valor-lite 0.34.1__py3-none-any.whl → 0.34.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of valor-lite might be problematic. Click here for more details.

@@ -1,6 +1,8 @@
1
1
  import numpy as np
2
2
  from numpy.typing import NDArray
3
3
 
4
+ import valor_lite.classification.numpy_compatibility as npc
5
+
4
6
 
5
7
  def _compute_rocauc(
6
8
  data: NDArray[np.float64],
@@ -56,7 +58,7 @@ def _compute_rocauc(
56
58
  np.maximum.accumulate(tpr, axis=1, out=tpr)
57
59
 
58
60
  # compute rocauc
59
- rocauc = np.trapezoid(x=fpr, y=tpr, axis=1)
61
+ rocauc = npc.trapezoid(x=fpr, y=tpr, axis=1)
60
62
 
61
63
  # compute mean rocauc
62
64
  mean_rocauc = rocauc.mean()
@@ -0,0 +1,13 @@
1
+ import numpy as np
2
+ from numpy.typing import NDArray
3
+
4
+ try:
5
+ _numpy_trapezoid = np.trapezoid # numpy v2
6
+ except AttributeError:
7
+ _numpy_trapezoid = np.trapz # numpy v1
8
+
9
+
10
+ def trapezoid(
11
+ x: NDArray[np.float64], y: NDArray[np.float64], axis: int
12
+ ) -> NDArray[np.float64]:
13
+ return _numpy_trapezoid(x=x, y=y, axis=axis) # type: ignore - NumPy compatibility
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: valor-lite
3
- Version: 0.34.1
3
+ Version: 0.34.2
4
4
  Summary: Evaluate machine learning models.
5
5
  Project-URL: homepage, https://www.striveworks.com
6
6
  Requires-Python: >=3.10
@@ -4,9 +4,10 @@ valor_lite/profiling.py,sha256=TLIROA1qccFw9NoEkMeQcrvvGGO75c4K5yTIWoCUix8,11746
4
4
  valor_lite/schemas.py,sha256=pB0MrPx5qFLbwBWDiOUUm-vmXdWvbJLFCBmKgbcbI5g,198
5
5
  valor_lite/classification/__init__.py,sha256=8MI8bGwCxYGqRP7KxG7ezhYv4qQ5947XGvvlF8WPM5g,392
6
6
  valor_lite/classification/annotation.py,sha256=0aUOvcwBAZgiNOJuyh-pXyNTG7vP7r8CUfnU3OmpUwQ,1113
7
- valor_lite/classification/computation.py,sha256=y0xU2M1vCEJ5P7meiZRSGowKg0tD1zrqO2LzMLTekPg,12194
7
+ valor_lite/classification/computation.py,sha256=CyfeDuxupQXnoRL7t3F6UMll03ZXhNRfZSq0s8QrzAc,12256
8
8
  valor_lite/classification/manager.py,sha256=cZ6-DKao59QqF0JF_U26tBoydpCElAAH8rRyX_Kc6bc,16618
9
9
  valor_lite/classification/metric.py,sha256=_mW3zynmpW8jUIhK2OeX4usdftHgHM9_l7EAbEe2N3w,12288
10
+ valor_lite/classification/numpy_compatibility.py,sha256=roqtTetsm1_HxuaejrthQdydjsRIy-FpXpGb86cLh_E,365
10
11
  valor_lite/classification/utilities.py,sha256=eG-Qhd213uf2GXuuqsPxCgBRBFV-z_ADbzneF1kE368,6964
11
12
  valor_lite/object_detection/__init__.py,sha256=Ql8rju2q7y0Zd9zFvtBJDRhgQFDm1RSYkTsyH3ZE6pA,648
12
13
  valor_lite/object_detection/annotation.py,sha256=x9bsl8b75yvkMByXXiIYI9d9T03olDqtykSvKJc3aFw,7729
@@ -33,7 +34,7 @@ valor_lite/text_generation/llm/instructions.py,sha256=fz2onBZZWcl5W8iy7zEWkPGU9N
33
34
  valor_lite/text_generation/llm/integrations.py,sha256=-rTfdAjq1zH-4ixwYuMQEOQ80pIFzMTe0BYfroVx3Pg,6974
34
35
  valor_lite/text_generation/llm/utilities.py,sha256=bjqatGgtVTcl1PrMwiDKTYPGJXKrBrx7PDtzIblGSys,1178
35
36
  valor_lite/text_generation/llm/validators.py,sha256=Wzr5RlfF58_2wOU-uTw7C8skan_fYdhy4Gfn0jSJ8HM,2700
36
- valor_lite-0.34.1.dist-info/METADATA,sha256=1CDSurHwdrTJMTHvcKF_-JUoztcCSPJTrXuL6DpMDBQ,5062
37
- valor_lite-0.34.1.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
38
- valor_lite-0.34.1.dist-info/top_level.txt,sha256=9ujykxSwpl2Hu0_R95UQTR_l07k9UUTSdrpiqmq6zc4,11
39
- valor_lite-0.34.1.dist-info/RECORD,,
37
+ valor_lite-0.34.2.dist-info/METADATA,sha256=hHwCwG9A_jQzo4tTo_LABVpK3eaFvWExPqEgpT1nQLQ,5062
38
+ valor_lite-0.34.2.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
39
+ valor_lite-0.34.2.dist-info/top_level.txt,sha256=9ujykxSwpl2Hu0_R95UQTR_l07k9UUTSdrpiqmq6zc4,11
40
+ valor_lite-0.34.2.dist-info/RECORD,,