vanna 0.4.0__py3-none-any.whl → 0.4.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
vanna/exceptions/__init__.py
CHANGED
|
@@ -1,46 +1,46 @@
|
|
|
1
|
-
class ImproperlyConfigured(
|
|
1
|
+
class ImproperlyConfigured(Exception):
|
|
2
2
|
"""Raise for incorrect configuration."""
|
|
3
3
|
|
|
4
4
|
pass
|
|
5
5
|
|
|
6
6
|
|
|
7
|
-
class DependencyError(
|
|
7
|
+
class DependencyError(Exception):
|
|
8
8
|
"""Raise for missing dependencies."""
|
|
9
9
|
|
|
10
10
|
pass
|
|
11
11
|
|
|
12
12
|
|
|
13
|
-
class ConnectionError(
|
|
13
|
+
class ConnectionError(Exception):
|
|
14
14
|
"""Raise for connection"""
|
|
15
15
|
|
|
16
16
|
pass
|
|
17
17
|
|
|
18
18
|
|
|
19
|
-
class OTPCodeError(
|
|
19
|
+
class OTPCodeError(Exception):
|
|
20
20
|
"""Raise for invalid otp or not able to send it"""
|
|
21
21
|
|
|
22
22
|
pass
|
|
23
23
|
|
|
24
24
|
|
|
25
|
-
class SQLRemoveError(
|
|
25
|
+
class SQLRemoveError(Exception):
|
|
26
26
|
"""Raise when not able to remove SQL"""
|
|
27
27
|
|
|
28
28
|
pass
|
|
29
29
|
|
|
30
30
|
|
|
31
|
-
class ExecutionError(
|
|
31
|
+
class ExecutionError(Exception):
|
|
32
32
|
"""Raise when not able to execute Code"""
|
|
33
33
|
|
|
34
34
|
pass
|
|
35
35
|
|
|
36
36
|
|
|
37
|
-
class ValidationError(
|
|
37
|
+
class ValidationError(Exception):
|
|
38
38
|
"""Raise for validations"""
|
|
39
39
|
|
|
40
40
|
pass
|
|
41
41
|
|
|
42
42
|
|
|
43
|
-
class APIError(
|
|
43
|
+
class APIError(Exception):
|
|
44
44
|
"""Raise for API errors"""
|
|
45
45
|
|
|
46
46
|
pass
|
vanna/qdrant/__init__.py
ADDED
vanna/qdrant/qdrant.py
ADDED
|
@@ -0,0 +1,324 @@
|
|
|
1
|
+
from functools import cached_property
|
|
2
|
+
from typing import List, Tuple
|
|
3
|
+
|
|
4
|
+
import pandas as pd
|
|
5
|
+
from qdrant_client import QdrantClient, grpc, models
|
|
6
|
+
|
|
7
|
+
from ..base import VannaBase
|
|
8
|
+
from ..utils import deterministic_uuid
|
|
9
|
+
|
|
10
|
+
DOCUMENTATION_COLLECTION_NAME = "documentation"
|
|
11
|
+
DDL_COLLECTION_NAME = "ddl"
|
|
12
|
+
SQL_COLLECTION_NAME = "sql"
|
|
13
|
+
SCROLL_SIZE = 1000
|
|
14
|
+
|
|
15
|
+
ID_SUFFIXES = {
|
|
16
|
+
DDL_COLLECTION_NAME: "ddl",
|
|
17
|
+
DOCUMENTATION_COLLECTION_NAME: "doc",
|
|
18
|
+
SQL_COLLECTION_NAME: "sql",
|
|
19
|
+
}
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class Qdrant_VectorStore(VannaBase):
|
|
23
|
+
"""Vectorstore implementation using Qdrant - https://qdrant.tech/"""
|
|
24
|
+
|
|
25
|
+
def __init__(
|
|
26
|
+
self,
|
|
27
|
+
config={},
|
|
28
|
+
):
|
|
29
|
+
"""
|
|
30
|
+
Vectorstore implementation using Qdrant - https://qdrant.tech/
|
|
31
|
+
|
|
32
|
+
Args:
|
|
33
|
+
- config (dict, optional): Dictionary of `Qdrant_VectorStore config` options. Defaults to `{}`.
|
|
34
|
+
- client: A `qdrant_client.QdrantClient` instance. Overrides other config options.
|
|
35
|
+
- location: If `":memory:"` - use in-memory Qdrant instance. If `str` - use it as a `url` parameter.
|
|
36
|
+
- url: Either host or str of "Optional[scheme], host, Optional[port], Optional[prefix]". Eg. `"http://localhost:6333"`.
|
|
37
|
+
- prefer_grpc: If `true` - use gPRC interface whenever possible in custom methods.
|
|
38
|
+
- https: If `true` - use HTTPS(SSL) protocol. Default: `None`
|
|
39
|
+
- api_key: API key for authentication in Qdrant Cloud. Default: `None`
|
|
40
|
+
- timeout: Timeout for REST and gRPC API requests. Defaults to 5 seconds for REST and unlimited for gRPC.
|
|
41
|
+
- path: Persistence path for QdrantLocal. Default: `None`.
|
|
42
|
+
- prefix: Prefix to the REST URL paths. Example: `service/v1` will result in `http://localhost:6333/service/v1/{qdrant-endpoint}`.
|
|
43
|
+
- n_results: Number of results to return from similarity search. Defaults to 10.
|
|
44
|
+
- fastembed_model: [Model](https://qdrant.github.io/fastembed/examples/Supported_Models/#supported-text-embedding-models) to use for `fastembed.TextEmbedding`.
|
|
45
|
+
Defaults to `"BAAI/bge-small-en-v1.5"`.
|
|
46
|
+
- collection_params: Additional parameters to pass to `qdrant_client.QdrantClient#create_collection()` method.
|
|
47
|
+
- distance_metric: Distance metric to use when creating collections. Defaults to `qdrant_client.models.Distance.COSINE`.
|
|
48
|
+
|
|
49
|
+
Raises:
|
|
50
|
+
TypeError: If config["client"] is not a `qdrant_client.QdrantClient` instance
|
|
51
|
+
"""
|
|
52
|
+
VannaBase.__init__(self, config=config)
|
|
53
|
+
client = config.get("client")
|
|
54
|
+
|
|
55
|
+
if client is None:
|
|
56
|
+
self._client = QdrantClient(
|
|
57
|
+
location=config.get("location", None),
|
|
58
|
+
url=config.get("url", None),
|
|
59
|
+
prefer_grpc=config.get("prefer_grpc", False),
|
|
60
|
+
https=config.get("https", None),
|
|
61
|
+
api_key=config.get("api_key", None),
|
|
62
|
+
timeout=config.get("timeout", None),
|
|
63
|
+
path=config.get("path", None),
|
|
64
|
+
prefix=config.get("prefix", None),
|
|
65
|
+
)
|
|
66
|
+
elif not isinstance(client, QdrantClient):
|
|
67
|
+
raise TypeError(
|
|
68
|
+
f"Unsupported client of type {client.__class__} was set in config"
|
|
69
|
+
)
|
|
70
|
+
|
|
71
|
+
else:
|
|
72
|
+
self._client = client
|
|
73
|
+
|
|
74
|
+
self.n_results = config.get("n_results", 10)
|
|
75
|
+
self.fastembed_model = config.get("fastembed_model", "BAAI/bge-small-en-v1.5")
|
|
76
|
+
self.collection_params = config.get("collection_params", {})
|
|
77
|
+
self.distance_metric = config.get("distance_metric", models.Distance.COSINE)
|
|
78
|
+
|
|
79
|
+
self._setup_collections()
|
|
80
|
+
|
|
81
|
+
def add_question_sql(self, question: str, sql: str, **kwargs) -> str:
|
|
82
|
+
question_answer = format("Question: {0}\n\nSQL: {1}", question, sql)
|
|
83
|
+
id = deterministic_uuid(question_answer)
|
|
84
|
+
|
|
85
|
+
self._client.upsert(
|
|
86
|
+
SQL_COLLECTION_NAME,
|
|
87
|
+
points=[
|
|
88
|
+
models.PointStruct(
|
|
89
|
+
id=id,
|
|
90
|
+
vector=self.generate_embedding(question_answer),
|
|
91
|
+
payload={
|
|
92
|
+
"question": question,
|
|
93
|
+
"sql": sql,
|
|
94
|
+
},
|
|
95
|
+
)
|
|
96
|
+
],
|
|
97
|
+
)
|
|
98
|
+
|
|
99
|
+
return self._format_point_id(id, SQL_COLLECTION_NAME)
|
|
100
|
+
|
|
101
|
+
def add_ddl(self, ddl: str, **kwargs) -> str:
|
|
102
|
+
id = deterministic_uuid(ddl)
|
|
103
|
+
self._client.upsert(
|
|
104
|
+
DDL_COLLECTION_NAME,
|
|
105
|
+
points=[
|
|
106
|
+
models.PointStruct(
|
|
107
|
+
id=id,
|
|
108
|
+
vector=self.generate_embedding(ddl),
|
|
109
|
+
payload={
|
|
110
|
+
"ddl": ddl,
|
|
111
|
+
},
|
|
112
|
+
)
|
|
113
|
+
],
|
|
114
|
+
)
|
|
115
|
+
return self._format_point_id(id, DDL_COLLECTION_NAME)
|
|
116
|
+
|
|
117
|
+
def add_documentation(self, documentation: str, **kwargs) -> str:
|
|
118
|
+
id = deterministic_uuid(documentation)
|
|
119
|
+
|
|
120
|
+
self._client.upsert(
|
|
121
|
+
DOCUMENTATION_COLLECTION_NAME,
|
|
122
|
+
points=[
|
|
123
|
+
models.PointStruct(
|
|
124
|
+
id=id,
|
|
125
|
+
vector=self.generate_embedding(documentation),
|
|
126
|
+
payload={
|
|
127
|
+
"documentation": documentation,
|
|
128
|
+
},
|
|
129
|
+
)
|
|
130
|
+
],
|
|
131
|
+
)
|
|
132
|
+
|
|
133
|
+
return self._format_point_id(id, DOCUMENTATION_COLLECTION_NAME)
|
|
134
|
+
|
|
135
|
+
def get_training_data(self, **kwargs) -> pd.DataFrame:
|
|
136
|
+
df = pd.DataFrame()
|
|
137
|
+
|
|
138
|
+
if sql_data := self._get_all_points(SQL_COLLECTION_NAME):
|
|
139
|
+
question_list = [data.payload["question"] for data in sql_data]
|
|
140
|
+
sql_list = [data.payload["sql"] for data in sql_data]
|
|
141
|
+
id_list = [
|
|
142
|
+
self._format_point_id(data.id, SQL_COLLECTION_NAME) for data in sql_data
|
|
143
|
+
]
|
|
144
|
+
|
|
145
|
+
df_sql = pd.DataFrame(
|
|
146
|
+
{
|
|
147
|
+
"id": id_list,
|
|
148
|
+
"question": question_list,
|
|
149
|
+
"content": sql_list,
|
|
150
|
+
}
|
|
151
|
+
)
|
|
152
|
+
|
|
153
|
+
df_sql["training_data_type"] = "sql"
|
|
154
|
+
|
|
155
|
+
df = pd.concat([df, df_sql])
|
|
156
|
+
|
|
157
|
+
if ddl_data := self._get_all_points(DDL_COLLECTION_NAME):
|
|
158
|
+
ddl_list = [data.payload["ddl"] for data in ddl_data]
|
|
159
|
+
id_list = [
|
|
160
|
+
self._format_point_id(data.id, DDL_COLLECTION_NAME) for data in sql_data
|
|
161
|
+
]
|
|
162
|
+
|
|
163
|
+
df_ddl = pd.DataFrame(
|
|
164
|
+
{
|
|
165
|
+
"id": id_list,
|
|
166
|
+
"question": [None for _ in ddl_list],
|
|
167
|
+
"content": ddl_list,
|
|
168
|
+
}
|
|
169
|
+
)
|
|
170
|
+
|
|
171
|
+
df_ddl["training_data_type"] = "ddl"
|
|
172
|
+
|
|
173
|
+
df = pd.concat([df, df_ddl])
|
|
174
|
+
|
|
175
|
+
doc_data = self.documentation_collection.get()
|
|
176
|
+
|
|
177
|
+
if doc_data := self._get_all_points(DOCUMENTATION_COLLECTION_NAME):
|
|
178
|
+
document_list = [data.payload["documentation"] for data in doc_data]
|
|
179
|
+
id_list = [
|
|
180
|
+
self._format_point_id(data.id, DOCUMENTATION_COLLECTION_NAME)
|
|
181
|
+
for data in doc_data
|
|
182
|
+
]
|
|
183
|
+
|
|
184
|
+
df_doc = pd.DataFrame(
|
|
185
|
+
{
|
|
186
|
+
"id": id_list,
|
|
187
|
+
"question": [None for _ in document_list],
|
|
188
|
+
"content": document_list,
|
|
189
|
+
}
|
|
190
|
+
)
|
|
191
|
+
|
|
192
|
+
df_doc["training_data_type"] = "documentation"
|
|
193
|
+
|
|
194
|
+
df = pd.concat([df, df_doc])
|
|
195
|
+
|
|
196
|
+
return df
|
|
197
|
+
|
|
198
|
+
def remove_training_data(self, id: str, **kwargs) -> bool:
|
|
199
|
+
try:
|
|
200
|
+
id, collection_name = self._parse_point_id(id)
|
|
201
|
+
self._client.delete(collection_name, points_selector=[id])
|
|
202
|
+
except ValueError:
|
|
203
|
+
return False
|
|
204
|
+
|
|
205
|
+
def remove_collection(self, collection_name: str) -> bool:
|
|
206
|
+
"""
|
|
207
|
+
This function can reset the collection to empty state.
|
|
208
|
+
|
|
209
|
+
Args:
|
|
210
|
+
collection_name (str): sql or ddl or documentation
|
|
211
|
+
|
|
212
|
+
Returns:
|
|
213
|
+
bool: True if collection is deleted, False otherwise
|
|
214
|
+
"""
|
|
215
|
+
if collection_name in ID_SUFFIXES.keys():
|
|
216
|
+
self._client.delete_collection(collection_name)
|
|
217
|
+
self._setup_collections()
|
|
218
|
+
return True
|
|
219
|
+
else:
|
|
220
|
+
return False
|
|
221
|
+
|
|
222
|
+
@cached_property
|
|
223
|
+
def embeddings_dimension(self):
|
|
224
|
+
return len(self.generate_embedding("ABCDEF"))
|
|
225
|
+
|
|
226
|
+
def get_similar_question_sql(self, question: str, **kwargs) -> list:
|
|
227
|
+
results = self._client.search(
|
|
228
|
+
SQL_COLLECTION_NAME,
|
|
229
|
+
query_vector=self.generate_embedding(question),
|
|
230
|
+
limit=self.n_results,
|
|
231
|
+
with_payload=True,
|
|
232
|
+
)
|
|
233
|
+
|
|
234
|
+
return [dict(result.payload) for result in results]
|
|
235
|
+
|
|
236
|
+
def get_related_ddl(self, question: str, **kwargs) -> list:
|
|
237
|
+
results = self._client.search(
|
|
238
|
+
DDL_COLLECTION_NAME,
|
|
239
|
+
query_vector=self.generate_embedding(question),
|
|
240
|
+
limit=self.n_results,
|
|
241
|
+
with_payload=True,
|
|
242
|
+
)
|
|
243
|
+
|
|
244
|
+
return [result.payload["ddl"] for result in results]
|
|
245
|
+
|
|
246
|
+
def get_related_documentation(self, question: str, **kwargs) -> list:
|
|
247
|
+
results = self._client.search(
|
|
248
|
+
DOCUMENTATION_COLLECTION_NAME,
|
|
249
|
+
query_vector=self.generate_embedding(question),
|
|
250
|
+
limit=self.n_results,
|
|
251
|
+
with_payload=True,
|
|
252
|
+
)
|
|
253
|
+
|
|
254
|
+
return [result.payload["documentation"] for result in results]
|
|
255
|
+
|
|
256
|
+
def generate_embedding(self, data: str, **kwargs) -> List[float]:
|
|
257
|
+
embedding_model = self._client._get_or_init_model(
|
|
258
|
+
model_name=self.fastembed_model
|
|
259
|
+
)
|
|
260
|
+
embedding = next(embedding_model.embed(data))
|
|
261
|
+
|
|
262
|
+
return embedding.tolist()
|
|
263
|
+
|
|
264
|
+
def _get_all_points(self, collection_name: str):
|
|
265
|
+
results: List[models.Record] = []
|
|
266
|
+
next_offset = None
|
|
267
|
+
stop_scrolling = False
|
|
268
|
+
while not stop_scrolling:
|
|
269
|
+
records, next_offset = self._client.scroll(
|
|
270
|
+
collection_name,
|
|
271
|
+
limit=SCROLL_SIZE,
|
|
272
|
+
offset=next_offset,
|
|
273
|
+
with_payload=True,
|
|
274
|
+
with_vectors=False,
|
|
275
|
+
)
|
|
276
|
+
stop_scrolling = next_offset is None or (
|
|
277
|
+
isinstance(next_offset, grpc.PointId)
|
|
278
|
+
and next_offset.num == 0
|
|
279
|
+
and next_offset.uuid == ""
|
|
280
|
+
)
|
|
281
|
+
|
|
282
|
+
results.extend(records)
|
|
283
|
+
|
|
284
|
+
return results
|
|
285
|
+
|
|
286
|
+
def _setup_collections(self):
|
|
287
|
+
if not self._client.collection_exists(SQL_COLLECTION_NAME):
|
|
288
|
+
self._client.create_collection(
|
|
289
|
+
collection_name=SQL_COLLECTION_NAME,
|
|
290
|
+
vectors_config=models.VectorParams(
|
|
291
|
+
size=self.embeddings_dimension,
|
|
292
|
+
distance=self.distance_metric,
|
|
293
|
+
),
|
|
294
|
+
**self.collection_params,
|
|
295
|
+
)
|
|
296
|
+
|
|
297
|
+
if not self._client.collection_exists(DDL_COLLECTION_NAME):
|
|
298
|
+
self._client.create_collection(
|
|
299
|
+
collection_name=DDL_COLLECTION_NAME,
|
|
300
|
+
vectors_config=models.VectorParams(
|
|
301
|
+
size=self.embeddings_dimension,
|
|
302
|
+
distance=self.distance_metric,
|
|
303
|
+
),
|
|
304
|
+
**self.collection_params,
|
|
305
|
+
)
|
|
306
|
+
if not self._client.collection_exists(DOCUMENTATION_COLLECTION_NAME):
|
|
307
|
+
self._client.create_collection(
|
|
308
|
+
collection_name=DOCUMENTATION_COLLECTION_NAME,
|
|
309
|
+
vectors_config=models.VectorParams(
|
|
310
|
+
size=self.embeddings_dimension,
|
|
311
|
+
distance=self.distance_metric,
|
|
312
|
+
),
|
|
313
|
+
**self.collection_params,
|
|
314
|
+
)
|
|
315
|
+
|
|
316
|
+
def _format_point_id(self, id: str, collection_name: str) -> str:
|
|
317
|
+
return "{0}-{1}".format(id, ID_SUFFIXES[collection_name])
|
|
318
|
+
|
|
319
|
+
def _parse_point_id(self, id: str) -> Tuple[str, str]:
|
|
320
|
+
id, suffix = id.rsplit("-", 1)
|
|
321
|
+
for collection_name, suffix in ID_SUFFIXES.items():
|
|
322
|
+
if type == suffix:
|
|
323
|
+
return id, collection_name
|
|
324
|
+
raise ValueError(f"Invalid id {id}")
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: vanna
|
|
3
|
-
Version: 0.4.
|
|
3
|
+
Version: 0.4.2
|
|
4
4
|
Summary: Generate SQL queries from natural language
|
|
5
5
|
Author-email: Zain Hoda <zain@vanna.ai>
|
|
6
6
|
Requires-Python: >=3.9
|
|
@@ -30,6 +30,8 @@ Requires-Dist: zhipuai ; extra == "all"
|
|
|
30
30
|
Requires-Dist: marqo ; extra == "all"
|
|
31
31
|
Requires-Dist: google-generativeai ; extra == "all"
|
|
32
32
|
Requires-Dist: google-cloud-aiplatform ; extra == "all"
|
|
33
|
+
Requires-Dist: qdrant-client ; extra == "all"
|
|
34
|
+
Requires-Dist: fastembed ; extra == "all"
|
|
33
35
|
Requires-Dist: anthropic ; extra == "anthropic"
|
|
34
36
|
Requires-Dist: google-cloud-bigquery ; extra == "bigquery"
|
|
35
37
|
Requires-Dist: chromadb ; extra == "chromadb"
|
|
@@ -43,6 +45,7 @@ Requires-Dist: PyMySQL ; extra == "mysql"
|
|
|
43
45
|
Requires-Dist: openai ; extra == "openai"
|
|
44
46
|
Requires-Dist: psycopg2-binary ; extra == "postgres"
|
|
45
47
|
Requires-Dist: db-dtypes ; extra == "postgres"
|
|
48
|
+
Requires-Dist: qdrant-client ; extra == "qdrant"
|
|
46
49
|
Requires-Dist: snowflake-connector-python ; extra == "snowflake"
|
|
47
50
|
Requires-Dist: tox ; extra == "test"
|
|
48
51
|
Requires-Dist: zhipuai ; extra == "zhipuai"
|
|
@@ -60,6 +63,7 @@ Provides-Extra: mistralai
|
|
|
60
63
|
Provides-Extra: mysql
|
|
61
64
|
Provides-Extra: openai
|
|
62
65
|
Provides-Extra: postgres
|
|
66
|
+
Provides-Extra: qdrant
|
|
63
67
|
Provides-Extra: snowflake
|
|
64
68
|
Provides-Extra: test
|
|
65
69
|
Provides-Extra: zhipuai
|
|
@@ -11,7 +11,7 @@ vanna/base/__init__.py,sha256=Sl-HM1RRYzAZoSqmL1CZQmF3ZF-byYTCFQP3JZ2A5MU,28
|
|
|
11
11
|
vanna/base/base.py,sha256=_2vANGAcUe6IrsEhZyFnE6FdO8NMLylfyGlRI4XujWE,58143
|
|
12
12
|
vanna/chromadb/__init__.py,sha256=-iL0nW_g4uM8nWKMuWnNePfN4nb9uk8P3WzGvezOqRg,50
|
|
13
13
|
vanna/chromadb/chromadb_vector.py,sha256=eKyPck99Y6Jt-BNWojvxLG-zvAERzLSm-3zY-bKXvaA,8792
|
|
14
|
-
vanna/exceptions/__init__.py,sha256=
|
|
14
|
+
vanna/exceptions/__init__.py,sha256=dJ65xxxZh1lqBeg6nz6Tq_r34jLVmjvBvPO9Q6hFaQ8,685
|
|
15
15
|
vanna/flask/__init__.py,sha256=5Du2oK5s-VSLicRPvxMAL1-Gh_jdX847FjJOf5AVapo,23721
|
|
16
16
|
vanna/flask/assets.py,sha256=ZESgn0-XrJl4_YV69Lu7Dr7-Y9Eql7xqb7PsoMzrofw,183889
|
|
17
17
|
vanna/flask/auth.py,sha256=UpKxh7W5cd43W0LGch0VqhncKwB78L6dtOQkl1JY5T0,1246
|
|
@@ -26,9 +26,11 @@ vanna/ollama/ollama.py,sha256=jfW9VQHAcmzDeo4jF3HJjOMYwAWmptknKqEJaQ0MTno,2418
|
|
|
26
26
|
vanna/openai/__init__.py,sha256=tGkeQ7wTIPsando7QhoSHehtoQVdYLwFbKNlSmCmNeQ,86
|
|
27
27
|
vanna/openai/openai_chat.py,sha256=lm-hUsQxu6Q1t06A2csC037zI4VkMk0wFbQ-_Lj74Wg,4764
|
|
28
28
|
vanna/openai/openai_embeddings.py,sha256=g4pNh9LVcYP9wOoO8ecaccDFWmCUYMInebfHucAa2Gc,1260
|
|
29
|
+
vanna/qdrant/__init__.py,sha256=PX_OsDOiPMvwCJ2iGER1drSdQ9AyM8iN5PEBhRb6qqY,73
|
|
30
|
+
vanna/qdrant/qdrant.py,sha256=XlesB0UniR0LmiXvQ8Ct7o19EdCZPuvUgvyzYSlp94c,11940
|
|
29
31
|
vanna/types/__init__.py,sha256=Qhn_YscKtJh7mFPCyCDLa2K8a4ORLMGVnPpTbv9uB2U,4957
|
|
30
32
|
vanna/vannadb/__init__.py,sha256=C6UkYocmO6dmzfPKZaWojN0mI5YlZZ9VIbdcquBE58A,48
|
|
31
33
|
vanna/vannadb/vannadb_vector.py,sha256=9YwTO3Lh5owWQE7KPMBqLp2EkiGV0RC1sEYhslzJzgI,6168
|
|
32
|
-
vanna-0.4.
|
|
33
|
-
vanna-0.4.
|
|
34
|
-
vanna-0.4.
|
|
34
|
+
vanna-0.4.2.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
|
|
35
|
+
vanna-0.4.2.dist-info/METADATA,sha256=czAA6dMiYf7ifLS1PApteW64LKQT5jWGNsG9Ygdfz28,10512
|
|
36
|
+
vanna-0.4.2.dist-info/RECORD,,
|
|
File without changes
|