vec-inf 0.6.1__py3-none-any.whl → 0.7.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vec_inf/README.md +18 -4
- vec_inf/cli/_cli.py +191 -34
- vec_inf/cli/_helper.py +95 -14
- vec_inf/client/_client_vars.py +7 -165
- vec_inf/client/_helper.py +386 -40
- vec_inf/client/_slurm_script_generator.py +204 -36
- vec_inf/client/_slurm_templates.py +248 -0
- vec_inf/client/_slurm_vars.py +86 -0
- vec_inf/client/_utils.py +189 -70
- vec_inf/client/api.py +96 -25
- vec_inf/client/config.py +40 -19
- vec_inf/client/models.py +44 -4
- vec_inf/config/README.md +4 -243
- vec_inf/config/environment.yaml +35 -0
- vec_inf/config/models.yaml +102 -274
- {vec_inf-0.6.1.dist-info → vec_inf-0.7.1.dist-info}/METADATA +43 -73
- vec_inf-0.7.1.dist-info/RECORD +27 -0
- vec_inf/client/slurm_vars.py +0 -49
- vec_inf-0.6.1.dist-info/RECORD +0 -25
- {vec_inf-0.6.1.dist-info → vec_inf-0.7.1.dist-info}/WHEEL +0 -0
- {vec_inf-0.6.1.dist-info → vec_inf-0.7.1.dist-info}/entry_points.txt +0 -0
- {vec_inf-0.6.1.dist-info → vec_inf-0.7.1.dist-info}/licenses/LICENSE +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: vec-inf
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.7.1
|
|
4
4
|
Summary: Efficient LLM inference on Slurm clusters using vLLM.
|
|
5
5
|
Author-email: Marshall Wang <marshall.wang@vectorinstitute.ai>
|
|
6
6
|
License-Expression: MIT
|
|
@@ -14,9 +14,9 @@ Requires-Dist: rich>=13.7.0
|
|
|
14
14
|
Provides-Extra: dev
|
|
15
15
|
Requires-Dist: cupy-cuda12x==12.1.0; extra == 'dev'
|
|
16
16
|
Requires-Dist: ray>=2.40.0; extra == 'dev'
|
|
17
|
-
Requires-Dist: torch>=2.
|
|
17
|
+
Requires-Dist: torch>=2.7.0; extra == 'dev'
|
|
18
18
|
Requires-Dist: vllm-nccl-cu12<2.19,>=2.18; extra == 'dev'
|
|
19
|
-
Requires-Dist: vllm>=0.
|
|
19
|
+
Requires-Dist: vllm>=0.10.0; extra == 'dev'
|
|
20
20
|
Requires-Dist: xgrammar>=0.1.11; extra == 'dev'
|
|
21
21
|
Description-Content-Type: text/markdown
|
|
22
22
|
|
|
@@ -29,10 +29,12 @@ Description-Content-Type: text/markdown
|
|
|
29
29
|
[](https://github.com/VectorInstitute/vector-inference/actions/workflows/code_checks.yml)
|
|
30
30
|
[](https://github.com/VectorInstitute/vector-inference/actions/workflows/docs.yml)
|
|
31
31
|
[](https://app.codecov.io/github/VectorInstitute/vector-inference/tree/main)
|
|
32
|
-
[](https://docs.vllm.ai/en/v0.10.1.1/)
|
|
33
33
|

|
|
34
34
|
|
|
35
|
-
This repository provides an easy-to-use solution to run inference servers on [Slurm](https://slurm.schedmd.com/overview.html)-managed computing clusters using [vLLM](https://docs.vllm.ai/en/latest/). **
|
|
35
|
+
This repository provides an easy-to-use solution to run inference servers on [Slurm](https://slurm.schedmd.com/overview.html)-managed computing clusters using [vLLM](https://docs.vllm.ai/en/latest/). **This package runs natively on the Vector Institute cluster environments**. To adapt to other environments, follow the instructions in [Installation](#installation).
|
|
36
|
+
|
|
37
|
+
**NOTE**: Supported models on Killarney are tracked [here](./MODEL_TRACKING.md)
|
|
36
38
|
|
|
37
39
|
## Installation
|
|
38
40
|
If you are using the Vector cluster environment, and you don't need any customization to the inference server environment, run the following to install package:
|
|
@@ -40,7 +42,12 @@ If you are using the Vector cluster environment, and you don't need any customiz
|
|
|
40
42
|
```bash
|
|
41
43
|
pip install vec-inf
|
|
42
44
|
```
|
|
43
|
-
Otherwise, we recommend using the provided [`Dockerfile`](Dockerfile) to set up your own environment with the package. The latest image has `vLLM` version `0.
|
|
45
|
+
Otherwise, we recommend using the provided [`Dockerfile`](Dockerfile) to set up your own environment with the package. The latest image has `vLLM` version `0.10.1.1`.
|
|
46
|
+
|
|
47
|
+
If you'd like to use `vec-inf` on your own Slurm cluster, you would need to update the configuration files, there are 3 ways to do it:
|
|
48
|
+
* Clone the repository and update the `environment.yaml` and the `models.yaml` file in [`vec_inf/config`](vec_inf/config/), then install from source by running `pip install .`.
|
|
49
|
+
* The package would try to look for cached configuration files in your environment before using the default configuration. The default cached configuration directory path points to `/model-weights/vec-inf-shared`, you would need to create an `environment.yaml` and a `models.yaml` following the format of these files in [`vec_inf/config`](vec_inf/config/).
|
|
50
|
+
* The package would also look for an enviroment variable `VEC_INF_CONFIG_DIR`. You can put your `environment.yaml` and `models.yaml` in a directory of your choice and set the enviroment variable `VEC_INF_CONFIG_DIR` to point to that location.
|
|
44
51
|
|
|
45
52
|
## Usage
|
|
46
53
|
|
|
@@ -57,78 +64,22 @@ vec-inf launch Meta-Llama-3.1-8B-Instruct
|
|
|
57
64
|
```
|
|
58
65
|
You should see an output like the following:
|
|
59
66
|
|
|
60
|
-
<img width="
|
|
61
|
-
|
|
67
|
+
<img width="720" alt="launch_image" src="https://github.com/user-attachments/assets/c1e0c60c-cf7a-49ed-a426-fdb38ebf88ee" />
|
|
62
68
|
|
|
63
|
-
|
|
69
|
+
**NOTE**: You can set the required fields in the environment configuration (`environment.yaml`), it's a mapping between required arguments and their corresponding environment variables. On the Vector **Killarney** Cluster environment, the required fields are:
|
|
70
|
+
* `--account`, `-A`: The Slurm account, this argument can be set to default by setting environment variable `VEC_INF_ACCOUNT`.
|
|
71
|
+
* `--work-dir`, `-D`: A working directory other than your home directory, this argument can be set to default by seeting environment variable `VEC_INF_WORK_DIR`.
|
|
64
72
|
|
|
65
|
-
Models that are already supported by `vec-inf` would be launched using the cached configuration (set in [slurm_vars.py](vec_inf/client/slurm_vars.py)) or [default configuration](vec_inf/config/models.yaml). You can override these values by providing additional parameters. Use `vec-inf launch --help` to see the full list of parameters that can be
|
|
66
|
-
overriden. For example, if `qos` is to be overriden:
|
|
67
|
-
|
|
68
|
-
```bash
|
|
69
|
-
vec-inf launch Meta-Llama-3.1-8B-Instruct --qos <new_qos>
|
|
70
|
-
```
|
|
71
|
-
|
|
72
|
-
To overwrite default vLLM engine arguments, you can specify the engine arguments in a comma separated string:
|
|
73
|
-
|
|
74
|
-
```bash
|
|
75
|
-
vec-inf launch Meta-Llama-3.1-8B-Instruct --vllm-args '--max-model-len=65536,--compilation-config=3'
|
|
76
|
-
```
|
|
77
|
-
|
|
78
|
-
For the full list of vLLM engine arguments, you can find them [here](https://docs.vllm.ai/en/stable/serving/engine_args.html), make sure you select the correct vLLM version.
|
|
79
|
-
|
|
80
|
-
#### Custom models
|
|
81
|
-
|
|
82
|
-
You can also launch your own custom model as long as the model architecture is [supported by vLLM](https://docs.vllm.ai/en/stable/models/supported_models.html), and make sure to follow the instructions below:
|
|
83
|
-
* Your model weights directory naming convention should follow `$MODEL_FAMILY-$MODEL_VARIANT` ($MODEL_VARIANT is OPTIONAL).
|
|
84
|
-
* Your model weights directory should contain HuggingFace format weights.
|
|
85
|
-
* You should specify your model configuration by:
|
|
86
|
-
* Creating a custom configuration file for your model and specify its path via setting the environment variable `VEC_INF_CONFIG`. Check the [default parameters](vec_inf/config/models.yaml) file for the format of the config file. All the parameters for the model should be specified in that config file.
|
|
87
|
-
* Using launch command options to specify your model setup.
|
|
88
|
-
* For other model launch parameters you can reference the default values for similar models using the [`list` command ](#list-command).
|
|
89
|
-
|
|
90
|
-
Here is an example to deploy a custom [Qwen2.5-7B-Instruct-1M](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct-1M) model which is not
|
|
91
|
-
supported in the default list of models using a user custom config. In this case, the model weights are assumed to be downloaded to
|
|
92
|
-
a `model-weights` directory inside the user's home directory. The weights directory of the model follows the naming convention so it
|
|
93
|
-
would be named `Qwen2.5-7B-Instruct-1M`. The following yaml file would need to be created, lets say it is named `/h/<username>/my-model-config.yaml`.
|
|
94
|
-
|
|
95
|
-
```yaml
|
|
96
|
-
models:
|
|
97
|
-
Qwen2.5-7B-Instruct-1M:
|
|
98
|
-
model_family: Qwen2.5
|
|
99
|
-
model_variant: 7B-Instruct-1M
|
|
100
|
-
model_type: LLM
|
|
101
|
-
gpus_per_node: 1
|
|
102
|
-
num_nodes: 1
|
|
103
|
-
vocab_size: 152064
|
|
104
|
-
qos: m2
|
|
105
|
-
time: 08:00:00
|
|
106
|
-
partition: a40
|
|
107
|
-
model_weights_parent_dir: /h/<username>/model-weights
|
|
108
|
-
vllm_args:
|
|
109
|
-
--max-model-len: 1010000
|
|
110
|
-
--max-num-seqs: 256
|
|
111
|
-
--compilation-config: 3
|
|
112
|
-
```
|
|
113
|
-
|
|
114
|
-
You would then set the `VEC_INF_CONFIG` path using:
|
|
115
|
-
|
|
116
|
-
```bash
|
|
117
|
-
export VEC_INF_CONFIG=/h/<username>/my-model-config.yaml
|
|
118
|
-
```
|
|
119
|
-
|
|
120
|
-
**NOTE**
|
|
121
|
-
* There are other parameters that can also be added to the config but not shown in this example, check the [`ModelConfig`](vec_inf/client/config.py) for details.
|
|
122
|
-
* Check [vLLM Engine Arguments](https://docs.vllm.ai/en/stable/serving/engine_args.html) for the full list of available vLLM engine arguments, the default parallel size for any parallelization is default to 1, so none of the sizes were set specifically in this example
|
|
123
|
-
* For GPU partitions with non-Ampere architectures, e.g. `rtx6000`, `t4v2`, BF16 isn't supported. For models that have BF16 as the default type, when using a non-Ampere GPU, use FP16 instead, i.e. `--dtype: float16`
|
|
124
|
-
* Setting `--compilation-config` to `3` currently breaks multi-node model launches, so we don't set them for models that require multiple nodes of GPUs.
|
|
73
|
+
Models that are already supported by `vec-inf` would be launched using the cached configuration (set in [slurm_vars.py](vec_inf/client/slurm_vars.py)) or [default configuration](vec_inf/config/models.yaml). You can override these values by providing additional parameters. Use `vec-inf launch --help` to see the full list of parameters that can be overriden. You can also launch your own custom model as long as the model architecture is [supported by vLLM](https://docs.vllm.ai/en/stable/models/supported_models.html). For detailed instructions on how to customize your model launch, check out the [`launch` command section in User Guide](https://vectorinstitute.github.io/vector-inference/latest/user_guide/#launch-command)
|
|
125
74
|
|
|
126
75
|
#### Other commands
|
|
127
76
|
|
|
128
|
-
* `
|
|
77
|
+
* `batch-launch`: Launch multiple model inference servers at once, currently ONLY single node models supported,
|
|
78
|
+
* `status`: Check the model status by providing its Slurm job ID.
|
|
129
79
|
* `metrics`: Streams performance metrics to the console.
|
|
130
80
|
* `shutdown`: Shutdown a model by providing its Slurm job ID.
|
|
131
|
-
* `list`: List all available model names, or view the default/cached configuration of a specific model
|
|
81
|
+
* `list`: List all available model names, or view the default/cached configuration of a specific model.
|
|
82
|
+
* `cleanup`: Remove old log directories, use `--help` to see the supported filters. Use `--dry-run` to preview what would be deleted.
|
|
132
83
|
|
|
133
84
|
For more details on the usage of these commands, refer to the [User Guide](https://vectorinstitute.github.io/vector-inference/user_guide/)
|
|
134
85
|
|
|
@@ -139,11 +90,17 @@ Example:
|
|
|
139
90
|
```python
|
|
140
91
|
>>> from vec_inf.api import VecInfClient
|
|
141
92
|
>>> client = VecInfClient()
|
|
93
|
+
>>> # Assume VEC_INF_ACCOUNT and VEC_INF_WORK_DIR is set
|
|
142
94
|
>>> response = client.launch_model("Meta-Llama-3.1-8B-Instruct")
|
|
143
95
|
>>> job_id = response.slurm_job_id
|
|
144
96
|
>>> status = client.get_status(job_id)
|
|
145
97
|
>>> if status.status == ModelStatus.READY:
|
|
146
98
|
... print(f"Model is ready at {status.base_url}")
|
|
99
|
+
>>> # Alternatively, use wait_until_ready which will either return a StatusResponse or throw a ServerError
|
|
100
|
+
>>> try:
|
|
101
|
+
>>> status = wait_until_ready(job_id)
|
|
102
|
+
>>> except ServerError as e:
|
|
103
|
+
>>> print(f"Model launch failed: {e}")
|
|
147
104
|
>>> client.shutdown_model(job_id)
|
|
148
105
|
```
|
|
149
106
|
|
|
@@ -194,6 +151,19 @@ Once the inference server is ready, you can start sending in inference requests.
|
|
|
194
151
|
## SSH tunnel from your local device
|
|
195
152
|
If you want to run inference from your local device, you can open a SSH tunnel to your cluster environment like the following:
|
|
196
153
|
```bash
|
|
197
|
-
ssh -L 8081:
|
|
154
|
+
ssh -L 8081:10.1.1.29:8081 username@v.vectorinstitute.ai -N
|
|
155
|
+
```
|
|
156
|
+
The example provided above is for the Vector Killarney cluster, change the variables accordingly for your environment. The IP address for the compute nodes on Killarney follow `10.1.1.XX` pattern, where `XX` is the GPU number (`kn029` -> `29` in this example).
|
|
157
|
+
|
|
158
|
+
## Reference
|
|
159
|
+
If you found Vector Inference useful in your research or applications, please cite using the following BibTeX template:
|
|
160
|
+
```
|
|
161
|
+
@software{vector_inference,
|
|
162
|
+
title = {Vector Inference: Efficient LLM inference on Slurm clusters using vLLM},
|
|
163
|
+
author = {Wang, Marshall},
|
|
164
|
+
organization = {Vector Institute},
|
|
165
|
+
year = {<YEAR_OF_RELEASE>},
|
|
166
|
+
version = {<VERSION_TAG>},
|
|
167
|
+
url = {https://github.com/VectorInstitute/vector-inference}
|
|
168
|
+
}
|
|
198
169
|
```
|
|
199
|
-
Where the last number in the URL is the GPU number (gpu029 in this case). The example provided above is for the vector cluster, change the variables accordingly for your environment
|
|
@@ -0,0 +1,27 @@
|
|
|
1
|
+
vec_inf/README.md,sha256=WyvjbSs5Eh5fp8u66bgOaO3FQKP2U7m_HbLgqTHs_ng,1322
|
|
2
|
+
vec_inf/__init__.py,sha256=bHwSIz9lebYuxIemni-lP0h3gwJHVbJnwExQKGJWw_Q,23
|
|
3
|
+
vec_inf/find_port.sh,sha256=bGQ6LYSFVSsfDIGatrSg5YvddbZfaPL0R-Bjo4KYD6I,1088
|
|
4
|
+
vec_inf/cli/__init__.py,sha256=5XIvGQCOnaGl73XMkwetjC-Ul3xuXGrWDXdYJ3aUzvU,27
|
|
5
|
+
vec_inf/cli/_cli.py,sha256=xrYce8iP2Wo5dNflvUO2gIfkyjA4V_V8mpiaxnMDwkk,15813
|
|
6
|
+
vec_inf/cli/_helper.py,sha256=Jr9NnMhGflkx3YEfYCN1rMHQgUzMAAwlSx_BLH92tVM,16511
|
|
7
|
+
vec_inf/cli/_utils.py,sha256=23vSbmvNOWY1-W1aOAwYqNDkDDmx-5UVlCiXAtxUZ8A,1057
|
|
8
|
+
vec_inf/cli/_vars.py,sha256=V6DrJs_BuUa4yNcbBSSnMwpcyXwEBsizy3D0ubIg2fA,777
|
|
9
|
+
vec_inf/client/__init__.py,sha256=OLlUJ4kL1R-Kh-nXNbvKlAZ3mtHcnozHprVufkVCNWk,739
|
|
10
|
+
vec_inf/client/_client_vars.py,sha256=1D-bX9dS0-pFImLvgWt2hUnwJiz-VaxuLb2HIfPML8I,2408
|
|
11
|
+
vec_inf/client/_exceptions.py,sha256=94Nx_5k1SriJNXzbdnwyXFZolyMutydU08Gsikawzzo,749
|
|
12
|
+
vec_inf/client/_helper.py,sha256=P8A9JHRMzxJRl0dgTuv9xfOluEV3BthUM1KzQlWkR7E,35752
|
|
13
|
+
vec_inf/client/_slurm_script_generator.py,sha256=d2NowdKMQR1lsVI_hw9ObKC3uSk8YJr75ZYRMkvp0RA,13354
|
|
14
|
+
vec_inf/client/_slurm_templates.py,sha256=TAH-wQV4gP2CCwxP3BmShebohtSmlMstlJT9QK6n4Dc,8277
|
|
15
|
+
vec_inf/client/_slurm_vars.py,sha256=sgP__XhpE1K7pvOzVFmotUXmINYPcOuFP-zGaePT5Iw,2910
|
|
16
|
+
vec_inf/client/_utils.py,sha256=XamAz8-AJELgkXHrR082ptTsbHSiWI47SY6MlXA44rU,12593
|
|
17
|
+
vec_inf/client/api.py,sha256=pkgNE37r7LzYBDjRGAKAh7rhOUMKHGwghJh6Hfb45TI,11681
|
|
18
|
+
vec_inf/client/config.py,sha256=VU4h2iqL0rxYAqGw2HBF_l6QvvSDJy5M79IgX5G2PW4,5830
|
|
19
|
+
vec_inf/client/models.py,sha256=qxLxsVoEhxNkuCmtABqs8In5erkwTZDK0wih7U2_U38,7296
|
|
20
|
+
vec_inf/config/README.md,sha256=TvZOqZyTUaAFr71hC7GVgg6QUw80AXREyq8wS4D-F30,528
|
|
21
|
+
vec_inf/config/environment.yaml,sha256=oEDp85hUERJO9NNn4wYhcgunnmkln50GNHDzG_3isMw,678
|
|
22
|
+
vec_inf/config/models.yaml,sha256=vzAOqEu6M_lXput83MAhNzj-aNGSBzjbC6LydOmNqxk,26248
|
|
23
|
+
vec_inf-0.7.1.dist-info/METADATA,sha256=CJEnzc3VLXxJ_00I1ubtwNNZQjvafddxlJyoi_bSwpo,10047
|
|
24
|
+
vec_inf-0.7.1.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
25
|
+
vec_inf-0.7.1.dist-info/entry_points.txt,sha256=uNRXjCuJSR2nveEqD3IeMznI9oVI9YLZh5a24cZg6B0,49
|
|
26
|
+
vec_inf-0.7.1.dist-info/licenses/LICENSE,sha256=mq8zeqpvVSF1EsxmydeXcokt8XnEIfSofYn66S2-cJI,1073
|
|
27
|
+
vec_inf-0.7.1.dist-info/RECORD,,
|
vec_inf/client/slurm_vars.py
DELETED
|
@@ -1,49 +0,0 @@
|
|
|
1
|
-
"""Slurm cluster configuration variables."""
|
|
2
|
-
|
|
3
|
-
from pathlib import Path
|
|
4
|
-
|
|
5
|
-
from typing_extensions import Literal
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
CACHED_CONFIG = Path("/", "model-weights", "vec-inf-shared", "models_latest.yaml")
|
|
9
|
-
LD_LIBRARY_PATH = "/scratch/ssd001/pkgs/cudnn-11.7-v8.5.0.96/lib/:/scratch/ssd001/pkgs/cuda-11.7/targets/x86_64-linux/lib/"
|
|
10
|
-
SINGULARITY_IMAGE = "/model-weights/vec-inf-shared/vector-inference_latest.sif"
|
|
11
|
-
SINGULARITY_LOAD_CMD = "module load singularity-ce/3.8.2"
|
|
12
|
-
VLLM_NCCL_SO_PATH = "/vec-inf/nccl/libnccl.so.2.18.1"
|
|
13
|
-
MAX_GPUS_PER_NODE = 8
|
|
14
|
-
MAX_NUM_NODES = 16
|
|
15
|
-
MAX_CPUS_PER_TASK = 128
|
|
16
|
-
|
|
17
|
-
QOS = Literal[
|
|
18
|
-
"normal",
|
|
19
|
-
"m",
|
|
20
|
-
"m2",
|
|
21
|
-
"m3",
|
|
22
|
-
"m4",
|
|
23
|
-
"m5",
|
|
24
|
-
"long",
|
|
25
|
-
"deadline",
|
|
26
|
-
"high",
|
|
27
|
-
"scavenger",
|
|
28
|
-
"llm",
|
|
29
|
-
"a100",
|
|
30
|
-
]
|
|
31
|
-
|
|
32
|
-
PARTITION = Literal[
|
|
33
|
-
"a40",
|
|
34
|
-
"a100",
|
|
35
|
-
"t4v1",
|
|
36
|
-
"t4v2",
|
|
37
|
-
"rtx6000",
|
|
38
|
-
]
|
|
39
|
-
|
|
40
|
-
DEFAULT_ARGS = {
|
|
41
|
-
"cpus_per_task": 16,
|
|
42
|
-
"mem_per_node": "64G",
|
|
43
|
-
"qos": "m2",
|
|
44
|
-
"time": "08:00:00",
|
|
45
|
-
"partition": "a40",
|
|
46
|
-
"data_type": "auto",
|
|
47
|
-
"log_dir": "~/.vec-inf-logs",
|
|
48
|
-
"model_weights_parent_dir": "/model-weights",
|
|
49
|
-
}
|
vec_inf-0.6.1.dist-info/RECORD
DELETED
|
@@ -1,25 +0,0 @@
|
|
|
1
|
-
vec_inf/README.md,sha256=3ocJHfV3kRftXFUCdHw3B-p4QQlXuNqkHnjPPNkCgfM,543
|
|
2
|
-
vec_inf/__init__.py,sha256=bHwSIz9lebYuxIemni-lP0h3gwJHVbJnwExQKGJWw_Q,23
|
|
3
|
-
vec_inf/find_port.sh,sha256=bGQ6LYSFVSsfDIGatrSg5YvddbZfaPL0R-Bjo4KYD6I,1088
|
|
4
|
-
vec_inf/cli/__init__.py,sha256=5XIvGQCOnaGl73XMkwetjC-Ul3xuXGrWDXdYJ3aUzvU,27
|
|
5
|
-
vec_inf/cli/_cli.py,sha256=pqZeQr5WxAsV7KSYcUnx_mRL7RnHWk1zf9CcW_ct5uI,10663
|
|
6
|
-
vec_inf/cli/_helper.py,sha256=i1QvJeIT3z7me6bv2Vot5c3NY555Dgo3q8iRlxhOlZ4,13047
|
|
7
|
-
vec_inf/cli/_utils.py,sha256=23vSbmvNOWY1-W1aOAwYqNDkDDmx-5UVlCiXAtxUZ8A,1057
|
|
8
|
-
vec_inf/cli/_vars.py,sha256=V6DrJs_BuUa4yNcbBSSnMwpcyXwEBsizy3D0ubIg2fA,777
|
|
9
|
-
vec_inf/client/__init__.py,sha256=OLlUJ4kL1R-Kh-nXNbvKlAZ3mtHcnozHprVufkVCNWk,739
|
|
10
|
-
vec_inf/client/_client_vars.py,sha256=KG-xImVIzJH3aj5nMUzT9w9LpH-7YGrOew6N77Fj0Js,7638
|
|
11
|
-
vec_inf/client/_exceptions.py,sha256=94Nx_5k1SriJNXzbdnwyXFZolyMutydU08Gsikawzzo,749
|
|
12
|
-
vec_inf/client/_helper.py,sha256=DcEFogbrSb4A8Kc2zixNZNL4nt4iswPk2n5blZgwEWQ,22338
|
|
13
|
-
vec_inf/client/_slurm_script_generator.py,sha256=XYCsadCLDEu9KrrjrNCNgoc0ITmjys9u7yWR9PkFAos,6376
|
|
14
|
-
vec_inf/client/_utils.py,sha256=1dB2O1neEhZNk6MJbBybLQm42vsmEevA2TI0F_kGi0o,8796
|
|
15
|
-
vec_inf/client/api.py,sha256=TYn4lP5Ene8MEuXWYo6ZbGYw9aPnaMlT32SH7jLCifM,9605
|
|
16
|
-
vec_inf/client/config.py,sha256=lPVHwiaGZjKd5M9G7vcsk3DMausFP_telq3JQngBkH8,5080
|
|
17
|
-
vec_inf/client/models.py,sha256=qjocUa5egJTVeVF3962kYOecs1dTaEb2e6TswkYFXM0,6141
|
|
18
|
-
vec_inf/client/slurm_vars.py,sha256=lroK41L4gEVVZNxxE3bEpbKsdMwnH79-7iCKd4zWEa4,1069
|
|
19
|
-
vec_inf/config/README.md,sha256=OlgnD_Ojei_xLkNyS7dGvYMFUzQFqjVRVw0V-QMk_3g,17863
|
|
20
|
-
vec_inf/config/models.yaml,sha256=xImSOjG9yL6LqqYkSLL7_wBZhqKM10-eFaQJ82gP4ig,29420
|
|
21
|
-
vec_inf-0.6.1.dist-info/METADATA,sha256=0YHT8rhEZINfmMF1hQBqU0HBpRbwX-1IeqY_Mla4g28,10682
|
|
22
|
-
vec_inf-0.6.1.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
23
|
-
vec_inf-0.6.1.dist-info/entry_points.txt,sha256=uNRXjCuJSR2nveEqD3IeMznI9oVI9YLZh5a24cZg6B0,49
|
|
24
|
-
vec_inf-0.6.1.dist-info/licenses/LICENSE,sha256=mq8zeqpvVSF1EsxmydeXcokt8XnEIfSofYn66S2-cJI,1073
|
|
25
|
-
vec_inf-0.6.1.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|