vec-inf 0.4.1__py3-none-any.whl → 0.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -4,15 +4,10 @@
4
4
  #SBATCH --exclusive
5
5
  #SBATCH --tasks-per-node=1
6
6
 
7
- # Load CUDA, change to the cuda version on your environment if different
8
- source /opt/lmod/lmod/init/profile
9
- module load cuda-12.3
10
- nvidia-smi
11
-
12
7
  source ${SRC_DIR}/find_port.sh
13
8
 
14
9
  if [ "$VENV_BASE" = "singularity" ]; then
15
- export SINGULARITY_IMAGE=/projects/aieng/public/vector-inference_latest.sif
10
+ export SINGULARITY_IMAGE=/model-weights/vec-inf-shared/vector-inference_latest.sif
16
11
  export VLLM_NCCL_SO_PATH=/vec-inf/nccl/libnccl.so.2.18.1
17
12
  module load singularity-ce/3.8.2
18
13
  singularity exec $SINGULARITY_IMAGE ray stop
@@ -36,13 +31,13 @@ echo "IP Head: $ip_head"
36
31
  echo "Starting HEAD at $head_node"
37
32
  if [ "$VENV_BASE" = "singularity" ]; then
38
33
  srun --nodes=1 --ntasks=1 -w "$head_node" \
39
- singularity exec --nv --bind ${MODEL_WEIGHTS_PARENT_DIR}:${MODEL_WEIGHTS_PARENT_DIR} $SINGULARITY_IMAGE \
34
+ singularity exec --nv --bind ${MODEL_WEIGHTS}:${MODEL_WEIGHTS} $SINGULARITY_IMAGE \
40
35
  ray start --head --node-ip-address="$head_node_ip" --port=$head_node_port \
41
- --num-cpus "${SLURM_CPUS_PER_TASK}" --num-gpus "${NUM_GPUS}" --block &
36
+ --num-cpus "${SLURM_CPUS_PER_TASK}" --num-gpus "${SLURM_GPUS_PER_NODE}" --block &
42
37
  else
43
38
  srun --nodes=1 --ntasks=1 -w "$head_node" \
44
39
  ray start --head --node-ip-address="$head_node_ip" --port=$head_node_port \
45
- --num-cpus "${SLURM_CPUS_PER_TASK}" --num-gpus "${NUM_GPUS}" --block &
40
+ --num-cpus "${SLURM_CPUS_PER_TASK}" --num-gpus "${SLURM_GPUS_PER_NODE}" --block &
46
41
  fi
47
42
 
48
43
  # Starting the Ray worker nodes
@@ -57,13 +52,13 @@ for ((i = 1; i <= worker_num; i++)); do
57
52
  echo "Starting WORKER $i at $node_i"
58
53
  if [ "$VENV_BASE" = "singularity" ]; then
59
54
  srun --nodes=1 --ntasks=1 -w "$node_i" \
60
- singularity exec --nv --bind ${MODEL_WEIGHTS_PARENT_DIR}:${MODEL_WEIGHTS_PARENT_DIR} $SINGULARITY_IMAGE \
55
+ singularity exec --nv --bind ${MODEL_WEIGHTS}:${MODEL_WEIGHTS} $SINGULARITY_IMAGE \
61
56
  ray start --address "$ip_head" \
62
- --num-cpus "${SLURM_CPUS_PER_TASK}" --num-gpus "${NUM_GPUS}" --block &
57
+ --num-cpus "${SLURM_CPUS_PER_TASK}" --num-gpus "${SLURM_GPUS_PER_NODE}" --block &
63
58
  else
64
59
  srun --nodes=1 --ntasks=1 -w "$node_i" \
65
60
  ray start --address "$ip_head" \
66
- --num-cpus "${SLURM_CPUS_PER_TASK}" --num-gpus "${NUM_GPUS}" --block &
61
+ --num-cpus "${SLURM_CPUS_PER_TASK}" --num-gpus "${SLURM_GPUS_PER_NODE}" --block &
67
62
  fi
68
63
 
69
64
  sleep 5
@@ -72,14 +67,21 @@ done
72
67
 
73
68
  vllm_port_number=$(find_available_port $head_node_ip 8080 65535)
74
69
 
75
- echo "Server address: http://${head_node_ip}:${vllm_port_number}/v1"
70
+ SERVER_ADDR="http://${head_node_ip}:${vllm_port_number}/v1"
71
+ echo "Server address: $SERVER_ADDR"
72
+
73
+ jq --arg server_addr "$SERVER_ADDR" \
74
+ '. + {"server_address": $server_addr}' \
75
+ "$LOG_DIR/$MODEL_NAME.$SLURM_JOB_ID/$MODEL_NAME.$SLURM_JOB_ID.json" > temp.json \
76
+ && mv temp.json "$LOG_DIR/$MODEL_NAME.$SLURM_JOB_ID/$MODEL_NAME.$SLURM_JOB_ID.json" \
77
+ && rm temp.json
76
78
 
77
79
  if [ "$PIPELINE_PARALLELISM" = "True" ]; then
78
- export PIPELINE_PARALLEL_SIZE=$NUM_NODES
79
- export TENSOR_PARALLEL_SIZE=$NUM_GPUS
80
+ export PIPELINE_PARALLEL_SIZE=$SLURM_JOB_NUM_NODES
81
+ export TENSOR_PARALLEL_SIZE=$SLURM_GPUS_PER_NODE
80
82
  else
81
83
  export PIPELINE_PARALLEL_SIZE=1
82
- export TENSOR_PARALLEL_SIZE=$((NUM_NODES*NUM_GPUS))
84
+ export TENSOR_PARALLEL_SIZE=$((SLURM_JOB_NUM_NODES*SLURM_GPUS_PER_NODE))
83
85
  fi
84
86
 
85
87
  if [ "$ENFORCE_EAGER" = "True" ]; then
@@ -88,37 +90,65 @@ else
88
90
  export ENFORCE_EAGER=""
89
91
  fi
90
92
 
93
+ if [ "$ENABLE_PREFIX_CACHING" = "True" ]; then
94
+ export ENABLE_PREFIX_CACHING="--enable-prefix-caching"
95
+ else
96
+ export ENABLE_PREFIX_CACHING=""
97
+ fi
98
+
99
+ if [ "$ENABLE_CHUNKED_PREFILL" = "True" ]; then
100
+ export ENABLE_CHUNKED_PREFILL="--enable-chunked-prefill"
101
+ else
102
+ export ENABLE_CHUNKED_PREFILL=""
103
+ fi
104
+
105
+ if [ -z "$MAX_NUM_BATCHED_TOKENS" ]; then
106
+ export MAX_NUM_BATCHED_TOKENS=""
107
+ else
108
+ export MAX_NUM_BATCHED_TOKENS="--max-num-batched-tokens=$MAX_NUM_BATCHED_TOKENS"
109
+ fi
110
+
91
111
  # Activate vllm venv
92
112
  if [ "$VENV_BASE" = "singularity" ]; then
93
- singularity exec --nv --bind ${MODEL_WEIGHTS_PARENT_DIR}:${MODEL_WEIGHTS_PARENT_DIR} $SINGULARITY_IMAGE \
113
+ singularity exec --nv --bind ${MODEL_WEIGHTS}:${MODEL_WEIGHTS} $SINGULARITY_IMAGE \
94
114
  python3.10 -m vllm.entrypoints.openai.api_server \
95
- --model ${VLLM_MODEL_WEIGHTS} \
96
- --served-model-name ${JOB_NAME} \
115
+ --model ${MODEL_WEIGHTS} \
116
+ --served-model-name ${MODEL_NAME} \
97
117
  --host "0.0.0.0" \
98
118
  --port ${vllm_port_number} \
99
119
  --pipeline-parallel-size ${PIPELINE_PARALLEL_SIZE} \
100
120
  --tensor-parallel-size ${TENSOR_PARALLEL_SIZE} \
101
- --dtype ${VLLM_DATA_TYPE} \
121
+ --dtype ${DATA_TYPE} \
102
122
  --trust-remote-code \
103
- --max-logprobs ${VLLM_MAX_LOGPROBS} \
104
- --max-model-len ${VLLM_MAX_MODEL_LEN} \
105
- --max-num-seqs ${VLLM_MAX_NUM_SEQS} \
106
- --task ${VLLM_TASK} \
123
+ --max-logprobs ${MAX_LOGPROBS} \
124
+ --max-model-len ${MAX_MODEL_LEN} \
125
+ --max-num-seqs ${MAX_NUM_SEQS} \
126
+ --gpu-memory-utilization ${GPU_MEMORY_UTILIZATION} \
127
+ --compilation-config ${COMPILATION_CONFIG} \
128
+ --task ${TASK} \
129
+ ${MAX_NUM_BATCHED_TOKENS} \
130
+ ${ENABLE_PREFIX_CACHING} \
131
+ ${ENABLE_CHUNKED_PREFILL} \
107
132
  ${ENFORCE_EAGER}
108
133
  else
109
134
  source ${VENV_BASE}/bin/activate
110
135
  python3 -m vllm.entrypoints.openai.api_server \
111
- --model ${VLLM_MODEL_WEIGHTS} \
112
- --served-model-name ${JOB_NAME} \
136
+ --model ${MODEL_WEIGHTS} \
137
+ --served-model-name ${MODEL_NAME} \
113
138
  --host "0.0.0.0" \
114
139
  --port ${vllm_port_number} \
115
140
  --pipeline-parallel-size ${PIPELINE_PARALLEL_SIZE} \
116
141
  --tensor-parallel-size ${TENSOR_PARALLEL_SIZE} \
117
- --dtype ${VLLM_DATA_TYPE} \
142
+ --dtype ${DATA_TYPE} \
118
143
  --trust-remote-code \
119
- --max-logprobs ${VLLM_MAX_LOGPROBS} \
120
- --max-model-len ${VLLM_MAX_MODEL_LEN} \
121
- --max-num-seqs ${VLLM_MAX_NUM_SEQS} \
122
- --task ${VLLM_TASK} \
144
+ --max-logprobs ${MAX_LOGPROBS} \
145
+ --max-model-len ${MAX_MODEL_LEN} \
146
+ --max-num-seqs ${MAX_NUM_SEQS} \
147
+ --gpu-memory-utilization ${GPU_MEMORY_UTILIZATION} \
148
+ --compilation-config ${COMPILATION_CONFIG} \
149
+ --task ${TASK} \
150
+ ${MAX_NUM_BATCHED_TOKENS} \
151
+ ${ENABLE_PREFIX_CACHING} \
152
+ ${ENABLE_CHUNKED_PREFILL} \
123
153
  ${ENFORCE_EAGER}
124
154
  fi
vec_inf/vllm.slurm CHANGED
@@ -2,18 +2,20 @@
2
2
  #SBATCH --cpus-per-task=16
3
3
  #SBATCH --mem=64G
4
4
 
5
- # Load CUDA, change to the cuda version on your environment if different
6
- source /opt/lmod/lmod/init/profile
7
- module load cuda-12.3
8
- nvidia-smi
9
-
10
5
  source ${SRC_DIR}/find_port.sh
11
6
 
12
7
  # Write server url to file
13
8
  hostname=${SLURMD_NODENAME}
14
9
  vllm_port_number=$(find_available_port $hostname 8080 65535)
15
10
 
16
- echo "Server address: http://${hostname}:${vllm_port_number}/v1"
11
+ SERVER_ADDR="http://${hostname}:${vllm_port_number}/v1"
12
+ echo "Server address: $SERVER_ADDR"
13
+
14
+ jq --arg server_addr "$SERVER_ADDR" \
15
+ '. + {"server_address": $server_addr}' \
16
+ "$LOG_DIR/$MODEL_NAME.$SLURM_JOB_ID/$MODEL_NAME.$SLURM_JOB_ID.json" > temp.json \
17
+ && mv temp.json "$LOG_DIR/$MODEL_NAME.$SLURM_JOB_ID/$MODEL_NAME.$SLURM_JOB_ID.json" \
18
+ && rm temp.json
17
19
 
18
20
  if [ "$ENFORCE_EAGER" = "True" ]; then
19
21
  export ENFORCE_EAGER="--enforce-eager"
@@ -21,39 +23,68 @@ else
21
23
  export ENFORCE_EAGER=""
22
24
  fi
23
25
 
26
+ if [ "$ENABLE_PREFIX_CACHING" = "True" ]; then
27
+ export ENABLE_PREFIX_CACHING="--enable-prefix-caching"
28
+ else
29
+ export ENABLE_PREFIX_CACHING=""
30
+ fi
31
+
32
+ if [ "$ENABLE_CHUNKED_PREFILL" = "True" ]; then
33
+ export ENABLE_CHUNKED_PREFILL="--enable-chunked-prefill"
34
+ else
35
+ export ENABLE_CHUNKED_PREFILL=""
36
+ fi
37
+
38
+ if [ -z "$MAX_NUM_BATCHED_TOKENS" ]; then
39
+ export MAX_NUM_BATCHED_TOKENS=""
40
+ else
41
+ export MAX_NUM_BATCHED_TOKENS="--max-num-batched-tokens=$MAX_NUM_BATCHED_TOKENS"
42
+ fi
43
+
24
44
  # Activate vllm venv
25
45
  if [ "$VENV_BASE" = "singularity" ]; then
26
- export SINGULARITY_IMAGE=/projects/aieng/public/vector-inference_latest.sif
46
+ export SINGULARITY_IMAGE=/model-weights/vec-inf-shared/vector-inference_latest.sif
27
47
  export VLLM_NCCL_SO_PATH=/vec-inf/nccl/libnccl.so.2.18.1
28
48
  module load singularity-ce/3.8.2
29
49
  singularity exec $SINGULARITY_IMAGE ray stop
30
- singularity exec --nv --bind ${MODEL_WEIGHTS_PARENT_DIR}:${MODEL_WEIGHTS_PARENT_DIR} $SINGULARITY_IMAGE \
50
+ singularity exec --nv --bind ${MODEL_WEIGHTS}:${MODEL_WEIGHTS} $SINGULARITY_IMAGE \
31
51
  python3.10 -m vllm.entrypoints.openai.api_server \
32
- --model ${VLLM_MODEL_WEIGHTS} \
33
- --served-model-name ${JOB_NAME} \
52
+ --model ${MODEL_WEIGHTS} \
53
+ --served-model-name ${MODEL_NAME} \
34
54
  --host "0.0.0.0" \
35
55
  --port ${vllm_port_number} \
36
- --tensor-parallel-size ${NUM_GPUS} \
37
- --dtype ${VLLM_DATA_TYPE} \
38
- --max-logprobs ${VLLM_MAX_LOGPROBS} \
56
+ --tensor-parallel-size ${SLURM_GPUS_PER_NODE} \
57
+ --dtype ${DATA_TYPE} \
58
+ --max-logprobs ${MAX_LOGPROBS} \
39
59
  --trust-remote-code \
40
- --max-model-len ${VLLM_MAX_MODEL_LEN} \
41
- --max-num-seqs ${VLLM_MAX_NUM_SEQS} \
42
- --task ${VLLM_TASK} \
60
+ --max-model-len ${MAX_MODEL_LEN} \
61
+ --max-num-seqs ${MAX_NUM_SEQS} \
62
+ --gpu-memory-utilization ${GPU_MEMORY_UTILIZATION} \
63
+ --compilation-config ${COMPILATION_CONFIG} \
64
+ --task ${TASK} \
65
+ ${MAX_NUM_BATCHED_TOKENS} \
66
+ ${ENABLE_PREFIX_CACHING} \
67
+ ${ENABLE_CHUNKED_PREFILL} \
43
68
  ${ENFORCE_EAGER}
69
+
44
70
  else
45
71
  source ${VENV_BASE}/bin/activate
46
72
  python3 -m vllm.entrypoints.openai.api_server \
47
- --model ${VLLM_MODEL_WEIGHTS} \
48
- --served-model-name ${JOB_NAME} \
73
+ --model ${MODEL_WEIGHTS} \
74
+ --served-model-name ${MODEL_NAME} \
49
75
  --host "0.0.0.0" \
50
76
  --port ${vllm_port_number} \
51
- --tensor-parallel-size ${NUM_GPUS} \
52
- --dtype ${VLLM_DATA_TYPE} \
53
- --max-logprobs ${VLLM_MAX_LOGPROBS} \
77
+ --tensor-parallel-size ${SLURM_GPUS_PER_NODE} \
78
+ --dtype ${DATA_TYPE} \
79
+ --max-logprobs ${MAX_LOGPROBS} \
54
80
  --trust-remote-code \
55
- --max-model-len ${VLLM_MAX_MODEL_LEN} \
56
- --max-num-seqs ${VLLM_MAX_NUM_SEQS} \
57
- --task ${VLLM_TASK} \
81
+ --max-model-len ${MAX_MODEL_LEN} \
82
+ --max-num-seqs ${MAX_NUM_SEQS} \
83
+ --gpu-memory-utilization ${GPU_MEMORY_UTILIZATION} \
84
+ --compilation-config ${COMPILATION_CONFIG} \
85
+ --task ${TASK} \
86
+ ${MAX_NUM_BATCHED_TOKENS} \
87
+ ${ENABLE_PREFIX_CACHING} \
88
+ ${ENABLE_CHUNKED_PREFILL} \
58
89
  ${ENFORCE_EAGER}
59
90
  fi
@@ -0,0 +1,210 @@
1
+ Metadata-Version: 2.4
2
+ Name: vec-inf
3
+ Version: 0.5.0
4
+ Summary: Efficient LLM inference on Slurm clusters using vLLM.
5
+ Author-email: Marshall Wang <marshall.wang@vectorinstitute.ai>
6
+ License-Expression: MIT
7
+ License-File: LICENSE
8
+ Requires-Python: >=3.10
9
+ Requires-Dist: click>=8.1.0
10
+ Requires-Dist: pydantic>=2.10.6
11
+ Requires-Dist: pyyaml>=6.0.2
12
+ Requires-Dist: requests>=2.31.0
13
+ Requires-Dist: rich>=13.7.0
14
+ Provides-Extra: dev
15
+ Requires-Dist: cupy-cuda12x==12.1.0; extra == 'dev'
16
+ Requires-Dist: ray>=2.40.0; extra == 'dev'
17
+ Requires-Dist: torch>=2.5.1; extra == 'dev'
18
+ Requires-Dist: vllm-nccl-cu12<2.19,>=2.18; extra == 'dev'
19
+ Requires-Dist: vllm>=0.7.3; extra == 'dev'
20
+ Requires-Dist: xgrammar>=0.1.11; extra == 'dev'
21
+ Description-Content-Type: text/markdown
22
+
23
+ # Vector Inference: Easy inference on Slurm clusters
24
+
25
+ ----------------------------------------------------
26
+
27
+ [![PyPI](https://img.shields.io/pypi/v/vec-inf)](https://pypi.org/project/vec-inf)
28
+ [![code checks](https://github.com/VectorInstitute/vector-inference/actions/workflows/code_checks.yml/badge.svg)](https://github.com/VectorInstitute/vector-inference/actions/workflows/code_checks.yml)
29
+ [![docs](https://github.com/VectorInstitute/vector-inference/actions/workflows/docs_deploy.yml/badge.svg)](https://github.com/VectorInstitute/vector-inference/actions/workflows/docs_deploy.yml)
30
+ [![codecov](https://codecov.io/github/VectorInstitute/vector-inference/branch/develop/graph/badge.svg?token=NI88QSIGAC)](https://app.codecov.io/github/VectorInstitute/vector-inference/tree/develop)
31
+ ![GitHub License](https://img.shields.io/github/license/VectorInstitute/vector-inference)
32
+
33
+ This repository provides an easy-to-use solution to run inference servers on [Slurm](https://slurm.schedmd.com/overview.html)-managed computing clusters using [vLLM](https://docs.vllm.ai/en/latest/). **All scripts in this repository runs natively on the Vector Institute cluster environment**. To adapt to other environments, update the environment variables in [`cli/_helper.py`](vec_inf/cli/_helper.py), [`cli/_config.py`](vec_inf/cli/_config.py), [`vllm.slurm`](vec_inf/vllm.slurm), [`multinode_vllm.slurm`](vec_inf/multinode_vllm.slurm) and [`models.yaml`](vec_inf/config/models.yaml) accordingly.
34
+
35
+ ## Installation
36
+ If you are using the Vector cluster environment, and you don't need any customization to the inference server environment, run the following to install package:
37
+
38
+ ```bash
39
+ pip install vec-inf
40
+ ```
41
+ Otherwise, we recommend using the provided [`Dockerfile`](Dockerfile) to set up your own environment with the package
42
+
43
+ ## Usage
44
+
45
+ ### `launch` command
46
+
47
+ The `launch` command allows users to deploy a model as a slurm job. If the job successfully launches, a URL endpoint is exposed for the user to send requests for inference.
48
+
49
+ We will use the Llama 3.1 model as example, to launch an OpenAI compatible inference server for Meta-Llama-3.1-8B-Instruct, run:
50
+
51
+ ```bash
52
+ vec-inf launch Meta-Llama-3.1-8B-Instruct
53
+ ```
54
+ You should see an output like the following:
55
+
56
+ <img width="600" alt="launch_img" src="https://github.com/user-attachments/assets/883e6a5b-8016-4837-8fdf-39097dfb18bf">
57
+
58
+
59
+ #### Overrides
60
+
61
+ Models that are already supported by `vec-inf` would be launched using the cached configuration or [default configuration](vec_inf/config/models.yaml). You can override these values by providing additional parameters. Use `vec-inf launch --help` to see the full list of parameters that can be
62
+ overriden. For example, if `qos` is to be overriden:
63
+
64
+ ```bash
65
+ vec-inf launch Meta-Llama-3.1-8B-Instruct --qos <new_qos>
66
+ ```
67
+
68
+ #### Custom models
69
+
70
+ You can also launch your own custom model as long as the model architecture is [supported by vLLM](https://docs.vllm.ai/en/stable/models/supported_models.html), and make sure to follow the instructions below:
71
+ * Your model weights directory naming convention should follow `$MODEL_FAMILY-$MODEL_VARIANT` ($MODEL_VARIANT is OPTIONAL).
72
+ * Your model weights directory should contain HuggingFace format weights.
73
+ * You should specify your model configuration by:
74
+ * Creating a custom configuration file for your model and specify its path via setting the environment variable `VEC_INF_CONFIG`. Check the [default parameters](vec_inf/config/models.yaml) file for the format of the config file. All the parameters for the model should be specified in that config file.
75
+ * Using launch command options to specify your model setup.
76
+ * For other model launch parameters you can reference the default values for similar models using the [`list` command ](#list-command).
77
+
78
+ Here is an example to deploy a custom [Qwen2.5-7B-Instruct-1M](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct-1M) model which is not
79
+ supported in the default list of models using a user custom config. In this case, the model weights are assumed to be downloaded to
80
+ a `model-weights` directory inside the user's home directory. The weights directory of the model follows the naming convention so it
81
+ would be named `Qwen2.5-7B-Instruct-1M`. The following yaml file would need to be created, lets say it is named `/h/<username>/my-model-config.yaml`.
82
+
83
+ ```yaml
84
+ models:
85
+ Qwen2.5-7B-Instruct-1M:
86
+ model_family: Qwen2.5
87
+ model_variant: 7B-Instruct-1M
88
+ model_type: LLM
89
+ gpus_per_node: 1
90
+ num_nodes: 1
91
+ vocab_size: 152064
92
+ max_model_len: 1010000
93
+ max_num_seqs: 256
94
+ pipeline_parallelism: true
95
+ enforce_eager: false
96
+ qos: m2
97
+ time: 08:00:00
98
+ partition: a40
99
+ model_weights_parent_dir: /h/<username>/model-weights
100
+ ```
101
+
102
+ You would then set the `VEC_INF_CONFIG` path using:
103
+
104
+ ```bash
105
+ export VEC_INF_CONFIG=/h/<username>/my-model-config.yaml
106
+ ```
107
+
108
+ Note that there are other parameters that can also be added to the config but not shown in this example, such as `data_type` and `log_dir`.
109
+
110
+ ### `status` command
111
+ You can check the inference server status by providing the Slurm job ID to the `status` command:
112
+ ```bash
113
+ vec-inf status 15373800
114
+ ```
115
+
116
+ If the server is pending for resources, you should see an output like this:
117
+
118
+ <img width="400" alt="status_pending_img" src="https://github.com/user-attachments/assets/b659c302-eae1-4560-b7a9-14eb3a822a2f">
119
+
120
+ When the server is ready, you should see an output like this:
121
+
122
+ <img width="400" alt="status_ready_img" src="https://github.com/user-attachments/assets/672986c2-736c-41ce-ac7c-1fb585cdcb0d">
123
+
124
+ There are 5 possible states:
125
+
126
+ * **PENDING**: Job submitted to Slurm, but not executed yet. Job pending reason will be shown.
127
+ * **LAUNCHING**: Job is running but the server is not ready yet.
128
+ * **READY**: Inference server running and ready to take requests.
129
+ * **FAILED**: Inference server in an unhealthy state. Job failed reason will be shown.
130
+ * **SHUTDOWN**: Inference server is shutdown/cancelled.
131
+
132
+ Note that the base URL is only available when model is in `READY` state, and if you've changed the Slurm log directory path, you also need to specify it when using the `status` command.
133
+
134
+ ### `metrics` command
135
+ Once your server is ready, you can check performance metrics by providing the Slurm job ID to the `metrics` command:
136
+ ```bash
137
+ vec-inf metrics 15373800
138
+ ```
139
+
140
+ And you will see the performance metrics streamed to your console, note that the metrics are updated with a 2-second interval.
141
+
142
+ <img width="400" alt="metrics_img" src="https://github.com/user-attachments/assets/3ee143d0-1a71-4944-bbd7-4c3299bf0339">
143
+
144
+ ### `shutdown` command
145
+ Finally, when you're finished using a model, you can shut it down by providing the Slurm job ID:
146
+ ```bash
147
+ vec-inf shutdown 15373800
148
+
149
+ > Shutting down model with Slurm Job ID: 15373800
150
+ ```
151
+
152
+ ### `list` command
153
+ You call view the full list of available models by running the `list` command:
154
+ ```bash
155
+ vec-inf list
156
+ ```
157
+ <img width="940" alt="list_img" src="https://github.com/user-attachments/assets/8cf901c4-404c-4398-a52f-0486f00747a3">
158
+
159
+ NOTE: The above screenshot does not represent the full list of models supported.
160
+
161
+ You can also view the default setup for a specific supported model by providing the model name, for example `Meta-Llama-3.1-70B-Instruct`:
162
+ ```bash
163
+ vec-inf list Meta-Llama-3.1-70B-Instruct
164
+ ```
165
+ <img width="500" alt="list_model_img" src="https://github.com/user-attachments/assets/34e53937-2d86-443e-85f6-34e408653ddb">
166
+
167
+ `launch`, `list`, and `status` command supports `--json-mode`, where the command output would be structured as a JSON string.
168
+
169
+ ## Send inference requests
170
+ Once the inference server is ready, you can start sending in inference requests. We provide example scripts for sending inference requests in [`examples`](examples) folder. Make sure to update the model server URL and the model weights location in the scripts. For example, you can run `python examples/inference/llm/chat_completions.py`, and you should expect to see an output like the following:
171
+
172
+ ```json
173
+ {
174
+ "id":"chatcmpl-387c2579231948ffaf66cdda5439d3dc",
175
+ "choices": [
176
+ {
177
+ "finish_reason":"stop",
178
+ "index":0,
179
+ "logprobs":null,
180
+ "message": {
181
+ "content":"Arrr, I be Captain Chatbeard, the scurviest chatbot on the seven seas! Ye be wantin' to know me identity, eh? Well, matey, I be a swashbucklin' AI, here to provide ye with answers and swappin' tales, savvy?",
182
+ "role":"assistant",
183
+ "function_call":null,
184
+ "tool_calls":[],
185
+ "reasoning_content":null
186
+ },
187
+ "stop_reason":null
188
+ }
189
+ ],
190
+ "created":1742496683,
191
+ "model":"Meta-Llama-3.1-8B-Instruct",
192
+ "object":"chat.completion",
193
+ "system_fingerprint":null,
194
+ "usage": {
195
+ "completion_tokens":66,
196
+ "prompt_tokens":32,
197
+ "total_tokens":98,
198
+ "prompt_tokens_details":null
199
+ },
200
+ "prompt_logprobs":null
201
+ }
202
+ ```
203
+ **NOTE**: For multimodal models, currently only `ChatCompletion` is available, and only one image can be provided for each prompt.
204
+
205
+ ## SSH tunnel from your local device
206
+ If you want to run inference from your local device, you can open a SSH tunnel to your cluster environment like the following:
207
+ ```bash
208
+ ssh -L 8081:172.17.8.29:8081 username@v.vectorinstitute.ai -N
209
+ ```
210
+ Where the last number in the URL is the GPU number (gpu029 in this case). The example provided above is for the vector cluster, change the variables accordingly for your environment
@@ -0,0 +1,17 @@
1
+ vec_inf/README.md,sha256=dxX0xKfwLioG0mJ2YFv5JJ5q1m5NlWBrVBOap1wuHfQ,624
2
+ vec_inf/__init__.py,sha256=bHwSIz9lebYuxIemni-lP0h3gwJHVbJnwExQKGJWw_Q,23
3
+ vec_inf/find_port.sh,sha256=bGQ6LYSFVSsfDIGatrSg5YvddbZfaPL0R-Bjo4KYD6I,1088
4
+ vec_inf/multinode_vllm.slurm,sha256=V01ayfgObPdxbQqhYvCbNIx0zqpLurDxZhS0UHYNFi0,5210
5
+ vec_inf/vllm.slurm,sha256=VMMTdVUOtX4-Yv43yzgKiEpE56fMwuR0KOLf3Dar_S0,2884
6
+ vec_inf/cli/__init__.py,sha256=5XIvGQCOnaGl73XMkwetjC-Ul3xuXGrWDXdYJ3aUzvU,27
7
+ vec_inf/cli/_cli.py,sha256=8Gk4NRbrY2-3EX0S8_-1UOmGfahzqX0A2sJNVcL7OL8,6525
8
+ vec_inf/cli/_config.py,sha256=pb2ERbxZoRZBa9Ie7-jlzyQiiXYZgqUetbw13Blryho,2841
9
+ vec_inf/cli/_helper.py,sha256=9niBuFoaJfeP2yRHKcrkia4rwCZbAfoz-4s2MVCwA9w,26871
10
+ vec_inf/cli/_utils.py,sha256=i3mffIJ-wBVpe3pz0mYa2W5J42yNRmUG2tQwABhQJDQ,5365
11
+ vec_inf/config/README.md,sha256=3MYYY3hGw7jiMR5A8CMdBkhGFobcdH3Kip5E2saq_T4,18609
12
+ vec_inf/config/models.yaml,sha256=p__omZEmoF93BtVQXQia43xvPX88ALrBT1tMiY2Bdhk,28787
13
+ vec_inf-0.5.0.dist-info/METADATA,sha256=khBhIsW5hFjrp-ZQFU3wa5htLVkp4CH3JnrhLXeHfss,10228
14
+ vec_inf-0.5.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
15
+ vec_inf-0.5.0.dist-info/entry_points.txt,sha256=uNRXjCuJSR2nveEqD3IeMznI9oVI9YLZh5a24cZg6B0,49
16
+ vec_inf-0.5.0.dist-info/licenses/LICENSE,sha256=mq8zeqpvVSF1EsxmydeXcokt8XnEIfSofYn66S2-cJI,1073
17
+ vec_inf-0.5.0.dist-info/RECORD,,
vec_inf/launch_server.sh DELETED
@@ -1,145 +0,0 @@
1
- #!/bin/bash
2
-
3
- # ================================= Read Named Args ======================================
4
-
5
- while [[ "$#" -gt 0 ]]; do
6
- case $1 in
7
- --model-family) model_family="$2"; shift ;;
8
- --model-variant) model_variant="$2"; shift ;;
9
- --model-type) model_type="$2"; shift ;;
10
- --partition) partition="$2"; shift ;;
11
- --qos) qos="$2"; shift ;;
12
- --time) walltime="$2"; shift ;;
13
- --num-nodes) num_nodes="$2"; shift ;;
14
- --num-gpus) num_gpus="$2"; shift ;;
15
- --max-model-len) max_model_len="$2"; shift ;;
16
- --max-num-seqs) max_num_seqs="$2"; shift ;;
17
- --vocab-size) vocab_size="$2"; shift ;;
18
- --data-type) data_type="$2"; shift ;;
19
- --venv) venv="$2"; shift ;;
20
- --log-dir) log_dir="$2"; shift ;;
21
- --model-weights-parent-dir) model_weights_parent_dir="$2"; shift ;;
22
- --pipeline-parallelism) pipeline_parallelism="$2"; shift ;;
23
- --enforce-eager) enforce_eager="$2"; shift ;;
24
- *) echo "Unknown parameter passed: $1"; exit 1 ;;
25
- esac
26
- shift
27
- done
28
-
29
- required_vars=(model_family model_variant model_type partition qos walltime num_nodes num_gpus max_model_len vocab_size data_type venv log_dir model_weights_parent_dir)
30
-
31
- for var in "$required_vars[@]"; do
32
- if [ -z "$!var" ]; then
33
- echo "Error: Missing required --$var argument."
34
- exit 1
35
- fi
36
- done
37
-
38
- export MODEL_FAMILY=$model_family
39
- export MODEL_VARIANT=$model_variant
40
- export MODEL_TYPE=$model_type
41
- export JOB_PARTITION=$partition
42
- export QOS=$qos
43
- export WALLTIME=$walltime
44
- export NUM_NODES=$num_nodes
45
- export NUM_GPUS=$num_gpus
46
- export VLLM_MAX_MODEL_LEN=$max_model_len
47
- export VLLM_MAX_LOGPROBS=$vocab_size
48
- export VLLM_DATA_TYPE=$data_type
49
- export VENV_BASE=$venv
50
- export LOG_DIR=$log_dir
51
- export MODEL_WEIGHTS_PARENT_DIR=$model_weights_parent_dir
52
-
53
- if [[ "$model_type" == "LLM" || "$model_type" == "VLM" ]]; then
54
- export VLLM_TASK="generate"
55
- elif [ "$model_type" == "Reward_Modeling" ]; then
56
- export VLLM_TASK="reward"
57
- elif [ "$model_type" == "Text_Embedding" ]; then
58
- export VLLM_TASK="embed"
59
- else
60
- echo "Error: Unknown model_type: $model_type"
61
- exit 1
62
- fi
63
-
64
- if [ -n "$max_num_seqs" ]; then
65
- export VLLM_MAX_NUM_SEQS=$max_num_seqs
66
- else
67
- export VLLM_MAX_NUM_SEQS=256
68
- fi
69
-
70
- if [ -n "$pipeline_parallelism" ]; then
71
- export PIPELINE_PARALLELISM=$pipeline_parallelism
72
- else
73
- export PIPELINE_PARALLELISM="False"
74
- fi
75
-
76
- if [ -n "$enforce_eager" ]; then
77
- export ENFORCE_EAGER=$enforce_eager
78
- else
79
- export ENFORCE_EAGER="False"
80
- fi
81
-
82
- # ================================= Set default environment variables ======================================
83
- # Slurm job configuration
84
- export JOB_NAME="$MODEL_FAMILY-$MODEL_VARIANT"
85
- if [ "$JOB_NAME" == "DeepSeek-R1-None" ]; then
86
- export JOB_NAME=$MODEL_FAMILY
87
- fi
88
-
89
- if [ "$LOG_DIR" = "default" ]; then
90
- export LOG_DIR="$HOME/.vec-inf-logs/$MODEL_FAMILY"
91
- fi
92
- mkdir -p $LOG_DIR
93
-
94
- # Model and entrypoint configuration. API Server URL (host, port) are set automatically based on the
95
- # SLURM job
96
- export SRC_DIR="$(dirname "$0")"
97
- export MODEL_DIR="${SRC_DIR}/models/${MODEL_FAMILY}"
98
-
99
- # Variables specific to your working environment, below are examples for the Vector cluster
100
- export VLLM_MODEL_WEIGHTS="${MODEL_WEIGHTS_PARENT_DIR}/${JOB_NAME}"
101
- export LD_LIBRARY_PATH="/scratch/ssd001/pkgs/cudnn-11.7-v8.5.0.96/lib/:/scratch/ssd001/pkgs/cuda-11.7/targets/x86_64-linux/lib/"
102
-
103
-
104
- # ================================ Validate Inputs & Launch Server =================================
105
-
106
- # Set data type to fp16 instead of bf16 for non-Ampere GPUs
107
- fp16_partitions="t4v1 t4v2"
108
-
109
- # choose from 'auto', 'half', 'float16', 'bfloat16', 'float', 'float32'
110
- if [[ $fp16_partitions =~ $JOB_PARTITION ]]; then
111
- export VLLM_DATA_TYPE="float16"
112
- echo "Data type set to due to non-Ampere GPUs used: $VLLM_DATA_TYPE"
113
- fi
114
-
115
- echo Job Name: $JOB_NAME
116
- echo Partition: $JOB_PARTITION
117
- echo Num Nodes: $NUM_NODES
118
- echo GPUs per Node: $NUM_GPUS
119
- echo QOS: $QOS
120
- echo Walltime: $WALLTIME
121
- echo Model Type: $MODEL_TYPE
122
- echo Task: $VLLM_TASK
123
- echo Data Type: $VLLM_DATA_TYPE
124
- echo Max Model Length: $VLLM_MAX_MODEL_LEN
125
- echo Max Num Seqs: $VLLM_MAX_NUM_SEQS
126
- echo Vocabulary Size: $VLLM_MAX_LOGPROBS
127
- echo Pipeline Parallelism: $PIPELINE_PARALLELISM
128
- echo Enforce Eager: $ENFORCE_EAGER
129
- echo Log Directory: $LOG_DIR
130
- echo Model Weights Parent Directory: $MODEL_WEIGHTS_PARENT_DIR
131
-
132
- is_special=""
133
- if [ "$NUM_NODES" -gt 1 ]; then
134
- is_special="multinode_"
135
- fi
136
-
137
- sbatch --job-name $JOB_NAME \
138
- --partition $JOB_PARTITION \
139
- --nodes $NUM_NODES \
140
- --gres gpu:$NUM_GPUS \
141
- --qos $QOS \
142
- --time $WALLTIME \
143
- --output $LOG_DIR/$JOB_NAME.%j.out \
144
- --error $LOG_DIR/$JOB_NAME.%j.err \
145
- $SRC_DIR/${is_special}vllm.slurm