veadk-python 0.2.16__py3-none-any.whl → 0.2.17__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (64) hide show
  1. veadk/a2a/remote_ve_agent.py +56 -1
  2. veadk/agent.py +79 -26
  3. veadk/agents/loop_agent.py +22 -9
  4. veadk/agents/parallel_agent.py +21 -9
  5. veadk/agents/sequential_agent.py +18 -9
  6. veadk/auth/veauth/apmplus_veauth.py +32 -39
  7. veadk/auth/veauth/ark_veauth.py +3 -1
  8. veadk/auth/veauth/utils.py +12 -0
  9. veadk/auth/veauth/viking_mem0_veauth.py +91 -0
  10. veadk/cli/cli.py +5 -1
  11. veadk/cli/cli_create.py +62 -1
  12. veadk/cli/cli_deploy.py +36 -1
  13. veadk/cli/cli_eval.py +55 -0
  14. veadk/cli/cli_init.py +44 -3
  15. veadk/cli/cli_kb.py +36 -1
  16. veadk/cli/cli_pipeline.py +66 -1
  17. veadk/cli/cli_prompt.py +16 -1
  18. veadk/cli/cli_uploadevalset.py +15 -1
  19. veadk/cli/cli_web.py +35 -4
  20. veadk/cloud/cloud_agent_engine.py +142 -25
  21. veadk/cloud/cloud_app.py +219 -12
  22. veadk/configs/database_configs.py +4 -0
  23. veadk/configs/model_configs.py +5 -1
  24. veadk/configs/tracing_configs.py +2 -2
  25. veadk/evaluation/adk_evaluator/adk_evaluator.py +77 -17
  26. veadk/evaluation/base_evaluator.py +219 -3
  27. veadk/evaluation/deepeval_evaluator/deepeval_evaluator.py +116 -1
  28. veadk/evaluation/eval_set_file_loader.py +20 -0
  29. veadk/evaluation/eval_set_recorder.py +54 -0
  30. veadk/evaluation/types.py +32 -0
  31. veadk/evaluation/utils/prometheus.py +61 -0
  32. veadk/knowledgebase/backends/base_backend.py +14 -1
  33. veadk/knowledgebase/backends/in_memory_backend.py +10 -1
  34. veadk/knowledgebase/backends/opensearch_backend.py +26 -0
  35. veadk/knowledgebase/backends/redis_backend.py +29 -2
  36. veadk/knowledgebase/backends/vikingdb_knowledge_backend.py +43 -5
  37. veadk/knowledgebase/knowledgebase.py +173 -12
  38. veadk/memory/long_term_memory.py +148 -4
  39. veadk/memory/long_term_memory_backends/mem0_backend.py +11 -0
  40. veadk/memory/short_term_memory.py +119 -5
  41. veadk/runner.py +412 -1
  42. veadk/tools/builtin_tools/llm_shield.py +381 -0
  43. veadk/tools/builtin_tools/mcp_router.py +9 -2
  44. veadk/tools/builtin_tools/run_code.py +25 -5
  45. veadk/tools/builtin_tools/web_search.py +38 -154
  46. veadk/tracing/base_tracer.py +28 -1
  47. veadk/tracing/telemetry/attributes/extractors/common_attributes_extractors.py +105 -1
  48. veadk/tracing/telemetry/attributes/extractors/llm_attributes_extractors.py +260 -0
  49. veadk/tracing/telemetry/attributes/extractors/tool_attributes_extractors.py +69 -0
  50. veadk/tracing/telemetry/attributes/extractors/types.py +78 -0
  51. veadk/tracing/telemetry/exporters/apmplus_exporter.py +157 -0
  52. veadk/tracing/telemetry/exporters/base_exporter.py +8 -0
  53. veadk/tracing/telemetry/exporters/cozeloop_exporter.py +60 -1
  54. veadk/tracing/telemetry/exporters/inmemory_exporter.py +118 -1
  55. veadk/tracing/telemetry/exporters/tls_exporter.py +66 -0
  56. veadk/tracing/telemetry/opentelemetry_tracer.py +111 -1
  57. veadk/tracing/telemetry/telemetry.py +118 -2
  58. veadk/version.py +1 -1
  59. {veadk_python-0.2.16.dist-info → veadk_python-0.2.17.dist-info}/METADATA +1 -1
  60. {veadk_python-0.2.16.dist-info → veadk_python-0.2.17.dist-info}/RECORD +64 -62
  61. {veadk_python-0.2.16.dist-info → veadk_python-0.2.17.dist-info}/WHEEL +0 -0
  62. {veadk_python-0.2.16.dist-info → veadk_python-0.2.17.dist-info}/entry_points.txt +0 -0
  63. {veadk_python-0.2.16.dist-info → veadk_python-0.2.17.dist-info}/licenses/LICENSE +0 -0
  64. {veadk_python-0.2.16.dist-info → veadk_python-0.2.17.dist-info}/top_level.txt +0 -0
@@ -18,8 +18,21 @@ from pydantic import BaseModel
18
18
 
19
19
 
20
20
  class BaseKnowledgebaseBackend(ABC, BaseModel):
21
+ """Base backend for knowledgebase.
22
+
23
+ Attributes:
24
+ index (str): Index or collection name of the vector storage.
25
+
26
+ Examples:
27
+ You can implement your own knowledgebase backend.
28
+
29
+ ```python
30
+ class CustomKnowledgebaseBackend(BaseKnowledgebaseBackend):
31
+ pass
32
+ ```
33
+ """
34
+
21
35
  index: str
22
- """Index or collection name of the vector storage."""
23
36
 
24
37
  @abstractmethod
25
38
  def precheck_index_naming(self) -> None:
@@ -24,10 +24,19 @@ from veadk.knowledgebase.backends.utils import get_llama_index_splitter
24
24
 
25
25
 
26
26
  class InMemoryKnowledgeBackend(BaseKnowledgebaseBackend):
27
+ """A in-memory implementation backend for knowledgebase.
28
+
29
+ In-memory backend stores embedded text in a vector storage from Llama-index.
30
+
31
+ Attributes:
32
+ embedding_config (EmbeddingModelConfig):
33
+ Embedding config for text embedding and search.
34
+ Embedding config contains embedding model name and the corresponding dim.
35
+ """
36
+
27
37
  embedding_config: NormalEmbeddingModelConfig | EmbeddingModelConfig = Field(
28
38
  default_factory=EmbeddingModelConfig
29
39
  )
30
- """Embedding model configs"""
31
40
 
32
41
  def model_post_init(self, __context: Any) -> None:
33
42
  self._embed_model = OpenAILikeEmbedding(
@@ -43,6 +43,32 @@ except ImportError:
43
43
 
44
44
 
45
45
  class OpensearchKnowledgeBackend(BaseKnowledgebaseBackend):
46
+ """Opensearch-based backend for knowledgebase.
47
+
48
+ Opensearch backend stores embedded text in a opensearch database by Llama-index.
49
+
50
+ Attributes:
51
+ opensearch_config (OpensearchConfig):
52
+ Opensearch database configurations.
53
+ Mainly contains opensearch host, port, username, password, etc.
54
+ embedding_config (EmbeddingModelConfig):
55
+ Embedding config for text embedding and search.
56
+ Embedding config contains embedding model name and the corresponding dim.
57
+
58
+ Examples:
59
+ Init a knowledgebase based on opensearch backend.
60
+
61
+ ```python
62
+ knowledgebase = Knowledgebase(backend="opensearch")
63
+ ```
64
+
65
+ With more configurations:
66
+
67
+ ```python
68
+ ...
69
+ ```
70
+ """
71
+
46
72
  opensearch_config: OpensearchConfig = Field(default_factory=OpensearchConfig)
47
73
  """Opensearch client configs"""
48
74
 
@@ -44,13 +44,40 @@ except ImportError:
44
44
 
45
45
 
46
46
  class RedisKnowledgeBackend(BaseKnowledgebaseBackend):
47
+ """Redis based backend for knowledgebase.
48
+
49
+ Redis backend stores embedded text in a redis database by Llama-index.
50
+
51
+ Attributes:
52
+ redis_config (RedisConfig):
53
+ Redis database configurations.
54
+ Mainly contains redis database host, port, etc.
55
+ embedding_config (EmbeddingModelConfig):
56
+ Embedding configurations for text embedding and search.
57
+ Embedding config contains embedding model name and the corresponding dim.
58
+
59
+ Notes:
60
+ Please ensure that your redis database supports Redisaearch stack.
61
+
62
+ Examples:
63
+ Init a knowledgebase based on redis backend.
64
+
65
+ ```python
66
+ knowledgebase = Knowledgebase(backend="redis")
67
+ ```
68
+
69
+ With more configurations:
70
+
71
+ ```python
72
+ ...
73
+ ```
74
+ """
75
+
47
76
  redis_config: RedisConfig = Field(default_factory=RedisConfig)
48
- """Redis client configs"""
49
77
 
50
78
  embedding_config: EmbeddingModelConfig | NormalEmbeddingModelConfig = Field(
51
79
  default_factory=EmbeddingModelConfig
52
80
  )
53
- """Embedding model configs"""
54
81
 
55
82
  def model_post_init(self, __context: Any) -> None:
56
83
  # We will use `from_url` to init Redis client once the
@@ -59,24 +59,62 @@ def get_files_in_directory(directory: str):
59
59
 
60
60
 
61
61
  class VikingDBKnowledgeBackend(BaseKnowledgebaseBackend):
62
+ """Volcengine Viking DB knowledgebase backend.
63
+
64
+ Volcegnine Viking DB knowledgebase provides powerful knowledgebase storage and search.
65
+
66
+ Attributes:
67
+ volcengine_access_key (str | None):
68
+ Access key for Volcengine. Loaded automatically from the
69
+ `VOLCENGINE_ACCESS_KEY` environment variable if not provided.
70
+
71
+ volcengine_secret_key (str | None):
72
+ Secret key for Volcengine. Loaded automatically from the
73
+ `VOLCENGINE_SECRET_KEY` environment variable if not provided.
74
+
75
+ session_token (str):
76
+ Optional session token for temporary credentials. Defaults to an empty string.
77
+
78
+ volcengine_project (str):
79
+ VikingDB knowledgebase project name in the Volcengine console platform.
80
+ Defaults to `"default"`.
81
+
82
+ region (str): Region of the VikingDB knowledgebase. Defaults to `"cn-beijing"`.
83
+
84
+ tos_config (TOSConfig | NormalTOSConfig):
85
+ TOS configuration used for uploading files to TOS (Volcengine’s Object Storage).
86
+ Defaults to a new instance of `TOSConfig`.
87
+
88
+ Notes:
89
+ Please make sure that you have created a bucket in your TOS.
90
+
91
+ Examples:
92
+ Init a knowledgebase based on VikingDB knowledgebase backend.
93
+
94
+ ```python
95
+ knowledgebase = Knowledgebase(backend="redis")
96
+ ```
97
+
98
+ With more configurations:
99
+
100
+ ```python
101
+ ...
102
+ ```
103
+ """
104
+
62
105
  volcengine_access_key: str | None = Field(
63
106
  default_factory=lambda: os.getenv("VOLCENGINE_ACCESS_KEY")
64
107
  )
65
-
66
108
  volcengine_secret_key: str | None = Field(
67
109
  default_factory=lambda: os.getenv("VOLCENGINE_SECRET_KEY")
68
110
  )
69
-
70
111
  session_token: str = ""
71
112
 
72
113
  volcengine_project: str = "default"
73
- """VikingDB knowledgebase project in Volcengine console platform. Default by `default`"""
74
114
 
75
115
  region: str = "cn-beijing"
76
- """VikingDB knowledgebase region"""
77
116
 
78
117
  tos_config: TOSConfig | NormalTOSConfig = Field(default_factory=TOSConfig)
79
- """TOS config, used to upload files to TOS"""
80
118
 
81
119
  def model_post_init(self, __context: Any) -> None:
82
120
  self.precheck_index_naming()
@@ -56,6 +56,110 @@ def _get_backend_cls(backend: str) -> type[BaseKnowledgebaseBackend]:
56
56
 
57
57
 
58
58
  class KnowledgeBase(BaseModel):
59
+ """A knowledge base for storing user-related information.
60
+
61
+ This class represents a knowledge base used to store and retrieve user-specific data.
62
+ It supports multiple backend options, including in-memory, OpenSearch, Redis, and Volcengine's
63
+ VikingDB. The knowledge base allows for efficient document retrieval based on similarity,
64
+ with the ability to configure backend-specific settings.
65
+
66
+ Attributes:
67
+ name (str): The name of the knowledge base. Default is "user_knowledgebase".
68
+ description (str): A description of the knowledge base. Default is "This knowledgebase stores some user-related information."
69
+ backend (Union[Literal["local", "opensearch", "viking", "redis"], BaseKnowledgebaseBackend]):
70
+ The type of backend to use for storing and querying the knowledge base. Supported options include:
71
+ - 'local' for in-memory storage (data is lost when the program exits).
72
+ - 'opensearch' for OpenSearch (requires OpenSearch cluster).
73
+ - 'viking' for Volcengine VikingDB (requires VikingDB service).
74
+ - 'redis' for Redis with vector search capability (requires Redis).
75
+ Default is 'local'.
76
+ backend_config (dict): Configuration dictionary for the selected backend.
77
+ top_k (int): The number of top similar documents to retrieve during a search. Default is 10.
78
+ app_name (str): The name of the application associated with the knowledge base. If index is not provided, this value will be set to `index`.
79
+ index (str): The name of the knowledge base index.
80
+
81
+ Notes:
82
+ Please ensure that you have set the embedding-related configurations in environment variables.
83
+
84
+ Examples:
85
+ ### Simple backend
86
+
87
+ Create a local knowledgebase:
88
+
89
+ ```python
90
+ from veadk import Agent, Runner
91
+ from veadk.knowledgebase.knowledgebase import KnowledgeBase
92
+ from veadk.memory.short_term_memory import ShortTermMemory
93
+
94
+ app_name = "veadk_playground_app"
95
+ user_id = "veadk_playground_user"
96
+ session_id = "veadk_playground_session"
97
+
98
+
99
+ knowledgebase = KnowledgeBase(backend="opensearch", app_name=app_name)
100
+ knowledgebase.add_from_files(files=[knowledgebase_file])
101
+
102
+ agent = Agent(knowledgebase=knowledgebase)
103
+
104
+ runner = Runner(
105
+ agent=agent,
106
+ short_term_memory=ShortTermMemory(),
107
+ app_name=app_name,
108
+ user_id=user_id,
109
+ )
110
+
111
+ response = await runner.run(
112
+ messages="Tell me the secret of green.", session_id=session_id
113
+ )
114
+ print(response)
115
+ ```
116
+
117
+ ### Initialize knowledgebase with metadata
118
+
119
+ ```python
120
+ from veadk.knowledgebase import KnowledgeBase
121
+
122
+ knowledgebase = KnowledgeBase(
123
+ name="user_data",
124
+ description="A knowledgebase contains user hobbies.",
125
+ index="my_app",
126
+ )
127
+ ```
128
+
129
+ ### Initialize knowledgebase with backend instance
130
+
131
+ ```python
132
+ import veadk.config # noqa
133
+
134
+ from veadk.knowledgebase import KnowledgeBase
135
+ from veadk.knowledgebase.backends.in_memory_backend import InMemoryKnowledgeBackend
136
+
137
+ backend = InMemoryKnowledgeBackend(
138
+ index="my_app",
139
+ embedding_config=...,
140
+ )
141
+
142
+ knowledgebase = KnowledgeBase(
143
+ name="user_data",
144
+ description="A knowledgebase contains user hobbies.",
145
+ backend=backend,
146
+ )
147
+ ```
148
+
149
+ ### Initialize knowledgebase with backend config
150
+
151
+ ```python
152
+ from veadk.knowledgebase import KnowledgeBase
153
+
154
+ knowledgebase = KnowledgeBase(
155
+ name="user_data",
156
+ description="A knowledgebase contains user hobbies.",
157
+ backend="local",
158
+ backend_config={"index": "user_app"},
159
+ )
160
+ ```
161
+ """
162
+
59
163
  name: str = "user_knowledgebase"
60
164
 
61
165
  description: str = "This knowledgebase stores some user-related information."
@@ -63,23 +167,14 @@ class KnowledgeBase(BaseModel):
63
167
  backend: Union[
64
168
  Literal["local", "opensearch", "viking", "redis"], BaseKnowledgebaseBackend
65
169
  ] = "local"
66
- """Knowledgebase backend type. Supported backends are:
67
- - local: In-memory knowledgebase, data will be lost when the program exits.
68
- - opensearch: OpenSearch knowledgebase, requires an OpenSearch cluster.
69
- - viking: Volcengine VikingDB knowledgebase, requires VikingDB service.
70
- - redis: Redis knowledgebase, requires Redis with vector search capability.
71
- Default is `local`."""
72
170
 
73
171
  backend_config: dict = Field(default_factory=dict)
74
- """Configuration for the backend"""
75
172
 
76
173
  top_k: int = 10
77
- """Number of top similar documents to retrieve during search"""
78
174
 
79
175
  app_name: str = ""
80
176
 
81
177
  index: str = ""
82
- """The name of the knowledgebase index. If not provided, it will be generated based on the `app_name`."""
83
178
 
84
179
  def model_post_init(self, __context: Any) -> None:
85
180
  if isinstance(self.backend, BaseKnowledgebaseBackend):
@@ -108,15 +203,81 @@ class KnowledgeBase(BaseModel):
108
203
  )
109
204
 
110
205
  def add_from_directory(self, directory: str, **kwargs) -> bool:
111
- """Add knowledge from file path to knowledgebase"""
206
+ """Add knowledge from file path to knowledgebase.
207
+
208
+ Add the files in the directory to knowledgebase backend.
209
+
210
+ Args:
211
+ directory (str): The directory path that needs to store.
212
+
213
+ Returns:
214
+ bool: True if successfully store the knowledgebase, False otherwise.
215
+
216
+ Examples:
217
+ Store a directory to knowledgebase:
218
+
219
+ ```python
220
+ knowledgebase = Knowledgebase(backend="local")
221
+
222
+ if knowledgebase.add_from_directory("./knowledgebase"):
223
+ # add successfully
224
+ ...
225
+ else:
226
+ raise RuntimeError("Uploaded directory failed.")
227
+ ```
228
+ """
112
229
  return self._backend.add_from_directory(directory=directory, **kwargs)
113
230
 
114
231
  def add_from_files(self, files: list[str], **kwargs) -> bool:
115
- """Add knowledge (e.g, documents, strings, ...) to knowledgebase"""
232
+ """Add knowledge files to knowledgebase.
233
+
234
+ Add a list of files to knowledgebase backend.
235
+
236
+ Args:
237
+ files (str): The list of files.
238
+
239
+ Returns:
240
+ bool: True if successfully store the knowledgebase, False otherwise.
241
+
242
+ Examples:
243
+ Store files to knowledgebase:
244
+
245
+ ```python
246
+ knowledgebase = Knowledgebase(backend="local")
247
+
248
+ if knowledgebase.add_from_files("./knowledgebase"):
249
+ # add successfully
250
+ ...
251
+ else:
252
+ raise RuntimeError("Uploaded files failed.")
253
+ ```
254
+ """
116
255
  return self._backend.add_from_files(files=files, **kwargs)
117
256
 
118
257
  def add_from_text(self, text: str | list[str], **kwargs) -> bool:
119
- """Add knowledge from text to knowledgebase"""
258
+ """Add a piece of text or a list of text to knowledgebase.
259
+
260
+ The `text` can be a string or a list of string. The text will be embedded and stored by the corresponding backend.
261
+
262
+ Args:
263
+ text (str | list[str]): The text string or a list of text strings.
264
+
265
+ Returns:
266
+ bool: True if successfully store the knowledgebase, False otherwise.
267
+
268
+ Examples:
269
+ Store a string or a list of string to knowledgebase:
270
+
271
+ ```python
272
+ knowledgebase = Knowledgebase(backend="local")
273
+
274
+ if knowledgebase.add_from_text("./knowledgebase"):
275
+ # add successfully
276
+ ...
277
+ else:
278
+ raise RuntimeError("Uploaded text failed.")
279
+ ```
280
+ """
120
281
  return self._backend.add_from_text(text=text, **kwargs)
121
282
 
122
283
  def search(self, query: str, top_k: int = 0, **kwargs) -> list[KnowledgebaseEntry]:
@@ -73,24 +73,111 @@ def _get_backend_cls(backend: str) -> type[BaseLongTermMemoryBackend]:
73
73
 
74
74
 
75
75
  class LongTermMemory(BaseMemoryService, BaseModel):
76
+ """Manages long-term memory storage and retrieval for applications.
77
+
78
+ This class provides an interface to store, retrieve, and manage long-term
79
+ contextual information using different backend types (e.g., OpenSearch, Redis).
80
+ It supports configuration of the backend service and retrieval behavior.
81
+
82
+ Attributes:
83
+ backend (Union[Literal["local", "opensearch", "redis", "viking", "viking_mem", "mem0"], BaseLongTermMemoryBackend]):
84
+ The type or instance of the long-term memory backend. Defaults to "opensearch".
85
+
86
+ backend_config (dict):
87
+ Configuration parameters for the selected backend. Defaults to an empty dictionary.
88
+
89
+ top_k (int):
90
+ The number of top similar documents to retrieve during search. Defaults to 5.
91
+
92
+ index (str):
93
+ The name of the index or collection used for storing memory items. Defaults to an empty string.
94
+
95
+ app_name (str):
96
+ The name of the application that owns this memory instance. Defaults to an empty string.
97
+
98
+ user_id (str):
99
+ Deprecated attribute. Retained for backward compatibility. Defaults to an empty string.
100
+
101
+ Notes:
102
+ Please ensure that you have set the embedding-related configurations in environment variables.
103
+
104
+ Examples:
105
+ ### Simple long-term memory
106
+
107
+ Once create a long-term memory withou any arguments, all configurations are come from **environment variables**.
108
+
109
+ ```python
110
+ import asyncio
111
+
112
+ from veadk import Agent, Runner
113
+ from veadk.memory.long_term_memory import LongTermMemory
114
+ from veadk.memory.short_term_memory import ShortTermMemory
115
+
116
+ app_name = "veadk_playground_app"
117
+ user_id = "veadk_playground_user"
118
+
119
+ long_term_memory = LongTermMemory(backend="local", app_name=app_name)
120
+
121
+ agent = Agent(long_term_memory=long_term_memory)
122
+
123
+ runner = Runner(
124
+ agent=agent,
125
+ app_name=app_name,
126
+ user_id=user_id,
127
+ short_term_memory=ShortTermMemory(),
128
+ )
129
+
130
+ # ===== add memory =====
131
+ session_id = "veadk_playground_session"
132
+ teaching_prompt = "I brought an ice-cream last week."
133
+
134
+ asyncio.run(runner.run(messages=teaching_prompt, session_id=session_id))
135
+ asyncio.run(
136
+ runner.save_session_to_long_term_memory(session_id=session_id)
137
+ ) # save session to long-term memory
138
+
139
+
140
+ # ===== check memory =====
141
+ session_id = "veadk_playground_session_2" # use a new session
142
+ student_prompt = "What I brought last week?"
143
+
144
+ response = asyncio.run(runner.run(messages=student_prompt, session_id=session_id))
145
+
146
+ print(response)
147
+ ```
148
+
149
+ ### Create with a backend instance
150
+
151
+ ```python
152
+ from veadk.memory.long_term_memory import LongTermMemory
153
+ from veadk.memory.long_term_memory.backends import LongTermMemory
154
+
155
+ long_term_memory = LongTermMemory(backend=...)
156
+ ```
157
+
158
+ ### Create with backend configurations
159
+
160
+ ```python
161
+ from veadk.memory.long_term_memory import LongTermMemory
162
+
163
+ long_term_memory = LongTermMemory(backend="", backend_config={})
164
+ ```
165
+ """
166
+
76
167
  backend: Union[
77
168
  Literal["local", "opensearch", "redis", "viking", "viking_mem", "mem0"],
78
169
  BaseLongTermMemoryBackend,
79
170
  ] = "opensearch"
80
- """Long term memory backend type"""
81
171
 
82
172
  backend_config: dict = Field(default_factory=dict)
83
- """Long term memory backend configuration"""
84
173
 
85
174
  top_k: int = 5
86
- """Number of top similar documents to retrieve during search."""
87
175
 
88
176
  index: str = ""
89
177
 
90
178
  app_name: str = ""
91
179
 
92
180
  user_id: str = ""
93
- """Deprecated attribute"""
94
181
 
95
182
  def model_post_init(self, __context: Any) -> None:
96
183
  # Once user define a backend instance, use it directly
@@ -163,6 +250,33 @@ class LongTermMemory(BaseMemoryService, BaseModel):
163
250
  self,
164
251
  session: Session,
165
252
  ):
253
+ """Add a chat session's events to the long-term memory backend.
254
+
255
+ This method extracts and filters the events from a given `Session` object,
256
+ converts them into serialized strings, and stores them into the long-term
257
+ memory system. It is typically called after a chat session ends or when
258
+ important contextual data needs to be persisted for future retrieval.
259
+
260
+ Args:
261
+ session (Session):
262
+ The session object containing user ID and a list of events to persist.
263
+
264
+ Examples:
265
+ ```python
266
+ session = Session(
267
+ user_id="user_123",
268
+ events=[
269
+ Event(role="user", content="I like Go and Rust."),
270
+ Event(role="assistant", content="Got it! I'll remember that."),
271
+ ]
272
+ )
273
+
274
+ await memory_service.add_session_to_memory(session)
275
+ # Logs:
276
+ # Adding 2 events to long term memory: index=main
277
+ # Added 2 events to long term memory: index=main, user_id=user_123
278
+ ```
279
+ """
166
280
  user_id = session.user_id
167
281
  event_strings = self._filter_and_convert_events(session.events)
168
282
 
@@ -178,6 +292,36 @@ class LongTermMemory(BaseMemoryService, BaseModel):
178
292
  async def search_memory(
179
293
  self, *, app_name: str, user_id: str, query: str
180
294
  ) -> SearchMemoryResponse:
295
+ """Search memory entries for a given user and query.
296
+
297
+ This method queries the memory backend to retrieve the most relevant stored
298
+ memory chunks for a given user and text query. It then converts those raw
299
+ memory chunks into structured `MemoryEntry` objects to be returned to the caller.
300
+
301
+ Args:
302
+ app_name (str): Name of the application requesting the memory search.
303
+ user_id (str): Unique identifier for the user whose memory is being queried.
304
+ query (str): The text query to match against stored memory content.
305
+
306
+ Returns:
307
+ SearchMemoryResponse:
308
+ An object containing a list of `MemoryEntry` items representing
309
+ the retrieved memory snippets relevant to the query.
310
+
311
+ Examples:
312
+ ```python
313
+ response = await memory_service.search_memory(
314
+ app_name="chat_app",
315
+ user_id="user_123",
316
+ query="favorite programming language"
317
+ )
318
+
319
+ for memory in response.memories:
320
+ print(memory.content.parts[0].text)
321
+ # Output:
322
+ # User likes Python and TypeScript for backend development.
323
+ ```
324
+ """
181
325
  logger.info(f"Search memory with query={query}")
182
326
 
183
327
  memory_chunks = []
@@ -17,6 +17,7 @@ from typing import Any
17
17
  from pydantic import Field
18
18
  from typing_extensions import override
19
19
 
20
+ from veadk.auth.veauth.viking_mem0_veauth import get_viking_mem0_token
20
21
  from veadk.configs.database_configs import Mem0Config
21
22
  from veadk.memory.long_term_memory_backends.base_backend import (
22
23
  BaseLongTermMemoryBackend,
@@ -43,6 +44,16 @@ class Mem0LTMBackend(BaseLongTermMemoryBackend):
43
44
  def model_post_init(self, __context: Any) -> None:
44
45
  """Initialize Mem0 client"""
45
46
 
47
+ if not self.mem0_config.api_key:
48
+ if not self.mem0_config.api_key_id and not self.mem0_config.project_id:
49
+ raise ValueError(
50
+ "API Key not set, auto fetching api key needs `api_key_id` or `project_id`"
51
+ )
52
+ self.mem0_config.api_key = get_viking_mem0_token(
53
+ api_key_id=self.mem0_config.api_key_id,
54
+ memory_project_id=self.mem0_config.project_id,
55
+ )
56
+
46
57
  try:
47
58
  self._mem0_client = MemoryClient(
48
59
  host=self.mem0_config.base_url, # mem0 endpoint