vanna 0.6.5__py3-none-any.whl → 0.6.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vanna/base/base.py +5 -10
- vanna/flask/__init__.py +2 -2
- vanna/google/__init__.py +2 -1
- vanna/google/bigquery_vector.py +230 -0
- vanna/mistral/mistral.py +8 -6
- {vanna-0.6.5.dist-info → vanna-0.6.6.dist-info}/METADATA +3 -3
- {vanna-0.6.5.dist-info → vanna-0.6.6.dist-info}/RECORD +8 -7
- {vanna-0.6.5.dist-info → vanna-0.6.6.dist-info}/WHEEL +0 -0
vanna/base/base.py
CHANGED
|
@@ -437,7 +437,7 @@ class VannaBase(ABC):
|
|
|
437
437
|
pass
|
|
438
438
|
|
|
439
439
|
@abstractmethod
|
|
440
|
-
def remove_training_data(id: str, **kwargs) -> bool:
|
|
440
|
+
def remove_training_data(self, id: str, **kwargs) -> bool:
|
|
441
441
|
"""
|
|
442
442
|
Example:
|
|
443
443
|
```python
|
|
@@ -1276,15 +1276,10 @@ class VannaBase(ABC):
|
|
|
1276
1276
|
|
|
1277
1277
|
def run_sql_bigquery(sql: str) -> Union[pd.DataFrame, None]:
|
|
1278
1278
|
if conn:
|
|
1279
|
-
|
|
1280
|
-
|
|
1281
|
-
|
|
1282
|
-
|
|
1283
|
-
except GoogleAPIError as error:
|
|
1284
|
-
errors = []
|
|
1285
|
-
for error in error.errors:
|
|
1286
|
-
errors.append(error["message"])
|
|
1287
|
-
raise errors
|
|
1279
|
+
job = conn.query(sql)
|
|
1280
|
+
df = job.result().to_dataframe()
|
|
1281
|
+
return df
|
|
1282
|
+
|
|
1288
1283
|
return None
|
|
1289
1284
|
|
|
1290
1285
|
self.dialect = "BigQuery SQL"
|
vanna/flask/__init__.py
CHANGED
|
@@ -12,9 +12,9 @@ from flasgger import Swagger
|
|
|
12
12
|
from flask import Flask, Response, jsonify, request, send_from_directory
|
|
13
13
|
from flask_sock import Sock
|
|
14
14
|
|
|
15
|
+
from ..base import VannaBase
|
|
15
16
|
from .assets import css_content, html_content, js_content
|
|
16
17
|
from .auth import AuthInterface, NoAuth
|
|
17
|
-
from ..base import VannaBase
|
|
18
18
|
|
|
19
19
|
|
|
20
20
|
class Cache(ABC):
|
|
@@ -1211,7 +1211,7 @@ class VannaFlaskApp(VannaFlaskAPI):
|
|
|
1211
1211
|
self.config["ask_results_correct"] = ask_results_correct
|
|
1212
1212
|
self.config["followup_questions"] = followup_questions
|
|
1213
1213
|
self.config["summarization"] = summarization
|
|
1214
|
-
self.config["function_generation"] = function_generation
|
|
1214
|
+
self.config["function_generation"] = function_generation and hasattr(vn, "get_function")
|
|
1215
1215
|
|
|
1216
1216
|
self.index_html_path = index_html_path
|
|
1217
1217
|
self.assets_folder = assets_folder
|
vanna/google/__init__.py
CHANGED
|
@@ -1 +1,2 @@
|
|
|
1
|
-
from .
|
|
1
|
+
from .bigquery_vector import BigQuery_VectorStore
|
|
2
|
+
from .gemini_chat import GoogleGeminiChat
|
|
@@ -0,0 +1,230 @@
|
|
|
1
|
+
import datetime
|
|
2
|
+
import os
|
|
3
|
+
import uuid
|
|
4
|
+
from typing import List, Optional
|
|
5
|
+
|
|
6
|
+
import pandas as pd
|
|
7
|
+
from google.cloud import bigquery
|
|
8
|
+
|
|
9
|
+
from ..base import VannaBase
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class BigQuery_VectorStore(VannaBase):
|
|
13
|
+
def __init__(self, config: dict, **kwargs):
|
|
14
|
+
self.config = config
|
|
15
|
+
|
|
16
|
+
self.n_results_sql = config.get("n_results_sql", config.get("n_results", 10))
|
|
17
|
+
self.n_results_documentation = config.get("n_results_documentation", config.get("n_results", 10))
|
|
18
|
+
self.n_results_ddl = config.get("n_results_ddl", config.get("n_results", 10))
|
|
19
|
+
|
|
20
|
+
if "api_key" in config or os.getenv("GOOGLE_API_KEY"):
|
|
21
|
+
"""
|
|
22
|
+
If Google api_key is provided through config
|
|
23
|
+
or set as an environment variable, assign it.
|
|
24
|
+
"""
|
|
25
|
+
print("Configuring genai")
|
|
26
|
+
import google.generativeai as genai
|
|
27
|
+
|
|
28
|
+
genai.configure(api_key=config["api_key"])
|
|
29
|
+
|
|
30
|
+
self.genai = genai
|
|
31
|
+
else:
|
|
32
|
+
# Authenticate using VertexAI
|
|
33
|
+
from vertexai.language_models import (
|
|
34
|
+
TextEmbeddingInput,
|
|
35
|
+
TextEmbeddingModel,
|
|
36
|
+
)
|
|
37
|
+
|
|
38
|
+
if self.config.get("project_id"):
|
|
39
|
+
self.project_id = self.config.get("project_id")
|
|
40
|
+
else:
|
|
41
|
+
self.project_id = os.getenv("GOOGLE_CLOUD_PROJECT")
|
|
42
|
+
|
|
43
|
+
if self.project_id is None:
|
|
44
|
+
raise ValueError("Project ID is not set")
|
|
45
|
+
|
|
46
|
+
self.conn = bigquery.Client(project=self.project_id)
|
|
47
|
+
|
|
48
|
+
dataset_name = self.config.get('bigquery_dataset_name', 'vanna_managed')
|
|
49
|
+
self.dataset_id = f"{self.project_id}.{dataset_name}"
|
|
50
|
+
dataset = bigquery.Dataset(self.dataset_id)
|
|
51
|
+
|
|
52
|
+
try:
|
|
53
|
+
self.conn.get_dataset(self.dataset_id) # Make an API request.
|
|
54
|
+
print(f"Dataset {self.dataset_id} already exists")
|
|
55
|
+
except Exception:
|
|
56
|
+
# Dataset does not exist, create it
|
|
57
|
+
dataset.location = "US"
|
|
58
|
+
self.conn.create_dataset(dataset, timeout=30) # Make an API request.
|
|
59
|
+
print(f"Created dataset {self.dataset_id}")
|
|
60
|
+
|
|
61
|
+
# Create a table called training_data in the dataset that contains the columns:
|
|
62
|
+
# id, training_data_type, question, content, embedding, created_at
|
|
63
|
+
|
|
64
|
+
self.table_id = f"{self.dataset_id}.training_data"
|
|
65
|
+
schema = [
|
|
66
|
+
bigquery.SchemaField("id", "STRING", mode="REQUIRED"),
|
|
67
|
+
bigquery.SchemaField("training_data_type", "STRING", mode="REQUIRED"),
|
|
68
|
+
bigquery.SchemaField("question", "STRING", mode="REQUIRED"),
|
|
69
|
+
bigquery.SchemaField("content", "STRING", mode="REQUIRED"),
|
|
70
|
+
bigquery.SchemaField("embedding", "FLOAT64", mode="REPEATED"),
|
|
71
|
+
bigquery.SchemaField("created_at", "TIMESTAMP", mode="REQUIRED"),
|
|
72
|
+
]
|
|
73
|
+
|
|
74
|
+
table = bigquery.Table(self.table_id, schema=schema)
|
|
75
|
+
|
|
76
|
+
try:
|
|
77
|
+
self.conn.get_table(self.table_id) # Make an API request.
|
|
78
|
+
print(f"Table {self.table_id} already exists")
|
|
79
|
+
except Exception:
|
|
80
|
+
# Table does not exist, create it
|
|
81
|
+
self.conn.create_table(table, timeout=30) # Make an API request.
|
|
82
|
+
print(f"Created table {self.table_id}")
|
|
83
|
+
|
|
84
|
+
# Create VECTOR INDEX IF NOT EXISTS
|
|
85
|
+
# TODO: This requires 5000 rows before it can be created
|
|
86
|
+
# vector_index_query = f"""
|
|
87
|
+
# CREATE VECTOR INDEX IF NOT EXISTS my_index
|
|
88
|
+
# ON `{self.table_id}`(embedding)
|
|
89
|
+
# OPTIONS(
|
|
90
|
+
# distance_type='COSINE',
|
|
91
|
+
# index_type='IVF',
|
|
92
|
+
# ivf_options='{{"num_lists": 1000}}'
|
|
93
|
+
# )
|
|
94
|
+
# """
|
|
95
|
+
|
|
96
|
+
# try:
|
|
97
|
+
# self.conn.query(vector_index_query).result() # Make an API request.
|
|
98
|
+
# print(f"Vector index on {self.table_id} created or already exists")
|
|
99
|
+
# except Exception as e:
|
|
100
|
+
# print(f"Failed to create vector index: {e}")
|
|
101
|
+
|
|
102
|
+
def store_training_data(self, training_data_type: str, question: str, content: str, embedding: List[float], **kwargs) -> str:
|
|
103
|
+
id = str(uuid.uuid4())
|
|
104
|
+
created_at = datetime.datetime.now()
|
|
105
|
+
self.conn.insert_rows_json(self.table_id, [{
|
|
106
|
+
"id": id,
|
|
107
|
+
"training_data_type": training_data_type,
|
|
108
|
+
"question": question,
|
|
109
|
+
"content": content,
|
|
110
|
+
"embedding": embedding,
|
|
111
|
+
"created_at": created_at.isoformat()
|
|
112
|
+
}])
|
|
113
|
+
|
|
114
|
+
return id
|
|
115
|
+
|
|
116
|
+
def fetch_similar_training_data(self, training_data_type: str, question: str, n_results, **kwargs) -> pd.DataFrame:
|
|
117
|
+
question_embedding = self.generate_question_embedding(question)
|
|
118
|
+
|
|
119
|
+
query = f"""
|
|
120
|
+
SELECT
|
|
121
|
+
base.id as id,
|
|
122
|
+
base.question as question,
|
|
123
|
+
base.training_data_type as training_data_type,
|
|
124
|
+
base.content as content,
|
|
125
|
+
distance
|
|
126
|
+
FROM
|
|
127
|
+
VECTOR_SEARCH(
|
|
128
|
+
TABLE `{self.table_id}`,
|
|
129
|
+
'embedding',
|
|
130
|
+
(SELECT * FROM UNNEST([STRUCT({question_embedding})])),
|
|
131
|
+
top_k => 5,
|
|
132
|
+
distance_type => 'COSINE',
|
|
133
|
+
options => '{{"use_brute_force":true}}'
|
|
134
|
+
)
|
|
135
|
+
WHERE
|
|
136
|
+
base.training_data_type = '{training_data_type}'
|
|
137
|
+
"""
|
|
138
|
+
|
|
139
|
+
results = self.conn.query(query).result().to_dataframe()
|
|
140
|
+
return results
|
|
141
|
+
|
|
142
|
+
def generate_question_embedding(self, data: str, **kwargs) -> List[float]:
|
|
143
|
+
result = self.genai.embed_content(
|
|
144
|
+
model="models/text-embedding-004",
|
|
145
|
+
content=data,
|
|
146
|
+
task_type="retrieval_query")
|
|
147
|
+
|
|
148
|
+
if 'embedding' in result:
|
|
149
|
+
return result['embedding']
|
|
150
|
+
else:
|
|
151
|
+
raise ValueError("No embeddings returned")
|
|
152
|
+
|
|
153
|
+
def generate_storage_embedding(self, data: str, **kwargs) -> List[float]:
|
|
154
|
+
result = self.genai.embed_content(
|
|
155
|
+
model="models/text-embedding-004",
|
|
156
|
+
content=data,
|
|
157
|
+
task_type="retrieval_document")
|
|
158
|
+
|
|
159
|
+
if 'embedding' in result:
|
|
160
|
+
return result['embedding']
|
|
161
|
+
else:
|
|
162
|
+
raise ValueError("No embeddings returned")
|
|
163
|
+
|
|
164
|
+
# task = "RETRIEVAL_DOCUMENT"
|
|
165
|
+
# inputs = [TextEmbeddingInput(data, task)]
|
|
166
|
+
# embeddings = self.vertex_embedding_model.get_embeddings(inputs)
|
|
167
|
+
|
|
168
|
+
# if len(embeddings) == 0:
|
|
169
|
+
# raise ValueError("No embeddings returned")
|
|
170
|
+
|
|
171
|
+
# return embeddings[0].values
|
|
172
|
+
|
|
173
|
+
return result
|
|
174
|
+
|
|
175
|
+
def generate_embedding(self, data: str, **kwargs) -> List[float]:
|
|
176
|
+
return self.generate_storage_embedding(data, **kwargs)
|
|
177
|
+
|
|
178
|
+
def get_similar_question_sql(self, question: str, **kwargs) -> list:
|
|
179
|
+
df = self.fetch_similar_training_data(training_data_type="sql", question=question, n_results=self.n_results_sql)
|
|
180
|
+
|
|
181
|
+
# Return a list of dictionaries with only question, sql fields. The content field needs to be renamed to sql
|
|
182
|
+
return df.rename(columns={"content": "sql"})[["question", "sql"]].to_dict(orient="records")
|
|
183
|
+
|
|
184
|
+
def get_related_ddl(self, question: str, **kwargs) -> list:
|
|
185
|
+
df = self.fetch_similar_training_data(training_data_type="ddl", question=question, n_results=self.n_results_ddl)
|
|
186
|
+
|
|
187
|
+
# Return a list of strings of the content
|
|
188
|
+
return df["content"].tolist()
|
|
189
|
+
|
|
190
|
+
def get_related_documentation(self, question: str, **kwargs) -> list:
|
|
191
|
+
df = self.fetch_similar_training_data(training_data_type="documentation", question=question, n_results=self.n_results_documentation)
|
|
192
|
+
|
|
193
|
+
# Return a list of strings of the content
|
|
194
|
+
return df["content"].tolist()
|
|
195
|
+
|
|
196
|
+
def add_question_sql(self, question: str, sql: str, **kwargs) -> str:
|
|
197
|
+
doc = {
|
|
198
|
+
"question": question,
|
|
199
|
+
"sql": sql
|
|
200
|
+
}
|
|
201
|
+
|
|
202
|
+
embedding = self.generate_embedding(str(doc))
|
|
203
|
+
|
|
204
|
+
return self.store_training_data(training_data_type="sql", question=question, content=sql, embedding=embedding)
|
|
205
|
+
|
|
206
|
+
def add_ddl(self, ddl: str, **kwargs) -> str:
|
|
207
|
+
embedding = self.generate_embedding(ddl)
|
|
208
|
+
|
|
209
|
+
return self.store_training_data(training_data_type="ddl", question="", content=ddl, embedding=embedding)
|
|
210
|
+
|
|
211
|
+
def add_documentation(self, documentation: str, **kwargs) -> str:
|
|
212
|
+
embedding = self.generate_embedding(documentation)
|
|
213
|
+
|
|
214
|
+
return self.store_training_data(training_data_type="documentation", question="", content=documentation, embedding=embedding)
|
|
215
|
+
|
|
216
|
+
def get_training_data(self, **kwargs) -> pd.DataFrame:
|
|
217
|
+
query = f"SELECT id, training_data_type, question, content FROM `{self.table_id}`"
|
|
218
|
+
|
|
219
|
+
return self.conn.query(query).result().to_dataframe()
|
|
220
|
+
|
|
221
|
+
def remove_training_data(self, id: str, **kwargs) -> bool:
|
|
222
|
+
query = f"DELETE FROM `{self.table_id}` WHERE id = '{id}'"
|
|
223
|
+
|
|
224
|
+
try:
|
|
225
|
+
self.conn.query(query).result()
|
|
226
|
+
return True
|
|
227
|
+
|
|
228
|
+
except Exception as e:
|
|
229
|
+
print(f"Failed to remove training data: {e}")
|
|
230
|
+
return False
|
vanna/mistral/mistral.py
CHANGED
|
@@ -1,5 +1,7 @@
|
|
|
1
|
-
|
|
2
|
-
|
|
1
|
+
import os
|
|
2
|
+
|
|
3
|
+
from mistralai import Mistral as MistralClient
|
|
4
|
+
from mistralai import UserMessage
|
|
3
5
|
|
|
4
6
|
from ..base import VannaBase
|
|
5
7
|
|
|
@@ -23,13 +25,13 @@ class Mistral(VannaBase):
|
|
|
23
25
|
self.model = model
|
|
24
26
|
|
|
25
27
|
def system_message(self, message: str) -> any:
|
|
26
|
-
return
|
|
28
|
+
return {"role": "system", "content": message}
|
|
27
29
|
|
|
28
30
|
def user_message(self, message: str) -> any:
|
|
29
|
-
return
|
|
31
|
+
return {"role": "user", "content": message}
|
|
30
32
|
|
|
31
33
|
def assistant_message(self, message: str) -> any:
|
|
32
|
-
return
|
|
34
|
+
return {"role": "assistant", "content": message}
|
|
33
35
|
|
|
34
36
|
def generate_sql(self, question: str, **kwargs) -> str:
|
|
35
37
|
# Use the super generate_sql
|
|
@@ -41,7 +43,7 @@ class Mistral(VannaBase):
|
|
|
41
43
|
return sql
|
|
42
44
|
|
|
43
45
|
def submit_prompt(self, prompt, **kwargs) -> str:
|
|
44
|
-
chat_response = self.client.chat(
|
|
46
|
+
chat_response = self.client.chat.complete(
|
|
45
47
|
model=self.model,
|
|
46
48
|
messages=prompt,
|
|
47
49
|
)
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: vanna
|
|
3
|
-
Version: 0.6.
|
|
3
|
+
Version: 0.6.6
|
|
4
4
|
Summary: Generate SQL queries from natural language
|
|
5
5
|
Author-email: Zain Hoda <zain@vanna.ai>
|
|
6
6
|
Requires-Python: >=3.9
|
|
@@ -26,7 +26,7 @@ Requires-Dist: snowflake-connector-python ; extra == "all"
|
|
|
26
26
|
Requires-Dist: duckdb ; extra == "all"
|
|
27
27
|
Requires-Dist: openai ; extra == "all"
|
|
28
28
|
Requires-Dist: qianfan ; extra == "all"
|
|
29
|
-
Requires-Dist: mistralai ; extra == "all"
|
|
29
|
+
Requires-Dist: mistralai>=1.0.0 ; extra == "all"
|
|
30
30
|
Requires-Dist: chromadb ; extra == "all"
|
|
31
31
|
Requires-Dist: anthropic ; extra == "all"
|
|
32
32
|
Requires-Dist: zhipuai ; extra == "all"
|
|
@@ -56,7 +56,7 @@ Requires-Dist: google-cloud-aiplatform ; extra == "google"
|
|
|
56
56
|
Requires-Dist: transformers ; extra == "hf"
|
|
57
57
|
Requires-Dist: marqo ; extra == "marqo"
|
|
58
58
|
Requires-Dist: pymilvus[model] ; extra == "milvus"
|
|
59
|
-
Requires-Dist: mistralai ; extra == "mistralai"
|
|
59
|
+
Requires-Dist: mistralai>=1.0.0 ; extra == "mistralai"
|
|
60
60
|
Requires-Dist: PyMySQL ; extra == "mysql"
|
|
61
61
|
Requires-Dist: ollama ; extra == "ollama"
|
|
62
62
|
Requires-Dist: httpx ; extra == "ollama"
|
|
@@ -9,16 +9,17 @@ vanna/advanced/__init__.py,sha256=oDj9g1JbrbCfp4WWdlr_bhgdMqNleyHgr6VXX6DcEbo,65
|
|
|
9
9
|
vanna/anthropic/__init__.py,sha256=85s_2mAyyPxc0T_0JEvYeAkEKWJwkwqoyUwSC5dw9Gk,43
|
|
10
10
|
vanna/anthropic/anthropic_chat.py,sha256=7X3x8SYwDY28aGyBnt0YNRMG8YY1p_t-foMfKGj8_Oo,2627
|
|
11
11
|
vanna/base/__init__.py,sha256=Sl-HM1RRYzAZoSqmL1CZQmF3ZF-byYTCFQP3JZ2A5MU,28
|
|
12
|
-
vanna/base/base.py,sha256=
|
|
12
|
+
vanna/base/base.py,sha256=DrXaJcMhIjD6BEqLu4JNZaZZ8nTM4SppjdvueJjEcko,71463
|
|
13
13
|
vanna/bedrock/__init__.py,sha256=hRT2bgJbHEqViLdL-t9hfjSfFdIOkPU2ADBt-B1En-8,46
|
|
14
14
|
vanna/bedrock/bedrock_converse.py,sha256=Nx5kYm-diAfYmsWAnTP5xnv7V84Og69-AP9b3seIe0E,2869
|
|
15
15
|
vanna/chromadb/__init__.py,sha256=-iL0nW_g4uM8nWKMuWnNePfN4nb9uk8P3WzGvezOqRg,50
|
|
16
16
|
vanna/chromadb/chromadb_vector.py,sha256=eKyPck99Y6Jt-BNWojvxLG-zvAERzLSm-3zY-bKXvaA,8792
|
|
17
17
|
vanna/exceptions/__init__.py,sha256=dJ65xxxZh1lqBeg6nz6Tq_r34jLVmjvBvPO9Q6hFaQ8,685
|
|
18
|
-
vanna/flask/__init__.py,sha256=
|
|
18
|
+
vanna/flask/__init__.py,sha256=cllLWqJ2SYVdvF4CQ-8cipoOdjgkoe0rChWnawtzMyA,42921
|
|
19
19
|
vanna/flask/assets.py,sha256=_UoUr57sS0QL2BuTxAOe9k4yy8T7-fp2NpbRSVtW3IM,451769
|
|
20
20
|
vanna/flask/auth.py,sha256=UpKxh7W5cd43W0LGch0VqhncKwB78L6dtOQkl1JY5T0,1246
|
|
21
|
-
vanna/google/__init__.py,sha256=
|
|
21
|
+
vanna/google/__init__.py,sha256=6D8rDBjKJJm_jpVn9b4Vc2NR-R779ed_bnHhWmxCJXE,92
|
|
22
|
+
vanna/google/bigquery_vector.py,sha256=rkP94Xd1lNYjU1x3MDLvqmGSPUYtDfQwvlqVmX44jyM,8839
|
|
22
23
|
vanna/google/gemini_chat.py,sha256=j1szC2PamMLFrs0Z4lYPS69i017FYICe-mNObNYFBPQ,1576
|
|
23
24
|
vanna/hf/__init__.py,sha256=vD0bIhfLkA1UsvVSF4MAz3Da8aQunkQo3wlDztmMuj0,19
|
|
24
25
|
vanna/hf/hf.py,sha256=N8N5g3xvKDBt3dez2r_U0qATxbl2pN8SVLTZK9CSRA0,3020
|
|
@@ -27,7 +28,7 @@ vanna/marqo/marqo.py,sha256=W7WTtzWp4RJjZVy6OaXHqncUBIPdI4Q7qH7BRCxZ1_A,5242
|
|
|
27
28
|
vanna/milvus/__init__.py,sha256=VBasJG2eTKbJI6CEand7kPLNBrqYrn0QCAhSYVz814s,46
|
|
28
29
|
vanna/milvus/milvus_vector.py,sha256=Mq0eaSh0UcTYhgh8mTm0fvS6rbfL6tQONVnDZGemWoM,11268
|
|
29
30
|
vanna/mistral/__init__.py,sha256=70rTY-69Z2ehkkMj84dNMCukPo6AWdflBGvIB_pztS0,29
|
|
30
|
-
vanna/mistral/mistral.py,sha256=
|
|
31
|
+
vanna/mistral/mistral.py,sha256=rcdgmUSQniLkah2VL23VGYRa9WXpOy_dZN4S0kc__V8,1494
|
|
31
32
|
vanna/mock/__init__.py,sha256=nYR2WfcV5NdwpK3V64QGOWHBGc3ESN9uV68JLS76aRw,97
|
|
32
33
|
vanna/mock/embedding.py,sha256=ggnP7KuPh6dlqeUFtoN8t0J0P7_yRNtn9rIq6h8g8-w,250
|
|
33
34
|
vanna/mock/llm.py,sha256=WpG9f1pKZftPBHqgIYdARKB2Z9DZhOALYOJWoOjjFEc,518
|
|
@@ -53,6 +54,6 @@ vanna/vllm/__init__.py,sha256=aNlUkF9tbURdeXAJ8ytuaaF1gYwcG3ny1MfNl_cwQYg,23
|
|
|
53
54
|
vanna/vllm/vllm.py,sha256=oM_aA-1Chyl7T_Qc_yRKlL6oSX1etsijY9zQdjeMGMQ,2827
|
|
54
55
|
vanna/weaviate/__init__.py,sha256=HL6PAl7ePBAkeG8uln-BmM7IUtWohyTPvDfcPzSGSCg,46
|
|
55
56
|
vanna/weaviate/weaviate_vector.py,sha256=GEiu4Vd9w-7j10aB-zTxJ8gefqe_F-LUUGvttFs1vlg,7539
|
|
56
|
-
vanna-0.6.
|
|
57
|
-
vanna-0.6.
|
|
58
|
-
vanna-0.6.
|
|
57
|
+
vanna-0.6.6.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
|
|
58
|
+
vanna-0.6.6.dist-info/METADATA,sha256=_qy1wVZqQOLplCxZ43KqCIEgL0Wq2X48ekJEACq-0Ng,12011
|
|
59
|
+
vanna-0.6.6.dist-info/RECORD,,
|
|
File without changes
|