4
  Summary: A Python package for creating AI Assistants and AI Agents with Vectara
5
5
  Home-page: https://github.com/vectara/py-vectara-agentic
6
6
  Author: Ofer Mendelevitch
@@ -16,17 +16,17 @@ Classifier: Topic :: Software Development :: Libraries :: Python Modules
16
16
  Requires-Python: >=3.10
17
17
  Description-Content-Type: text/markdown
18
18
  License-File: LICENSE
19
- Requires-Dist: llama-index==0.11.13
19
+ Requires-Dist: llama-index==0.11.18
20
20
  Requires-Dist: llama-index-indices-managed-vectara==0.2.2
21
21
  Requires-Dist: llama-index-agent-llm-compiler==0.2.0
22
22
  Requires-Dist: llama-index-agent-openai==0.3.4
23
- Requires-Dist: llama-index-llms-openai==0.2.9
24
- Requires-Dist: llama-index-llms-anthropic==0.3.1
23
+ Requires-Dist: llama-index-llms-openai==0.2.15
24
+ Requires-Dist: llama-index-llms-anthropic==0.3.6
25
25
  Requires-Dist: llama-index-llms-together==0.2.0
26
26
  Requires-Dist: llama-index-llms-groq==0.2.0
27
- Requires-Dist: llama-index-llms-fireworks==0.2.0
28
- Requires-Dist: llama-index-llms-cohere==0.3.0
29
- Requires-Dist: llama-index-llms-gemini==0.3.5
27
+ Requires-Dist: llama-index-llms-fireworks==0.2.2
28
+ Requires-Dist: llama-index-llms-cohere==0.3.1
29
+ Requires-Dist: llama-index-llms-gemini==0.3.7
30
30
  Requires-Dist: llama-index-tools-yahoo-finance==0.2.0
31
31
  Requires-Dist: llama-index-tools-arxiv==0.2.0
32
32
  Requires-Dist: llama-index-tools-database==0.2.0
@@ -46,7 +46,7 @@ Requires-Dist: python-dotenv==1.0.1
46
46
  Requires-Dist: tiktoken==0.7.0
47
47
  Requires-Dist: dill==0.3.8
48
48
 
49
- # <img src=".github/assets/Vectara-logo.png" alt="Vectara Logo" width="30" height="30" style="vertical-align: middle;"> vectara-agentic
49
+ # <img src="https://raw.githubusercontent.com/vectara/py-vectara-agentic/main/.github/assets/Vectara-logo.png" alt="Vectara Logo" width="30" height="30" style="vertical-align: middle;"> vectara-agentic
50
50
 
51
51
  <p align="center">
52
52
  <a href="https://vectara.github.io/vectara-agentic-docs">Documentation</a> ·
@@ -68,13 +68,29 @@ Requires-Dist: dill==0.3.8
68
68
 
69
69
  ## ✨ Overview
70
70
 
71
- `vectara-agentic` is a Python library for developing powerful AI assistants using Vectara and Agentic-RAG. It leverages the LlamaIndex Agent framework, customized for use with Vectara.
71
+ `vectara-agentic` is a Python library for developing powerful AI assistants and agents using Vectara and Agentic-RAG. It leverages the LlamaIndex Agent framework, customized for use with Vectara.
72
72
 
73
- ### Key Features
73
+ <p align="center">
74
+ <img src="https://raw.githubusercontent.com/vectara/py-vectara-agentic/main/.github/assets/diagram1.png" alt="Agentic RAG diagram" width="100%" style="vertical-align: middle;">
75
+ </p>
76
+
77
+ ### Features
74
78
 
79
+ - Enables easy creation of custom AI assistants and agents.
80
+ - Create a Vectara RAG tool with a single line of code.
75
81
  - Supports `ReAct`, `OpenAIAgent` and `LLMCompiler` agent types.
76
82
  - Includes pre-built tools for various domains (e.g., finance, legal).
77
- - Enables easy creation of custom AI assistants and agents.
83
+ - Integrates with various LLM inference services like OpenAI, Anthropic, Gemini, GROQ, Together.AI, Cohere and Fireworks
84
+ - Built-in support for observability with Arize Phoenix
85
+
86
+ ### 📚 Example AI Assistants
87
+
88
+ Check out our example AI assistants:
89
+
90
+ - [Financial Assistant](https://huggingface.co/spaces/vectara/finance-chat)
91
+ - [Justice Harvard Teaching Assistant](https://huggingface.co/spaces/vectara/Justice-Harvard)
92
+ - [Legal Assistant](https://huggingface.co/spaces/vectara/legal-agent)
93
+
78
94
 
79
95
  ### Prerequisites
80
96
 
@@ -197,7 +213,15 @@ When creating a VectaraToolFactory, you can pass in a `vectara_api_key`, `vectar
197
213
 
198
214
  ## ℹ️ Additional Information
199
215
 
200
- ### Agent Diagnostics
216
+ ### About Custom Instructions for your Agent
217
+
218
+ The custom instructions you provide to the agent guide its behavior.
219
+ Here are some guidelines when creating your instructions:
220
+ - Write precise and clear instructions, without overcomplicating.
221
+ - Consider edge cases and unusual or atypical scenarios.
222
+ - Be cautious to not over-specify behavior based on your primary use-case, as it may limit the agent's ability to behave properly in others.
223
+
224
+ ### Diagnostics
201
225
 
202
226
  The `Agent` class defines a few helpful methods to help you understand the internals of your application.
203
227
  * The `report()` method prints out the agent object’s type, the tools, and the LLMs used for the main agent and tool calling.
@@ -224,21 +248,43 @@ Then you can use Arize Phoenix in three ways:
224
248
  Now when you run your agent, all call traces are sent to Phoenix and recorded.
225
249
  In addition, vectara-agentic also records `FCS` (factual consistency score, aka HHEM) values into Arize for every Vectara RAG call. You can see those results in the `Feedback` column of the arize UI.
226
250
 
227
- ### About Custom Instructions
251
+ ## 🌐 API Endpoint
228
252
 
229
- The custom instructions you provide to the agent guide its behavior.
230
- Here are some guidelines when creating your instructions:
231
- - Write precise and clear instructions, without overcomplicating.
232
- - Consider edge cases and unusual or atypical scenarios.
233
- - Be cautious to not over-specify behavior based on your primary use-case, as it may limit the agent's ability to behave properly in others.
253
+ `vectara-agentic` can be easily hosted locally or on a remote machine behind an API endpoint, by following theses steps:
234
254
 
235
- ## 📚 Examples
255
+ ### Step 1: Setup your API key
256
+ Ensure that you have your API key set up as an environment variable:
236
257
 
237
- Check out our example AI assistants:
258
+ ```
259
+ export VECTARA_AGENTIC_API_KEY=<YOUR-ENDPOINT-API-KEY>
260
+ ```
238
261
 
239
- - [Financial Assistant](https://huggingface.co/spaces/vectara/finance-chat)
240
- - [Justice Harvard Teaching Assistant](https://huggingface.co/spaces/vectara/Justice-Harvard)
241
- - [Legal Assistant](https://huggingface.co/spaces/vectara/legal-agent)
262
+ ### Step 2: Start the API Server
263
+ Initialize the agent and start the FastAPI server by following this example:
264
+
265
+
266
+ ```
267
+ from agent import Agent
268
+ from agent_endpoint import start_app
269
+ agent = Agent(...) # Initialize your agent with appropriate parameters
270
+ start_app(agent)
271
+ ```
272
+
273
+ You can customize the host and port by passing them as arguments to `start_app()`:
274
+ * Default: host="0.0.0.0" and port=8000.
275
+ For example:
276
+ ```
277
+ start_app(agent, host="0.0.0.0", port=8000)
278
+ ```
279
+
280
+ ### Step 3: Access the API Endpoint
281
+ Once the server is running, you can interact with it using curl or any HTTP client. For example:
282
+
283
+ ```
284
+ curl -G "http://<remote-server-ip>:8000/chat" \
285
+ --data-urlencode "message=What is Vectara?" \
286
+ -H "X-API-Key: <YOUR-API-KEY>"
287
+ ```
242
288
 
243
289
  ## 🤝 Contributing
244
290
 
@@ -0,0 +1,18 @@
1
+ tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ tests/test_agent.py,sha256=aQYYr_8hKlFiDgyI5Dd39TG5vkmDJe7F_nIzMTCLsTQ,2517
3
+ tests/test_tools.py,sha256=hDAlXkWKuXHnAjeQwMuTLTwNdRsM-xR7muBzFkZRefw,2942
4
+ vectara_agentic/__init__.py,sha256=ZlASMUqOFi5HTDFaRUEB3Egf_nUuUtr1X-TjPkZceLc,508
5
+ vectara_agentic/_callback.py,sha256=EexD7-Qx2lZuQk4kjzwvIJAyfIzroWKz2VaVPD4TTkM,4621
6
+ vectara_agentic/_observability.py,sha256=v0xxTk8KI8nVK2rpyGqOVhyva9ymqOmZK5brKqFOwMM,3828
7
+ vectara_agentic/_prompts.py,sha256=CxSKueS4lF130VMSovFKeapTM9DZ8Ja4akEFIw7q0Ks,5670
8
+ vectara_agentic/agent.py,sha256=9nzPVb16wpeT5RiWQJiO5LuR9VTYp8yScKUqqgem7h8,19963
9
+ vectara_agentic/agent_endpoint.py,sha256=I3zTEezbAiNeW5I41r0NjIaR8Ucn4oe1XVcALekakaA,1959
10
+ vectara_agentic/tools.py,sha256=_rXEK9tuuDMM_Zf04AoehklydTMSb1esqEYkNjLvmyY,20103
11
+ vectara_agentic/tools_catalog.py,sha256=CpFTTyocsTu-Sx8KjqSsZZhLditSrV-vRZd2YMFU0AY,4940
12
+ vectara_agentic/types.py,sha256=FbZXc5oPje6kdimfrksDc8F-tYHSLK8ReAv7O291YkI,1131
13
+ vectara_agentic/utils.py,sha256=7DgzU_hZIODrzuEfP8HP7l2dO9zEt8BObhO2tCTijow,3819
14
+ vectara_agentic-0.1.16.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
15
+ vectara_agentic-0.1.16.dist-info/METADATA,sha256=QYMmXzZBZwLvgr9rcx4dt0aE-upuJ3mqlJi7v5vt0T0,13595
16
+ vectara_agentic-0.1.16.dist-info/WHEEL,sha256=OVMc5UfuAQiSplgO0_WdW7vXVGAt9Hdd6qtN4HotdyA,91
17
+ vectara_agentic-0.1.16.dist-info/top_level.txt,sha256=Y7TQTFdOYGYodQRltUGRieZKIYuzeZj2kHqAUpfCUfg,22
18
+ vectara_agentic-0.1.16.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.1.0)
2
+ Generator: setuptools (75.2.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,17 +0,0 @@
1
- tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- tests/test_agent.py,sha256=aQYYr_8hKlFiDgyI5Dd39TG5vkmDJe7F_nIzMTCLsTQ,2517
3
- tests/test_tools.py,sha256=hDAlXkWKuXHnAjeQwMuTLTwNdRsM-xR7muBzFkZRefw,2942
4
- vectara_agentic/__init__.py,sha256=Byj1d6B-DWzwa-vvRsbh4dcfHDgH5AnP-AUaBFLi7c0,449
5
- vectara_agentic/_callback.py,sha256=oRbGfSZtoG6UZA0LLbHtoUd1b3v7ACoc_CvIcHQOSqM,4670
6
- vectara_agentic/_observability.py,sha256=6QGcVGt5mf0IXTS5EMZ6jUGCqZwZ6DGeTtPFnOnGSKg,3694
7
- vectara_agentic/_prompts.py,sha256=BhvNiGcmkt7aIf888FtG4Pum-ZEh--pbqtTp70ZISoY,4729
8
- vectara_agentic/agent.py,sha256=DBTAVup0lZe-gG_nCXzxcdtX7XUDSeW7dAg7eNsAQac,18414
9
- vectara_agentic/tools.py,sha256=HMXvCcEqXszlidoFigEutuk-7WlJlkeG_fc6Jr_gG_A,19455
10
- vectara_agentic/tools_catalog.py,sha256=qojmqmA3DGYzA0mdeS0vycCh7w_R-3RMoV56lyYrbhw,5519
11
- vectara_agentic/types.py,sha256=SGkqKusZC6RpRnWdD2YSUq4uMQ3B4jP6qBWehPmeOdI,1132
12
- vectara_agentic/utils.py,sha256=TY0EHZ1vyc_xNKJoJYGdIce21_M3tQI50Hjumv-eOII,3797
13
- vectara_agentic-0.1.14.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
14
- vectara_agentic-0.1.14.dist-info/METADATA,sha256=_OpYgV5AkGZerUdZ34YweTU9SW4uPsAp87AgNofq4RE,12014
15
- vectara_agentic-0.1.14.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
16
- vectara_agentic-0.1.14.dist-info/top_level.txt,sha256=Y7TQTFdOYGYodQRltUGRieZKIYuzeZj2kHqAUpfCUfg,22
17
- vectara_agentic-0.1.14.dist-info/RECORD,,