vanna 2.0.0__py3-none-any.whl → 2.0.0rc1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -148,24 +148,13 @@ class QdrantAgentMemory(AgentMemory):
148
148
  if conditions:
149
149
  query_filter = Filter(must=conditions)
150
150
 
151
- # Use query_points for newer qdrant-client (1.8.0+) or search for older versions
152
- if hasattr(client, "query_points"):
153
- results = client.query_points(
154
- collection_name=self.collection_name,
155
- query=embedding,
156
- limit=limit,
157
- query_filter=query_filter,
158
- score_threshold=similarity_threshold,
159
- ).points
160
- else:
161
- # Fallback to search method for older qdrant-client versions
162
- results = client.search(
163
- collection_name=self.collection_name,
164
- query_vector=embedding,
165
- limit=limit,
166
- query_filter=query_filter,
167
- score_threshold=similarity_threshold,
168
- )
151
+ results = client.search(
152
+ collection_name=self.collection_name,
153
+ query_vector=embedding,
154
+ limit=limit,
155
+ query_filter=query_filter,
156
+ score_threshold=similarity_threshold,
157
+ )
169
158
 
170
159
  search_results = []
171
160
  for i, hit in enumerate(results):
@@ -304,24 +293,13 @@ class QdrantAgentMemory(AgentMemory):
304
293
  ]
305
294
  )
306
295
 
307
- # Use query_points for newer qdrant-client (1.8.0+) or search for older versions
308
- if hasattr(client, "query_points"):
309
- results = client.query_points(
310
- collection_name=self.collection_name,
311
- query=embedding,
312
- limit=limit,
313
- query_filter=query_filter,
314
- score_threshold=similarity_threshold,
315
- ).points
316
- else:
317
- # Fallback to search method for older qdrant-client versions
318
- results = client.search(
319
- collection_name=self.collection_name,
320
- query_vector=embedding,
321
- limit=limit,
322
- query_filter=query_filter,
323
- score_threshold=similarity_threshold,
324
- )
296
+ results = client.search(
297
+ collection_name=self.collection_name,
298
+ query_vector=embedding,
299
+ limit=limit,
300
+ query_filter=query_filter,
301
+ score_threshold=similarity_threshold,
302
+ )
325
303
 
326
304
  search_results = []
327
305
  for i, hit in enumerate(results):