vec-inf 0.4.0.post1__py3-none-any.whl → 0.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
vec_inf/models/models.csv DELETED
@@ -1,73 +0,0 @@
1
- model_name,model_family,model_variant,model_type,num_gpus,num_nodes,vocab_size,max_model_len,max_num_seqs,pipeline_parallelism,enforce_eager,qos,time,partition,data_type,venv,log_dir,model_weights_parent_dir
2
- c4ai-command-r-plus,c4ai-command-r,plus,LLM,4,2,256000,8192,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
3
- c4ai-command-r-plus-08-2024,c4ai-command-r,plus-08-2024,LLM,4,2,256000,65536,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
4
- c4ai-command-r-08-2024,c4ai-command-r,08-2024,LLM,2,1,256000,32768,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
5
- CodeLlama-7b-hf,CodeLlama,7b-hf,LLM,1,1,32000,16384,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
6
- CodeLlama-7b-Instruct-hf,CodeLlama,7b-Instruct-hf,LLM,1,1,32000,16384,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
7
- CodeLlama-13b-hf,CodeLlama,13b-hf,LLM,1,1,32000,16384,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
8
- CodeLlama-13b-Instruct-hf,CodeLlama,13b-Instruct-hf,LLM,1,1,32000,16384,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
9
- CodeLlama-34b-hf,CodeLlama,34b-hf,LLM,2,1,32000,16384,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
10
- CodeLlama-34b-Instruct-hf,CodeLlama,34b-Instruct-hf,LLM,2,1,32000,16384,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
11
- CodeLlama-70b-hf,CodeLlama,70b-hf,LLM,4,1,32000,4096,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
12
- CodeLlama-70b-Instruct-hf,CodeLlama,70b-Instruct-hf,LLM,4,1,32000,4096,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
13
- dbrx-instruct,dbrx,instruct,LLM,4,2,100352,32000,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
14
- gemma-2-9b,gemma-2,9b,LLM,1,1,256000,4096,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
15
- gemma-2-9b-it,gemma-2,9b-it,LLM,1,1,256000,4096,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
16
- gemma-2-27b,gemma-2,27b,LLM,2,1,256000,4096,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
17
- gemma-2-27b-it,gemma-2,27b-it,LLM,2,1,256000,4096,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
18
- Llama-2-7b-hf,Llama-2,7b-hf,LLM,1,1,32000,4096,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
19
- Llama-2-7b-chat-hf,Llama-2,7b-chat-hf,LLM,1,1,32000,4096,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
20
- Llama-2-13b-hf,Llama-2,13b-hf,LLM,1,1,32000,4096,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
21
- Llama-2-13b-chat-hf,Llama-2,13b-chat-hf,LLM,1,1,32000,4096,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
22
- Llama-2-70b-hf,Llama-2,70b-hf,LLM,4,1,32000,4096,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
23
- Llama-2-70b-chat-hf,Llama-2,70b-chat-hf,LLM,4,1,32000,4096,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
24
- llava-1.5-7b-hf,llava-1.5,7b-hf,VLM,1,1,32000,4096,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
25
- llava-1.5-13b-hf,llava-1.5,13b-hf,VLM,1,1,32000,4096,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
26
- llava-v1.6-mistral-7b-hf,llava-v1.6,mistral-7b-hf,VLM,1,1,32064,32768,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
27
- llava-v1.6-34b-hf,llava-v1.6,34b-hf,VLM,2,1,64064,4096,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
28
- Meta-Llama-3-8B,Meta-Llama-3,8B,LLM,1,1,128256,8192,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
29
- Meta-Llama-3-8B-Instruct,Meta-Llama-3,8B-Instruct,LLM,1,1,128256,8192,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
30
- Meta-Llama-3-70B,Meta-Llama-3,70B,LLM,4,1,128256,8192,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
31
- Meta-Llama-3-70B-Instruct,Meta-Llama-3,70B-Instruct,LLM,4,1,128256,8192,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
32
- Meta-Llama-3.1-8B,Meta-Llama-3.1,8B,LLM,1,1,128256,131072,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
33
- Meta-Llama-3.1-8B-Instruct,Meta-Llama-3.1,8B-Instruct,LLM,1,1,128256,131072,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
34
- Meta-Llama-3.1-70B,Meta-Llama-3.1,70B,LLM,4,1,128256,65536,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
35
- Meta-Llama-3.1-70B-Instruct,Meta-Llama-3.1,70B-Instruct,LLM,4,1,128256,65536,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
36
- Meta-Llama-3.1-405B-Instruct,Meta-Llama-3.1,405B-Instruct,LLM,4,8,128256,16384,256,true,false,m4,02:00:00,a40,auto,singularity,default,/model-weights
37
- Mistral-7B-v0.1,Mistral,7B-v0.1,LLM,1,1,32000,32768,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
38
- Mistral-7B-Instruct-v0.1,Mistral,7B-Instruct-v0.1,LLM,1,1,32000,32768,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
39
- Mistral-7B-Instruct-v0.2,Mistral,7B-Instruct-v0.2,LLM,1,1,32000,32768,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
40
- Mistral-7B-v0.3,Mistral,7B-v0.3,LLM,1,1,32768,32768,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
41
- Mistral-7B-Instruct-v0.3,Mistral,7B-Instruct-v0.3,LLM,1,1,32768,32768,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
42
- Mistral-Large-Instruct-2407,Mistral,Large-Instruct-2407,LLM,4,2,32768,32768,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
43
- Mistral-Large-Instruct-2411,Mistral,Large-Instruct-2411,LLM,4,2,32768,32768,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
44
- Mixtral-8x7B-Instruct-v0.1,Mixtral,8x7B-Instruct-v0.1,LLM,4,1,32000,32768,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
45
- Mixtral-8x22B-v0.1,Mixtral,8x22B-v0.1,LLM,4,2,32768,65536,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
46
- Mixtral-8x22B-Instruct-v0.1,Mixtral,8x22B-Instruct-v0.1,LLM,4,2,32768,65536,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
47
- Phi-3-medium-128k-instruct,Phi-3,medium-128k-instruct,LLM,2,1,32064,131072,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
48
- Phi-3-vision-128k-instruct,Phi-3,vision-128k-instruct,VLM,2,1,32064,65536,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
49
- Llama3-OpenBioLLM-70B,Llama3-OpenBioLLM,70B,LLM,4,1,128256,8192,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
50
- Llama-3.1-Nemotron-70B-Instruct-HF,Llama-3.1-Nemotron,70B-Instruct-HF,LLM,4,1,128256,65536,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
51
- Llama-3.2-1B,Llama-3.2,1B,LLM,1,1,128256,131072,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
52
- Llama-3.2-1B-Instruct,Llama-3.2,1B-Instruct,LLM,1,1,128256,131072,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
53
- Llama-3.2-3B,Llama-3.2,3B,LLM,1,1,128256,131072,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
54
- Llama-3.2-3B-Instruct,Llama-3.2,3B-Instruct,LLM,1,1,128256,131072,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
55
- Llama-3.2-11B-Vision,Llama-3.2,11B-Vision,VLM,2,1,128256,4096,64,false,true,m2,08:00:00,a40,auto,singularity,default,/model-weights
56
- Llama-3.2-11B-Vision-Instruct,Llama-3.2,11B-Vision-Instruct,VLM,2,1,128256,4096,64,false,true,m2,08:00:00,a40,auto,singularity,default,/model-weights
57
- Llama-3.2-90B-Vision,Llama-3.2,90B-Vision,VLM,4,2,128256,4096,32,false,true,m2,08:00:00,a40,auto,singularity,default,/model-weights
58
- Llama-3.2-90B-Vision-Instruct,Llama-3.2,90B-Vision-Instruct,VLM,4,2,128256,4096,32,false,true,m2,08:00:00,a40,auto,singularity,default,/model-weights
59
- Qwen2.5-0.5B-Instruct,Qwen2.5,0.5B-Instruct,LLM,1,1,152064,32768,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
60
- Qwen2.5-1.5B-Instruct,Qwen2.5,1.5B-Instruct,LLM,1,1,152064,32768,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
61
- Qwen2.5-3B-Instruct,Qwen2.5,3B-Instruct,LLM,1,1,152064,32768,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
62
- Qwen2.5-7B-Instruct,Qwen2.5,7B-Instruct,LLM,1,1,152064,32768,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
63
- Qwen2.5-14B-Instruct,Qwen2.5,14B-Instruct,LLM,1,1,152064,32768,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
64
- Qwen2.5-32B-Instruct,Qwen2.5,32B-Instruct,LLM,2,1,152064,32768,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
65
- Qwen2.5-72B-Instruct,Qwen2.5,72B-Instruct,LLM,4,1,152064,16384,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
66
- Qwen2.5-Math-1.5B-Instruct,Qwen2.5,Math-1.5B-Instruct,LLM,1,1,152064,32768,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
67
- Qwen2.5-Math-7B-Instruct,Qwen2.5,Math-7B-Instruct,LLM,1,1,152064,32768,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
68
- Qwen2.5-Math-72B-Instruct,Qwen2.5,Math-72B-Instruct,LLM,4,1,152064,16384,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
69
- Qwen2.5-Coder-7B-Instruct,Qwen2.5,Coder-7B-Instruct,LLM,1,1,152064,32768,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
70
- Qwen2.5-Math-RM-72B,Qwen2.5,Math-RM-72B,Reward Modeling,4,1,152064,4096,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
71
- QwQ-32B-Preview,QwQ,32B-Preview,LLM,2,1,152064,32768,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
72
- Pixtral-12B-2409,Pixtral,12B-2409,VLM,1,1,131072,8192,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
73
- e5-mistral-7b-instruct,e5,mistral-7b-instruct,Text Embedding,1,1,32000,4096,256,true,false,m2,08:00:00,a40,auto,singularity,default,/model-weights
@@ -1,120 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: vec-inf
3
- Version: 0.4.0.post1
4
- Summary: Efficient LLM inference on Slurm clusters using vLLM.
5
- License: MIT
6
- Author: Marshall Wang
7
- Author-email: marshall.wang@vectorinstitute.ai
8
- Requires-Python: >=3.10,<4.0
9
- Classifier: License :: OSI Approved :: MIT License
10
- Classifier: Programming Language :: Python :: 3
11
- Classifier: Programming Language :: Python :: 3.10
12
- Classifier: Programming Language :: Python :: 3.11
13
- Classifier: Programming Language :: Python :: 3.12
14
- Classifier: Programming Language :: Python :: 3.13
15
- Provides-Extra: dev
16
- Requires-Dist: click (>=8.1.0,<9.0.0)
17
- Requires-Dist: cupy-cuda12x (==12.1.0) ; extra == "dev"
18
- Requires-Dist: numpy (>=1.24.0,<2.0.0)
19
- Requires-Dist: polars (>=1.15.0,<2.0.0)
20
- Requires-Dist: ray (>=2.9.3,<3.0.0) ; extra == "dev"
21
- Requires-Dist: requests (>=2.31.0,<3.0.0)
22
- Requires-Dist: rich (>=13.7.0,<14.0.0)
23
- Requires-Dist: vllm (>=0.6.0,<0.7.0) ; extra == "dev"
24
- Requires-Dist: vllm-nccl-cu12 (>=2.18,<2.19) ; extra == "dev"
25
- Description-Content-Type: text/markdown
26
-
27
- # Vector Inference: Easy inference on Slurm clusters
28
- This repository provides an easy-to-use solution to run inference servers on [Slurm](https://slurm.schedmd.com/overview.html)-managed computing clusters using [vLLM](https://docs.vllm.ai/en/latest/). **All scripts in this repository runs natively on the Vector Institute cluster environment**. To adapt to other environments, update [`launch_server.sh`](vec_inf/launch_server.sh), [`vllm.slurm`](vec_inf/vllm.slurm), [`multinode_vllm.slurm`](vec_inf/multinode_vllm.slurm) and [`models.csv`](vec_inf/models/models.csv) accordingly.
29
-
30
- ## Installation
31
- If you are using the Vector cluster environment, and you don't need any customization to the inference server environment, run the following to install package:
32
- ```bash
33
- pip install vec-inf
34
- ```
35
- Otherwise, we recommend using the provided [`Dockerfile`](Dockerfile) to set up your own environment with the package
36
-
37
- ## Launch an inference server
38
- ### `launch` command
39
- We will use the Llama 3.1 model as example, to launch an OpenAI compatible inference server for Meta-Llama-3.1-8B-Instruct, run:
40
- ```bash
41
- vec-inf launch Meta-Llama-3.1-8B-Instruct
42
- ```
43
- You should see an output like the following:
44
-
45
- <img width="700" alt="launch_img" src="https://github.com/user-attachments/assets/ab658552-18b2-47e0-bf70-e539c3b898d5">
46
-
47
- The model would be launched using the [default parameters](vec_inf/models/models.csv), you can override these values by providing additional parameters, use `--help` to see the full list. You can also launch your own customized model as long as the model architecture is [supported by vLLM](https://docs.vllm.ai/en/stable/models/supported_models.html), and make sure to follow the instructions below:
48
- * Your model weights directory naming convention should follow `$MODEL_FAMILY-$MODEL_VARIANT`.
49
- * Your model weights directory should contain HF format weights.
50
- * The following launch parameters will conform to default value if not specified: `--max-num-seqs`, `--partition`, `--data-type`, `--venv`, `--log-dir`, `--model-weights-parent-dir`, `--pipeline-parallelism`, `--enforce-eager`. All other launch parameters need to be specified for custom models.
51
- * Example for setting the model weights parent directory: `--model-weights-parent-dir /h/user_name/my_weights`.
52
- * For other model launch parameters you can reference the default values for similar models using the [`list` command ](#list-command).
53
-
54
- ### `status` command
55
- You can check the inference server status by providing the Slurm job ID to the `status` command:
56
- ```bash
57
- vec-inf status 13014393
58
- ```
59
-
60
- You should see an output like the following:
61
-
62
- <img width="400" alt="status_img" src="https://github.com/user-attachments/assets/7385b9ca-9159-4ca9-bae2-7e26d80d9747">
63
-
64
- There are 5 possible states:
65
-
66
- * **PENDING**: Job submitted to Slurm, but not executed yet. Job pending reason will be shown.
67
- * **LAUNCHING**: Job is running but the server is not ready yet.
68
- * **READY**: Inference server running and ready to take requests.
69
- * **FAILED**: Inference server in an unhealthy state. Job failed reason will be shown.
70
- * **SHUTDOWN**: Inference server is shutdown/cancelled.
71
-
72
- Note that the base URL is only available when model is in `READY` state, and if you've changed the Slurm log directory path, you also need to specify it when using the `status` command.
73
-
74
- ### `metrics` command
75
- Once your server is ready, you can check performance metrics by providing the Slurm job ID to the `metrics` command:
76
- ```bash
77
- vec-inf metrics 13014393
78
- ```
79
-
80
- And you will see the performance metrics streamed to your console, note that the metrics are updated with a 10-second interval.
81
-
82
- <img width="400" alt="metrics_img" src="https://github.com/user-attachments/assets/e5ff2cd5-659b-4c88-8ebc-d8f3fdc023a4">
83
-
84
- ### `shutdown` command
85
- Finally, when you're finished using a model, you can shut it down by providing the Slurm job ID:
86
- ```bash
87
- vec-inf shutdown 13014393
88
-
89
- > Shutting down model with Slurm Job ID: 13014393
90
- ```
91
-
92
- ### `list` command
93
- You call view the full list of available models by running the `list` command:
94
- ```bash
95
- vec-inf list
96
- ```
97
- <img width="940" alt="list_img" src="https://github.com/user-attachments/assets/8cf901c4-404c-4398-a52f-0486f00747a3">
98
-
99
-
100
- You can also view the default setup for a specific supported model by providing the model name, for example `Meta-Llama-3.1-70B-Instruct`:
101
- ```bash
102
- vec-inf list Meta-Llama-3.1-70B-Instruct
103
- ```
104
- <img width="400" alt="list_model_img" src="https://github.com/user-attachments/assets/30e42ab7-dde2-4d20-85f0-187adffefc3d">
105
-
106
- `launch`, `list`, and `status` command supports `--json-mode`, where the command output would be structured as a JSON string.
107
-
108
- ## Send inference requests
109
- Once the inference server is ready, you can start sending in inference requests. We provide example scripts for sending inference requests in [`examples`](examples) folder. Make sure to update the model server URL and the model weights location in the scripts. For example, you can run `python examples/inference/llm/completions.py`, and you should expect to see an output like the following:
110
- > {"id":"cmpl-c08d8946224747af9cce9f4d9f36ceb3","object":"text_completion","created":1725394970,"model":"Meta-Llama-3.1-8B-Instruct","choices":[{"index":0,"text":" is a question that many people may wonder. The answer is, of course, Ottawa. But if","logprobs":null,"finish_reason":"length","stop_reason":null}],"usage":{"prompt_tokens":8,"total_tokens":28,"completion_tokens":20}}
111
-
112
- **NOTE**: For multimodal models, currently only `ChatCompletion` is available, and only one image can be provided for each prompt.
113
-
114
- ## SSH tunnel from your local device
115
- If you want to run inference from your local device, you can open a SSH tunnel to your cluster environment like the following:
116
- ```bash
117
- ssh -L 8081:172.17.8.29:8081 username@v.vectorinstitute.ai -N
118
- ```
119
- Where the last number in the URL is the GPU number (gpu029 in this case). The example provided above is for the vector cluster, change the variables accordingly for your environment
120
-
@@ -1,16 +0,0 @@
1
- vec_inf/README.md,sha256=dxX0xKfwLioG0mJ2YFv5JJ5q1m5NlWBrVBOap1wuHfQ,624
2
- vec_inf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
- vec_inf/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
- vec_inf/cli/_cli.py,sha256=TRaY-QSBQ_do9b4R6Pl7fyDlrfuMN8Z8HH_xOCKkVJA,12585
5
- vec_inf/cli/_utils.py,sha256=sQqi7JdPOb7gfW4EVsXY2yhLUo8xWqxoY1spQ53bag4,4845
6
- vec_inf/find_port.sh,sha256=bGQ6LYSFVSsfDIGatrSg5YvddbZfaPL0R-Bjo4KYD6I,1088
7
- vec_inf/launch_server.sh,sha256=gFovqXuYiQ8bEc6O31WTMDuBoNj7opB5iVfnCDhz2Nw,4165
8
- vec_inf/models/README.md,sha256=YNEVTWliHehCpJTq2SXAidqgFl6CWL6GUOnAPksDYFE,14844
9
- vec_inf/models/models.csv,sha256=f_cNeM7L0-4pgZqYfWilQd12-WVec2IVk6dRq5BE4mE,9875
10
- vec_inf/multinode_vllm.slurm,sha256=tg0WgLRdpRFD-oT05aucOpe6h2TZiTyYJFTMqSIj-HQ,4154
11
- vec_inf/vllm.slurm,sha256=lMgBI7r9jUVVhSIdrUH2DdC-Bxz0eyQ8vuB5uwOzWt0,1847
12
- vec_inf-0.4.0.post1.dist-info/LICENSE,sha256=mq8zeqpvVSF1EsxmydeXcokt8XnEIfSofYn66S2-cJI,1073
13
- vec_inf-0.4.0.post1.dist-info/METADATA,sha256=Q6KhU-ggnR9FB5YUjWrPwy2MSd_c9GCFXAQqT9YXZOw,7032
14
- vec_inf-0.4.0.post1.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
15
- vec_inf-0.4.0.post1.dist-info/entry_points.txt,sha256=JF4uXsj1H4XacxaBw9f0KN0P0qDzmp7K_1zTEBDappo,48
16
- vec_inf-0.4.0.post1.dist-info/RECORD,,
@@ -1,3 +0,0 @@
1
- [console_scripts]
2
- vec-inf=vec_inf.cli._cli:cli
3
-