vanna 0.3.3__py3-none-any.whl → 0.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vanna/ZhipuAI/ZhipuAI_Chat.py +3 -3
- vanna/base/base.py +105 -4
- vanna/chromadb/chromadb_vector.py +21 -15
- vanna/flask/__init__.py +117 -43
- vanna/flask/assets.py +17 -17
- vanna/flask/auth.py +55 -0
- vanna/google/__init__.py +1 -0
- vanna/google/gemini_chat.py +52 -0
- vanna/remote.py +3 -381
- vanna/vannadb/vannadb_vector.py +58 -27
- {vanna-0.3.3.dist-info → vanna-0.4.0.dist-info}/METADATA +6 -1
- {vanna-0.3.3.dist-info → vanna-0.4.0.dist-info}/RECORD +13 -10
- {vanna-0.3.3.dist-info → vanna-0.4.0.dist-info}/WHEEL +0 -0
vanna/flask/auth.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
1
|
+
from abc import ABC, abstractmethod
|
|
2
|
+
|
|
3
|
+
import flask
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
class AuthInterface(ABC):
|
|
7
|
+
@abstractmethod
|
|
8
|
+
def get_user(self, flask_request) -> any:
|
|
9
|
+
pass
|
|
10
|
+
|
|
11
|
+
@abstractmethod
|
|
12
|
+
def is_logged_in(self, user: any) -> bool:
|
|
13
|
+
pass
|
|
14
|
+
|
|
15
|
+
@abstractmethod
|
|
16
|
+
def override_config_for_user(self, user: any, config: dict) -> dict:
|
|
17
|
+
pass
|
|
18
|
+
|
|
19
|
+
@abstractmethod
|
|
20
|
+
def login_form(self) -> str:
|
|
21
|
+
pass
|
|
22
|
+
|
|
23
|
+
@abstractmethod
|
|
24
|
+
def login_handler(self, flask_request) -> str:
|
|
25
|
+
pass
|
|
26
|
+
|
|
27
|
+
@abstractmethod
|
|
28
|
+
def callback_handler(self, flask_request) -> str:
|
|
29
|
+
pass
|
|
30
|
+
|
|
31
|
+
@abstractmethod
|
|
32
|
+
def logout_handler(self, flask_request) -> str:
|
|
33
|
+
pass
|
|
34
|
+
|
|
35
|
+
class NoAuth(AuthInterface):
|
|
36
|
+
def get_user(self, flask_request) -> any:
|
|
37
|
+
return {}
|
|
38
|
+
|
|
39
|
+
def is_logged_in(self, user: any) -> bool:
|
|
40
|
+
return True
|
|
41
|
+
|
|
42
|
+
def override_config_for_user(self, user: any, config: dict) -> dict:
|
|
43
|
+
return config
|
|
44
|
+
|
|
45
|
+
def login_form(self) -> str:
|
|
46
|
+
return ''
|
|
47
|
+
|
|
48
|
+
def login_handler(self, flask_request) -> str:
|
|
49
|
+
return 'No login required'
|
|
50
|
+
|
|
51
|
+
def callback_handler(self, flask_request) -> str:
|
|
52
|
+
return 'No login required'
|
|
53
|
+
|
|
54
|
+
def logout_handler(self, flask_request) -> str:
|
|
55
|
+
return 'No login required'
|
vanna/google/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
1
|
+
from .gemini_chat import GoogleGeminiChat
|
|
@@ -0,0 +1,52 @@
|
|
|
1
|
+
import os
|
|
2
|
+
from ..base import VannaBase
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class GoogleGeminiChat(VannaBase):
|
|
6
|
+
def __init__(self, config=None):
|
|
7
|
+
VannaBase.__init__(self, config=config)
|
|
8
|
+
|
|
9
|
+
# default temperature - can be overrided using config
|
|
10
|
+
self.temperature = 0.7
|
|
11
|
+
|
|
12
|
+
if "temperature" in config:
|
|
13
|
+
self.temperature = config["temperature"]
|
|
14
|
+
|
|
15
|
+
if "model_name" in config:
|
|
16
|
+
model_name = config["model_name"]
|
|
17
|
+
else:
|
|
18
|
+
model_name = "gemini-1.0-pro"
|
|
19
|
+
|
|
20
|
+
self.google_api_key = None
|
|
21
|
+
|
|
22
|
+
if "api_key" in config or os.getenv("GOOGLE_API_KEY"):
|
|
23
|
+
"""
|
|
24
|
+
If Google api_key is provided through config
|
|
25
|
+
or set as an environment variable, assign it.
|
|
26
|
+
"""
|
|
27
|
+
import google.generativeai as genai
|
|
28
|
+
|
|
29
|
+
genai.configure(api_key=config["api_key"])
|
|
30
|
+
self.chat_model = genai.GenerativeModel(model_name)
|
|
31
|
+
else:
|
|
32
|
+
# Authenticate using VertexAI
|
|
33
|
+
from vertexai.preview.generative_models import GenerativeModel
|
|
34
|
+
self.chat_model = GenerativeModel("gemini-pro")
|
|
35
|
+
|
|
36
|
+
def system_message(self, message: str) -> any:
|
|
37
|
+
return message
|
|
38
|
+
|
|
39
|
+
def user_message(self, message: str) -> any:
|
|
40
|
+
return message
|
|
41
|
+
|
|
42
|
+
def assistant_message(self, message: str) -> any:
|
|
43
|
+
return message
|
|
44
|
+
|
|
45
|
+
def submit_prompt(self, prompt, **kwargs) -> str:
|
|
46
|
+
response = self.chat_model.generate_content(
|
|
47
|
+
prompt,
|
|
48
|
+
generation_config={
|
|
49
|
+
"temperature": self.temperature,
|
|
50
|
+
},
|
|
51
|
+
)
|
|
52
|
+
return response.text
|
vanna/remote.py
CHANGED
|
@@ -34,11 +34,13 @@ from .types import (
|
|
|
34
34
|
UserOTP,
|
|
35
35
|
Visibility,
|
|
36
36
|
)
|
|
37
|
+
from .vannadb import VannaDB_VectorStore
|
|
37
38
|
|
|
38
39
|
|
|
39
|
-
class VannaDefault(
|
|
40
|
+
class VannaDefault(VannaDB_VectorStore):
|
|
40
41
|
def __init__(self, model: str, api_key: str, config=None):
|
|
41
42
|
VannaBase.__init__(self, config=config)
|
|
43
|
+
VannaDB_VectorStore.__init__(self, vanna_model=model, vanna_api_key=api_key, config=config)
|
|
42
44
|
|
|
43
45
|
self._model = model
|
|
44
46
|
self._api_key = api_key
|
|
@@ -48,50 +50,6 @@ class VannaDefault(VannaBase):
|
|
|
48
50
|
if config is None or "endpoint" not in config
|
|
49
51
|
else config["endpoint"]
|
|
50
52
|
)
|
|
51
|
-
self._unauthenticated_endpoint = (
|
|
52
|
-
"https://ask.vanna.ai/unauthenticated_rpc"
|
|
53
|
-
if config is None or "unauthenticated_endpoint" not in config
|
|
54
|
-
else config["unauthenticated_endpoint"]
|
|
55
|
-
)
|
|
56
|
-
|
|
57
|
-
def _unauthenticated_rpc_call(self, method, params):
|
|
58
|
-
headers = {
|
|
59
|
-
"Content-Type": "application/json",
|
|
60
|
-
}
|
|
61
|
-
data = {
|
|
62
|
-
"method": method,
|
|
63
|
-
"params": [self._dataclass_to_dict(obj) for obj in params],
|
|
64
|
-
}
|
|
65
|
-
|
|
66
|
-
response = requests.post(
|
|
67
|
-
self._unauthenticated_endpoint, headers=headers, data=json.dumps(data)
|
|
68
|
-
)
|
|
69
|
-
return response.json()
|
|
70
|
-
|
|
71
|
-
def _rpc_call(self, method, params):
|
|
72
|
-
if method != "list_orgs":
|
|
73
|
-
headers = {
|
|
74
|
-
"Content-Type": "application/json",
|
|
75
|
-
"Vanna-Key": self._api_key,
|
|
76
|
-
"Vanna-Org": self._model,
|
|
77
|
-
}
|
|
78
|
-
else:
|
|
79
|
-
headers = {
|
|
80
|
-
"Content-Type": "application/json",
|
|
81
|
-
"Vanna-Key": self._api_key,
|
|
82
|
-
"Vanna-Org": "demo-tpc-h",
|
|
83
|
-
}
|
|
84
|
-
|
|
85
|
-
data = {
|
|
86
|
-
"method": method,
|
|
87
|
-
"params": [self._dataclass_to_dict(obj) for obj in params],
|
|
88
|
-
}
|
|
89
|
-
|
|
90
|
-
response = requests.post(self._endpoint, headers=headers, data=json.dumps(data))
|
|
91
|
-
return response.json()
|
|
92
|
-
|
|
93
|
-
def _dataclass_to_dict(self, obj):
|
|
94
|
-
return dataclasses.asdict(obj)
|
|
95
53
|
|
|
96
54
|
def system_message(self, message: str) -> any:
|
|
97
55
|
return {"role": "system", "content": message}
|
|
@@ -102,299 +60,6 @@ class VannaDefault(VannaBase):
|
|
|
102
60
|
def assistant_message(self, message: str) -> any:
|
|
103
61
|
return {"role": "assistant", "content": message}
|
|
104
62
|
|
|
105
|
-
def get_training_data(self, **kwargs) -> pd.DataFrame:
|
|
106
|
-
"""
|
|
107
|
-
Get the training data for the current model
|
|
108
|
-
|
|
109
|
-
**Example:**
|
|
110
|
-
```python
|
|
111
|
-
training_data = vn.get_training_data()
|
|
112
|
-
```
|
|
113
|
-
|
|
114
|
-
Returns:
|
|
115
|
-
pd.DataFrame or None: The training data, or None if an error occurred.
|
|
116
|
-
|
|
117
|
-
"""
|
|
118
|
-
params = []
|
|
119
|
-
|
|
120
|
-
d = self._rpc_call(method="get_training_data", params=params)
|
|
121
|
-
|
|
122
|
-
if "result" not in d:
|
|
123
|
-
return None
|
|
124
|
-
|
|
125
|
-
# Load the result into a dataclass
|
|
126
|
-
training_data = DataFrameJSON(**d["result"])
|
|
127
|
-
|
|
128
|
-
df = pd.read_json(StringIO(training_data.data))
|
|
129
|
-
|
|
130
|
-
return df
|
|
131
|
-
|
|
132
|
-
def remove_training_data(self, id: str, **kwargs) -> bool:
|
|
133
|
-
"""
|
|
134
|
-
Remove training data from the model
|
|
135
|
-
|
|
136
|
-
**Example:**
|
|
137
|
-
```python
|
|
138
|
-
vn.remove_training_data(id="1-ddl")
|
|
139
|
-
```
|
|
140
|
-
|
|
141
|
-
Args:
|
|
142
|
-
id (str): The ID of the training data to remove.
|
|
143
|
-
"""
|
|
144
|
-
params = [StringData(data=id)]
|
|
145
|
-
|
|
146
|
-
d = self._rpc_call(method="remove_training_data", params=params)
|
|
147
|
-
|
|
148
|
-
if "result" not in d:
|
|
149
|
-
raise Exception(f"Error removing training data")
|
|
150
|
-
|
|
151
|
-
status = Status(**d["result"])
|
|
152
|
-
|
|
153
|
-
if not status.success:
|
|
154
|
-
raise Exception(f"Error removing training data: {status.message}")
|
|
155
|
-
|
|
156
|
-
return status.success
|
|
157
|
-
|
|
158
|
-
def generate_questions(self) -> list[str]:
|
|
159
|
-
"""
|
|
160
|
-
**Example:**
|
|
161
|
-
```python
|
|
162
|
-
vn.generate_questions()
|
|
163
|
-
# ['What is the average salary of employees?', 'What is the total salary of employees?', ...]
|
|
164
|
-
```
|
|
165
|
-
|
|
166
|
-
Generate questions using the Vanna.AI API.
|
|
167
|
-
|
|
168
|
-
Returns:
|
|
169
|
-
List[str] or None: The questions, or None if an error occurred.
|
|
170
|
-
"""
|
|
171
|
-
d = self._rpc_call(method="generate_questions", params=[])
|
|
172
|
-
|
|
173
|
-
if "result" not in d:
|
|
174
|
-
return None
|
|
175
|
-
|
|
176
|
-
# Load the result into a dataclass
|
|
177
|
-
question_string_list = QuestionStringList(**d["result"])
|
|
178
|
-
|
|
179
|
-
return question_string_list.questions
|
|
180
|
-
|
|
181
|
-
def add_ddl(self, ddl: str, **kwargs) -> str:
|
|
182
|
-
"""
|
|
183
|
-
Adds a DDL statement to the model's training data
|
|
184
|
-
|
|
185
|
-
**Example:**
|
|
186
|
-
```python
|
|
187
|
-
vn.add_ddl(
|
|
188
|
-
ddl="CREATE TABLE employees (id INT, name VARCHAR(255), salary INT)"
|
|
189
|
-
)
|
|
190
|
-
```
|
|
191
|
-
|
|
192
|
-
Args:
|
|
193
|
-
ddl (str): The DDL statement to store.
|
|
194
|
-
|
|
195
|
-
Returns:
|
|
196
|
-
str: The ID of the DDL statement.
|
|
197
|
-
"""
|
|
198
|
-
params = [StringData(data=ddl)]
|
|
199
|
-
|
|
200
|
-
d = self._rpc_call(method="add_ddl", params=params)
|
|
201
|
-
|
|
202
|
-
if "result" not in d:
|
|
203
|
-
raise Exception("Error adding DDL", d)
|
|
204
|
-
|
|
205
|
-
status = StatusWithId(**d["result"])
|
|
206
|
-
|
|
207
|
-
return status.id
|
|
208
|
-
|
|
209
|
-
def add_documentation(self, documentation: str, **kwargs) -> str:
|
|
210
|
-
"""
|
|
211
|
-
Adds documentation to the model's training data
|
|
212
|
-
|
|
213
|
-
**Example:**
|
|
214
|
-
```python
|
|
215
|
-
vn.add_documentation(
|
|
216
|
-
documentation="Our organization's definition of sales is the discount price of an item multiplied by the quantity sold."
|
|
217
|
-
)
|
|
218
|
-
```
|
|
219
|
-
|
|
220
|
-
Args:
|
|
221
|
-
documentation (str): The documentation string to store.
|
|
222
|
-
|
|
223
|
-
Returns:
|
|
224
|
-
str: The ID of the documentation string.
|
|
225
|
-
"""
|
|
226
|
-
params = [StringData(data=documentation)]
|
|
227
|
-
|
|
228
|
-
d = self._rpc_call(method="add_documentation", params=params)
|
|
229
|
-
|
|
230
|
-
if "result" not in d:
|
|
231
|
-
raise Exception("Error adding documentation", d)
|
|
232
|
-
|
|
233
|
-
status = StatusWithId(**d["result"])
|
|
234
|
-
|
|
235
|
-
return status.id
|
|
236
|
-
|
|
237
|
-
def add_question_sql(self, question: str, sql: str, **kwargs) -> str:
|
|
238
|
-
"""
|
|
239
|
-
Adds a question and its corresponding SQL query to the model's training data. The preferred way to call this is to use [`vn.train(sql=...)`][vanna.train].
|
|
240
|
-
|
|
241
|
-
**Example:**
|
|
242
|
-
```python
|
|
243
|
-
vn.add_sql(
|
|
244
|
-
question="What is the average salary of employees?",
|
|
245
|
-
sql="SELECT AVG(salary) FROM employees"
|
|
246
|
-
)
|
|
247
|
-
```
|
|
248
|
-
|
|
249
|
-
Args:
|
|
250
|
-
question (str): The question to store.
|
|
251
|
-
sql (str): The SQL query to store.
|
|
252
|
-
tag (Union[str, None]): A tag to associate with the question and SQL query.
|
|
253
|
-
|
|
254
|
-
Returns:
|
|
255
|
-
str: The ID of the question and SQL query.
|
|
256
|
-
"""
|
|
257
|
-
if "tag" in kwargs:
|
|
258
|
-
tag = kwargs["tag"]
|
|
259
|
-
else:
|
|
260
|
-
tag = "Manually Trained"
|
|
261
|
-
|
|
262
|
-
params = [QuestionSQLPair(question=question, sql=sql, tag=tag)]
|
|
263
|
-
|
|
264
|
-
d = self._rpc_call(method="add_sql", params=params)
|
|
265
|
-
|
|
266
|
-
if "result" not in d:
|
|
267
|
-
raise Exception("Error adding question and SQL pair", d)
|
|
268
|
-
|
|
269
|
-
status = StatusWithId(**d["result"])
|
|
270
|
-
|
|
271
|
-
return status.id
|
|
272
|
-
|
|
273
|
-
def generate_embedding(self, data: str, **kwargs) -> list[float]:
|
|
274
|
-
"""
|
|
275
|
-
Not necessary for remote models as embeddings are generated on the server side.
|
|
276
|
-
"""
|
|
277
|
-
pass
|
|
278
|
-
|
|
279
|
-
def generate_plotly_code(
|
|
280
|
-
self, question: str = None, sql: str = None, df_metadata: str = None, **kwargs
|
|
281
|
-
) -> str:
|
|
282
|
-
"""
|
|
283
|
-
**Example:**
|
|
284
|
-
```python
|
|
285
|
-
vn.generate_plotly_code(
|
|
286
|
-
question="What is the average salary of employees?",
|
|
287
|
-
sql="SELECT AVG(salary) FROM employees",
|
|
288
|
-
df_metadata=df.dtypes
|
|
289
|
-
)
|
|
290
|
-
# fig = px.bar(df, x="name", y="salary")
|
|
291
|
-
```
|
|
292
|
-
Generate Plotly code using the Vanna.AI API.
|
|
293
|
-
|
|
294
|
-
Args:
|
|
295
|
-
question (str): The question to generate Plotly code for.
|
|
296
|
-
sql (str): The SQL query to generate Plotly code for.
|
|
297
|
-
df (pd.DataFrame): The dataframe to generate Plotly code for.
|
|
298
|
-
chart_instructions (str): Optional instructions for how to plot the chart.
|
|
299
|
-
|
|
300
|
-
Returns:
|
|
301
|
-
str or None: The Plotly code, or None if an error occurred.
|
|
302
|
-
"""
|
|
303
|
-
if kwargs is not None and "chart_instructions" in kwargs:
|
|
304
|
-
if question is not None:
|
|
305
|
-
question = (
|
|
306
|
-
question
|
|
307
|
-
+ " -- When plotting, follow these instructions: "
|
|
308
|
-
+ kwargs["chart_instructions"]
|
|
309
|
-
)
|
|
310
|
-
else:
|
|
311
|
-
question = (
|
|
312
|
-
"When plotting, follow these instructions: "
|
|
313
|
-
+ kwargs["chart_instructions"]
|
|
314
|
-
)
|
|
315
|
-
|
|
316
|
-
params = [
|
|
317
|
-
DataResult(
|
|
318
|
-
question=question,
|
|
319
|
-
sql=sql,
|
|
320
|
-
table_markdown=df_metadata,
|
|
321
|
-
error=None,
|
|
322
|
-
correction_attempts=0,
|
|
323
|
-
)
|
|
324
|
-
]
|
|
325
|
-
|
|
326
|
-
d = self._rpc_call(method="generate_plotly_code", params=params)
|
|
327
|
-
|
|
328
|
-
if "result" not in d:
|
|
329
|
-
return None
|
|
330
|
-
|
|
331
|
-
# Load the result into a dataclass
|
|
332
|
-
plotly_code = PlotlyResult(**d["result"])
|
|
333
|
-
|
|
334
|
-
return plotly_code.plotly_code
|
|
335
|
-
|
|
336
|
-
def generate_question(self, sql: str, **kwargs) -> str:
|
|
337
|
-
"""
|
|
338
|
-
|
|
339
|
-
**Example:**
|
|
340
|
-
```python
|
|
341
|
-
vn.generate_question(sql="SELECT * FROM students WHERE name = 'John Doe'")
|
|
342
|
-
# 'What is the name of the student?'
|
|
343
|
-
```
|
|
344
|
-
|
|
345
|
-
Generate a question from an SQL query using the Vanna.AI API.
|
|
346
|
-
|
|
347
|
-
Args:
|
|
348
|
-
sql (str): The SQL query to generate a question for.
|
|
349
|
-
|
|
350
|
-
Returns:
|
|
351
|
-
str or None: The question, or None if an error occurred.
|
|
352
|
-
|
|
353
|
-
"""
|
|
354
|
-
params = [
|
|
355
|
-
SQLAnswer(
|
|
356
|
-
raw_answer="",
|
|
357
|
-
prefix="",
|
|
358
|
-
postfix="",
|
|
359
|
-
sql=sql,
|
|
360
|
-
)
|
|
361
|
-
]
|
|
362
|
-
|
|
363
|
-
d = self._rpc_call(method="generate_question", params=params)
|
|
364
|
-
|
|
365
|
-
if "result" not in d:
|
|
366
|
-
return None
|
|
367
|
-
|
|
368
|
-
# Load the result into a dataclass
|
|
369
|
-
question = Question(**d["result"])
|
|
370
|
-
|
|
371
|
-
return question.question
|
|
372
|
-
|
|
373
|
-
def get_sql_prompt(
|
|
374
|
-
self,
|
|
375
|
-
question: str,
|
|
376
|
-
question_sql_list: list,
|
|
377
|
-
ddl_list: list,
|
|
378
|
-
doc_list: list,
|
|
379
|
-
**kwargs,
|
|
380
|
-
):
|
|
381
|
-
"""
|
|
382
|
-
Not necessary for remote models as prompts are generated on the server side.
|
|
383
|
-
"""
|
|
384
|
-
|
|
385
|
-
def get_followup_questions_prompt(
|
|
386
|
-
self,
|
|
387
|
-
question: str,
|
|
388
|
-
df: pd.DataFrame,
|
|
389
|
-
question_sql_list: list,
|
|
390
|
-
ddl_list: list,
|
|
391
|
-
doc_list: list,
|
|
392
|
-
**kwargs,
|
|
393
|
-
):
|
|
394
|
-
"""
|
|
395
|
-
Not necessary for remote models as prompts are generated on the server side.
|
|
396
|
-
"""
|
|
397
|
-
|
|
398
63
|
def submit_prompt(self, prompt, **kwargs) -> str:
|
|
399
64
|
# JSON-ify the prompt
|
|
400
65
|
json_prompt = json.dumps(prompt)
|
|
@@ -410,46 +75,3 @@ class VannaDefault(VannaBase):
|
|
|
410
75
|
results = StringData(**d["result"])
|
|
411
76
|
|
|
412
77
|
return results.data
|
|
413
|
-
|
|
414
|
-
def get_similar_question_sql(self, question: str, **kwargs) -> list:
|
|
415
|
-
"""
|
|
416
|
-
Not necessary for remote models as similar questions are generated on the server side.
|
|
417
|
-
"""
|
|
418
|
-
|
|
419
|
-
def get_related_ddl(self, question: str, **kwargs) -> list:
|
|
420
|
-
"""
|
|
421
|
-
Not necessary for remote models as related DDL statements are generated on the server side.
|
|
422
|
-
"""
|
|
423
|
-
|
|
424
|
-
def get_related_documentation(self, question: str, **kwargs) -> list:
|
|
425
|
-
"""
|
|
426
|
-
Not necessary for remote models as related documentation is generated on the server side.
|
|
427
|
-
"""
|
|
428
|
-
|
|
429
|
-
def generate_sql(self, question: str, **kwargs) -> str:
|
|
430
|
-
"""
|
|
431
|
-
**Example:**
|
|
432
|
-
```python
|
|
433
|
-
vn.generate_sql_from_question(question="What is the average salary of employees?")
|
|
434
|
-
# SELECT AVG(salary) FROM employees
|
|
435
|
-
```
|
|
436
|
-
|
|
437
|
-
Generate an SQL query using the Vanna.AI API.
|
|
438
|
-
|
|
439
|
-
Args:
|
|
440
|
-
question (str): The question to generate an SQL query for.
|
|
441
|
-
|
|
442
|
-
Returns:
|
|
443
|
-
str or None: The SQL query, or None if an error occurred.
|
|
444
|
-
"""
|
|
445
|
-
params = [Question(question=question)]
|
|
446
|
-
|
|
447
|
-
d = self._rpc_call(method="generate_sql_from_question", params=params)
|
|
448
|
-
|
|
449
|
-
if "result" not in d:
|
|
450
|
-
return None
|
|
451
|
-
|
|
452
|
-
# Load the result into a dataclass
|
|
453
|
-
sql_answer = SQLAnswer(**d["result"])
|
|
454
|
-
|
|
455
|
-
return sql_answer.sql
|
vanna/vannadb/vannadb_vector.py
CHANGED
|
@@ -7,14 +7,17 @@ import requests
|
|
|
7
7
|
|
|
8
8
|
from ..base import VannaBase
|
|
9
9
|
from ..types import (
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
10
|
+
DataFrameJSON,
|
|
11
|
+
NewOrganization,
|
|
12
|
+
OrganizationList,
|
|
13
|
+
Question,
|
|
14
|
+
QuestionSQLPair,
|
|
15
|
+
Status,
|
|
16
|
+
StatusWithId,
|
|
17
|
+
StringData,
|
|
18
|
+
TrainingData,
|
|
17
19
|
)
|
|
20
|
+
from ..utils import sanitize_model_name
|
|
18
21
|
|
|
19
22
|
|
|
20
23
|
class VannaDB_VectorStore(VannaBase):
|
|
@@ -29,27 +32,8 @@ class VannaDB_VectorStore(VannaBase):
|
|
|
29
32
|
if config is None or "endpoint" not in config
|
|
30
33
|
else config["endpoint"]
|
|
31
34
|
)
|
|
32
|
-
self._unauthenticated_endpoint = (
|
|
33
|
-
"https://ask.vanna.ai/unauthenticated_rpc"
|
|
34
|
-
if config is None or "unauthenticated_endpoint" not in config
|
|
35
|
-
else config["unauthenticated_endpoint"]
|
|
36
|
-
)
|
|
37
35
|
self.related_training_data = {}
|
|
38
36
|
|
|
39
|
-
def _unauthenticated_rpc_call(self, method, params):
|
|
40
|
-
headers = {
|
|
41
|
-
"Content-Type": "application/json",
|
|
42
|
-
}
|
|
43
|
-
data = {
|
|
44
|
-
"method": method,
|
|
45
|
-
"params": [self._dataclass_to_dict(obj) for obj in params],
|
|
46
|
-
}
|
|
47
|
-
|
|
48
|
-
response = requests.post(
|
|
49
|
-
self._unauthenticated_endpoint, headers=headers, data=json.dumps(data)
|
|
50
|
-
)
|
|
51
|
-
return response.json()
|
|
52
|
-
|
|
53
37
|
def _rpc_call(self, method, params):
|
|
54
38
|
if method != "list_orgs":
|
|
55
39
|
headers = {
|
|
@@ -75,6 +59,53 @@ class VannaDB_VectorStore(VannaBase):
|
|
|
75
59
|
def _dataclass_to_dict(self, obj):
|
|
76
60
|
return dataclasses.asdict(obj)
|
|
77
61
|
|
|
62
|
+
def create_model(self, model: str, **kwargs) -> bool:
|
|
63
|
+
"""
|
|
64
|
+
**Example:**
|
|
65
|
+
```python
|
|
66
|
+
success = vn.create_model("my_model")
|
|
67
|
+
```
|
|
68
|
+
Create a new model.
|
|
69
|
+
|
|
70
|
+
Args:
|
|
71
|
+
model (str): The name of the model to create.
|
|
72
|
+
|
|
73
|
+
Returns:
|
|
74
|
+
bool: True if the model was created, False otherwise.
|
|
75
|
+
"""
|
|
76
|
+
model = sanitize_model_name(model)
|
|
77
|
+
params = [NewOrganization(org_name=model, db_type="")]
|
|
78
|
+
|
|
79
|
+
d = self._rpc_call(method="create_org", params=params)
|
|
80
|
+
|
|
81
|
+
if "result" not in d:
|
|
82
|
+
return False
|
|
83
|
+
|
|
84
|
+
status = Status(**d["result"])
|
|
85
|
+
|
|
86
|
+
return status.success
|
|
87
|
+
|
|
88
|
+
def get_models(self) -> list:
|
|
89
|
+
"""
|
|
90
|
+
**Example:**
|
|
91
|
+
```python
|
|
92
|
+
models = vn.get_models()
|
|
93
|
+
```
|
|
94
|
+
|
|
95
|
+
List the models that belong to the user.
|
|
96
|
+
|
|
97
|
+
Returns:
|
|
98
|
+
List[str]: A list of model names.
|
|
99
|
+
"""
|
|
100
|
+
d = self._rpc_call(method="list_my_models", params=[])
|
|
101
|
+
|
|
102
|
+
if "result" not in d:
|
|
103
|
+
return []
|
|
104
|
+
|
|
105
|
+
orgs = OrganizationList(**d["result"])
|
|
106
|
+
|
|
107
|
+
return orgs.organizations
|
|
108
|
+
|
|
78
109
|
def generate_embedding(self, data: str, **kwargs) -> list[float]:
|
|
79
110
|
# This is done server-side
|
|
80
111
|
pass
|
|
@@ -141,7 +172,7 @@ class VannaDB_VectorStore(VannaBase):
|
|
|
141
172
|
d = self._rpc_call(method="remove_training_data", params=params)
|
|
142
173
|
|
|
143
174
|
if "result" not in d:
|
|
144
|
-
raise Exception(
|
|
175
|
+
raise Exception("Error removing training data")
|
|
145
176
|
|
|
146
177
|
status = Status(**d["result"])
|
|
147
178
|
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: vanna
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.4.0
|
|
4
4
|
Summary: Generate SQL queries from natural language
|
|
5
5
|
Author-email: Zain Hoda <zain@vanna.ai>
|
|
6
6
|
Requires-Python: >=3.9
|
|
@@ -28,11 +28,15 @@ Requires-Dist: chromadb ; extra == "all"
|
|
|
28
28
|
Requires-Dist: anthropic ; extra == "all"
|
|
29
29
|
Requires-Dist: zhipuai ; extra == "all"
|
|
30
30
|
Requires-Dist: marqo ; extra == "all"
|
|
31
|
+
Requires-Dist: google-generativeai ; extra == "all"
|
|
32
|
+
Requires-Dist: google-cloud-aiplatform ; extra == "all"
|
|
31
33
|
Requires-Dist: anthropic ; extra == "anthropic"
|
|
32
34
|
Requires-Dist: google-cloud-bigquery ; extra == "bigquery"
|
|
33
35
|
Requires-Dist: chromadb ; extra == "chromadb"
|
|
34
36
|
Requires-Dist: duckdb ; extra == "duckdb"
|
|
35
37
|
Requires-Dist: google-generativeai ; extra == "gemini"
|
|
38
|
+
Requires-Dist: google-generativeai ; extra == "google"
|
|
39
|
+
Requires-Dist: google-cloud-aiplatform ; extra == "google"
|
|
36
40
|
Requires-Dist: marqo ; extra == "marqo"
|
|
37
41
|
Requires-Dist: mistralai ; extra == "mistralai"
|
|
38
42
|
Requires-Dist: PyMySQL ; extra == "mysql"
|
|
@@ -50,6 +54,7 @@ Provides-Extra: bigquery
|
|
|
50
54
|
Provides-Extra: chromadb
|
|
51
55
|
Provides-Extra: duckdb
|
|
52
56
|
Provides-Extra: gemini
|
|
57
|
+
Provides-Extra: google
|
|
53
58
|
Provides-Extra: marqo
|
|
54
59
|
Provides-Extra: mistralai
|
|
55
60
|
Provides-Extra: mysql
|