valor-lite 0.33.19__py3-none-any.whl → 0.34.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of valor-lite might be problematic. Click here for more details.
- valor_lite/classification/computation.py +10 -8
- valor_lite/classification/manager.py +3 -3
- valor_lite/classification/utilities.py +1 -0
- valor_lite/object_detection/computation.py +16 -12
- valor_lite/object_detection/manager.py +14 -12
- valor_lite/object_detection/utilities.py +3 -4
- valor_lite/semantic_segmentation/manager.py +2 -1
- valor_lite/semantic_segmentation/utilities.py +1 -0
- valor_lite/text_generation/computation.py +5 -3
- {valor_lite-0.33.19.dist-info → valor_lite-0.34.1.dist-info}/METADATA +19 -33
- {valor_lite-0.33.19.dist-info → valor_lite-0.34.1.dist-info}/RECORD +13 -14
- {valor_lite-0.33.19.dist-info → valor_lite-0.34.1.dist-info}/WHEEL +1 -1
- valor_lite-0.33.19.dist-info/LICENSE +0 -21
- {valor_lite-0.33.19.dist-info → valor_lite-0.34.1.dist-info}/top_level.txt +0 -0
|
@@ -9,7 +9,7 @@ def _compute_rocauc(
|
|
|
9
9
|
n_labels: int,
|
|
10
10
|
mask_matching_labels: NDArray[np.bool_],
|
|
11
11
|
pd_labels: NDArray[np.int32],
|
|
12
|
-
):
|
|
12
|
+
) -> tuple[NDArray[np.float64], float]:
|
|
13
13
|
"""
|
|
14
14
|
Compute ROCAUC and mean ROCAUC.
|
|
15
15
|
"""
|
|
@@ -56,12 +56,12 @@ def _compute_rocauc(
|
|
|
56
56
|
np.maximum.accumulate(tpr, axis=1, out=tpr)
|
|
57
57
|
|
|
58
58
|
# compute rocauc
|
|
59
|
-
rocauc = np.
|
|
59
|
+
rocauc = np.trapezoid(x=fpr, y=tpr, axis=1)
|
|
60
60
|
|
|
61
61
|
# compute mean rocauc
|
|
62
62
|
mean_rocauc = rocauc.mean()
|
|
63
63
|
|
|
64
|
-
return rocauc, mean_rocauc
|
|
64
|
+
return rocauc, mean_rocauc # type: ignore[reportReturnType]
|
|
65
65
|
|
|
66
66
|
|
|
67
67
|
def compute_precision_recall_rocauc(
|
|
@@ -212,7 +212,7 @@ def _count_with_examples(
|
|
|
212
212
|
data: NDArray[np.float64],
|
|
213
213
|
unique_idx: int | list[int],
|
|
214
214
|
label_idx: int | list[int],
|
|
215
|
-
) -> tuple[NDArray[np.float64], NDArray[np.int32], NDArray[np.
|
|
215
|
+
) -> tuple[NDArray[np.float64], NDArray[np.int32], NDArray[np.intp]]:
|
|
216
216
|
"""
|
|
217
217
|
Helper function for counting occurences of unique detailed pairs.
|
|
218
218
|
|
|
@@ -231,7 +231,7 @@ def _count_with_examples(
|
|
|
231
231
|
Examples drawn from the data input.
|
|
232
232
|
NDArray[np.int32]
|
|
233
233
|
Unique label indices.
|
|
234
|
-
NDArray[np.
|
|
234
|
+
NDArray[np.intp]
|
|
235
235
|
Counts for each unique label index.
|
|
236
236
|
"""
|
|
237
237
|
unique_rows, indices = np.unique(
|
|
@@ -288,12 +288,14 @@ def compute_confusion_matrix(
|
|
|
288
288
|
n_labels = label_metadata.shape[0]
|
|
289
289
|
n_scores = score_thresholds.shape[0]
|
|
290
290
|
|
|
291
|
-
confusion_matrix =
|
|
291
|
+
confusion_matrix = np.full(
|
|
292
292
|
(n_scores, n_labels, n_labels, 2 * n_examples + 1),
|
|
293
|
+
fill_value=-1.0,
|
|
293
294
|
dtype=np.float32,
|
|
294
295
|
)
|
|
295
|
-
unmatched_ground_truths =
|
|
296
|
+
unmatched_ground_truths = np.full(
|
|
296
297
|
(n_scores, n_labels, n_examples + 1),
|
|
298
|
+
fill_value=-1,
|
|
297
299
|
dtype=np.int32,
|
|
298
300
|
)
|
|
299
301
|
|
|
@@ -387,4 +389,4 @@ def compute_confusion_matrix(
|
|
|
387
389
|
1 : misprd_label_examples.shape[0] + 1,
|
|
388
390
|
] = misprd_label_examples[:, 0].flatten()
|
|
389
391
|
|
|
390
|
-
return confusion_matrix, unmatched_ground_truths
|
|
392
|
+
return confusion_matrix, unmatched_ground_truths # type: ignore[reportReturnType]
|
|
@@ -4,6 +4,7 @@ from dataclasses import dataclass
|
|
|
4
4
|
import numpy as np
|
|
5
5
|
from numpy.typing import NDArray
|
|
6
6
|
from tqdm import tqdm
|
|
7
|
+
|
|
7
8
|
from valor_lite.classification.annotation import Classification
|
|
8
9
|
from valor_lite.classification.computation import (
|
|
9
10
|
compute_confusion_matrix,
|
|
@@ -38,7 +39,7 @@ filtered_metrics = evaluator.evaluate(filter_mask=filter_mask)
|
|
|
38
39
|
|
|
39
40
|
@dataclass
|
|
40
41
|
class Filter:
|
|
41
|
-
indices: NDArray[np.
|
|
42
|
+
indices: NDArray[np.intp]
|
|
42
43
|
label_metadata: NDArray[np.int32]
|
|
43
44
|
n_datums: int
|
|
44
45
|
|
|
@@ -169,8 +170,7 @@ class Evaluator:
|
|
|
169
170
|
label_metadata_per_datum = self._label_metadata_per_datum.copy()
|
|
170
171
|
label_metadata_per_datum[:, ~mask] = 0
|
|
171
172
|
|
|
172
|
-
label_metadata
|
|
173
|
-
label_metadata = np.transpose(
|
|
173
|
+
label_metadata: NDArray[np.int32] = np.transpose(
|
|
174
174
|
np.sum(
|
|
175
175
|
label_metadata_per_datum,
|
|
176
176
|
axis=1,
|
|
@@ -381,9 +381,9 @@ def compute_precion_recall(
|
|
|
381
381
|
_, indices_gt_unique = np.unique(
|
|
382
382
|
tp_candidates[:, [0, 1, 4]], axis=0, return_index=True
|
|
383
383
|
)
|
|
384
|
-
mask_gt_unique = np.zeros(tp_candidates.shape[0], dtype=
|
|
384
|
+
mask_gt_unique = np.zeros(tp_candidates.shape[0], dtype=np.bool_)
|
|
385
385
|
mask_gt_unique[indices_gt_unique] = True
|
|
386
|
-
true_positives_mask = np.zeros(n_rows, dtype=
|
|
386
|
+
true_positives_mask = np.zeros(n_rows, dtype=np.bool_)
|
|
387
387
|
true_positives_mask[mask_tp_inner] = mask_gt_unique
|
|
388
388
|
|
|
389
389
|
# calculate intermediates
|
|
@@ -452,9 +452,9 @@ def compute_precion_recall(
|
|
|
452
452
|
_, indices_gt_unique = np.unique(
|
|
453
453
|
tp_candidates[:, [0, 1, 4]], axis=0, return_index=True
|
|
454
454
|
)
|
|
455
|
-
mask_gt_unique = np.zeros(tp_candidates.shape[0], dtype=
|
|
455
|
+
mask_gt_unique = np.zeros(tp_candidates.shape[0], dtype=np.bool_)
|
|
456
456
|
mask_gt_unique[indices_gt_unique] = True
|
|
457
|
-
true_positives_mask = np.zeros(n_rows, dtype=
|
|
457
|
+
true_positives_mask = np.zeros(n_rows, dtype=np.bool_)
|
|
458
458
|
true_positives_mask[mask_tp_outer] = mask_gt_unique
|
|
459
459
|
|
|
460
460
|
# count running tp and total for AP
|
|
@@ -501,8 +501,8 @@ def compute_precion_recall(
|
|
|
501
501
|
)
|
|
502
502
|
|
|
503
503
|
# calculate average precision
|
|
504
|
-
running_max_precision = np.zeros((n_ious, n_labels))
|
|
505
|
-
running_max_score = np.zeros((n_labels))
|
|
504
|
+
running_max_precision = np.zeros((n_ious, n_labels), dtype=np.float64)
|
|
505
|
+
running_max_score = np.zeros((n_labels), dtype=np.float64)
|
|
506
506
|
for recall in range(100, -1, -1):
|
|
507
507
|
|
|
508
508
|
# running max precision
|
|
@@ -528,8 +528,12 @@ def compute_precion_recall(
|
|
|
528
528
|
|
|
529
529
|
# calculate mAP and mAR
|
|
530
530
|
if unique_pd_labels.size > 0:
|
|
531
|
-
mAP = average_precision[:, unique_pd_labels].mean(
|
|
532
|
-
|
|
531
|
+
mAP: NDArray[np.float64] = average_precision[:, unique_pd_labels].mean(
|
|
532
|
+
axis=1
|
|
533
|
+
)
|
|
534
|
+
mAR: NDArray[np.float64] = average_recall[:, unique_pd_labels].mean(
|
|
535
|
+
axis=1
|
|
536
|
+
)
|
|
533
537
|
else:
|
|
534
538
|
mAP = np.zeros(n_ious, dtype=np.float64)
|
|
535
539
|
mAR = np.zeros(n_scores, dtype=np.float64)
|
|
@@ -556,7 +560,7 @@ def compute_precion_recall(
|
|
|
556
560
|
)
|
|
557
561
|
|
|
558
562
|
return (
|
|
559
|
-
ap_results,
|
|
563
|
+
ap_results, # type: ignore[reportReturnType]
|
|
560
564
|
ar_results,
|
|
561
565
|
accuracy,
|
|
562
566
|
counts,
|
|
@@ -568,7 +572,7 @@ def _count_with_examples(
|
|
|
568
572
|
data: NDArray[np.float64],
|
|
569
573
|
unique_idx: int | list[int],
|
|
570
574
|
label_idx: int | list[int],
|
|
571
|
-
) -> tuple[NDArray[np.float64], NDArray[np.int32], NDArray[np.
|
|
575
|
+
) -> tuple[NDArray[np.float64], NDArray[np.int32], NDArray[np.intp]]:
|
|
572
576
|
"""
|
|
573
577
|
Helper function for counting occurences of unique detailed pairs.
|
|
574
578
|
|
|
@@ -587,7 +591,7 @@ def _count_with_examples(
|
|
|
587
591
|
Examples drawn from the data input.
|
|
588
592
|
NDArray[np.int32]
|
|
589
593
|
Unique label indices.
|
|
590
|
-
NDArray[np.
|
|
594
|
+
NDArray[np.intp]
|
|
591
595
|
Counts for each unique label index.
|
|
592
596
|
"""
|
|
593
597
|
unique_rows, indices = np.unique(
|
|
@@ -907,4 +911,4 @@ def compute_confusion_matrix(
|
|
|
907
911
|
confusion_matrix,
|
|
908
912
|
unmatched_predictions,
|
|
909
913
|
unmatched_ground_truths,
|
|
910
|
-
)
|
|
914
|
+
) # type: ignore[reportReturnType]
|
|
@@ -4,6 +4,7 @@ from dataclasses import dataclass
|
|
|
4
4
|
import numpy as np
|
|
5
5
|
from numpy.typing import NDArray
|
|
6
6
|
from tqdm import tqdm
|
|
7
|
+
|
|
7
8
|
from valor_lite.object_detection.annotation import Detection
|
|
8
9
|
from valor_lite.object_detection.computation import (
|
|
9
10
|
compute_bbox_iou,
|
|
@@ -42,8 +43,8 @@ filtered_metrics = evaluator.evaluate(iou_thresholds=[0.5], filter_mask=filter_m
|
|
|
42
43
|
|
|
43
44
|
@dataclass
|
|
44
45
|
class Filter:
|
|
45
|
-
ranked_indices: NDArray[np.
|
|
46
|
-
detailed_indices: NDArray[np.
|
|
46
|
+
ranked_indices: NDArray[np.intp]
|
|
47
|
+
detailed_indices: NDArray[np.intp]
|
|
47
48
|
label_metadata: NDArray[np.int32]
|
|
48
49
|
|
|
49
50
|
|
|
@@ -194,8 +195,8 @@ class Evaluator:
|
|
|
194
195
|
|
|
195
196
|
def compute_precision_recall(
|
|
196
197
|
self,
|
|
197
|
-
iou_thresholds: list[float]
|
|
198
|
-
score_thresholds: list[float]
|
|
198
|
+
iou_thresholds: list[float],
|
|
199
|
+
score_thresholds: list[float],
|
|
199
200
|
filter_: Filter | None = None,
|
|
200
201
|
) -> dict[MetricType, list[Metric]]:
|
|
201
202
|
"""
|
|
@@ -239,9 +240,9 @@ class Evaluator:
|
|
|
239
240
|
|
|
240
241
|
def compute_confusion_matrix(
|
|
241
242
|
self,
|
|
242
|
-
iou_thresholds: list[float]
|
|
243
|
-
score_thresholds: list[float]
|
|
244
|
-
number_of_examples: int
|
|
243
|
+
iou_thresholds: list[float],
|
|
244
|
+
score_thresholds: list[float],
|
|
245
|
+
number_of_examples: int,
|
|
245
246
|
filter_: Filter | None = None,
|
|
246
247
|
) -> list[Metric]:
|
|
247
248
|
"""
|
|
@@ -253,7 +254,7 @@ class Evaluator:
|
|
|
253
254
|
A list of IOU thresholds to compute metrics over.
|
|
254
255
|
score_thresholds : list[float]
|
|
255
256
|
A list of score thresholds to compute metrics over.
|
|
256
|
-
number_of_examples : int
|
|
257
|
+
number_of_examples : int
|
|
257
258
|
Maximum number of annotation examples to return in ConfusionMatrix.
|
|
258
259
|
filter_ : Filter, optional
|
|
259
260
|
An optional filter object.
|
|
@@ -294,7 +295,7 @@ class Evaluator:
|
|
|
294
295
|
|
|
295
296
|
def evaluate(
|
|
296
297
|
self,
|
|
297
|
-
iou_thresholds: list[float] = [0.
|
|
298
|
+
iou_thresholds: list[float] = [0.1, 0.5, 0.75],
|
|
298
299
|
score_thresholds: list[float] = [0.5],
|
|
299
300
|
number_of_examples: int = 0,
|
|
300
301
|
filter_: Filter | None = None,
|
|
@@ -304,9 +305,9 @@ class Evaluator:
|
|
|
304
305
|
|
|
305
306
|
Parameters
|
|
306
307
|
----------
|
|
307
|
-
iou_thresholds : list[float]
|
|
308
|
+
iou_thresholds : list[float], default=[0.1, 0.5, 0.75]
|
|
308
309
|
A list of IOU thresholds to compute metrics over.
|
|
309
|
-
score_thresholds : list[float]
|
|
310
|
+
score_thresholds : list[float], default=[0.5]
|
|
310
311
|
A list of score thresholds to compute metrics over.
|
|
311
312
|
number_of_examples : int, default=0
|
|
312
313
|
Maximum number of annotation examples to return in ConfusionMatrix.
|
|
@@ -569,7 +570,8 @@ class DataLoader:
|
|
|
569
570
|
[gt.extrema, pd.extrema]
|
|
570
571
|
for pd in detection.predictions
|
|
571
572
|
for gt in detection.groundtruths
|
|
572
|
-
]
|
|
573
|
+
],
|
|
574
|
+
dtype=np.float64,
|
|
573
575
|
)
|
|
574
576
|
).reshape(len(detection.predictions), len(detection.groundtruths))
|
|
575
577
|
for detection in detections
|
|
@@ -2,6 +2,7 @@ from collections import defaultdict
|
|
|
2
2
|
|
|
3
3
|
import numpy as np
|
|
4
4
|
from numpy.typing import NDArray
|
|
5
|
+
|
|
5
6
|
from valor_lite.object_detection.metric import Metric, MetricType
|
|
6
7
|
|
|
7
8
|
|
|
@@ -136,10 +137,8 @@ def unpack_precision_recall_into_metric_lists(
|
|
|
136
137
|
|
|
137
138
|
metrics[MetricType.PrecisionRecallCurve] = [
|
|
138
139
|
Metric.precision_recall_curve(
|
|
139
|
-
precisions=pr_curves[iou_idx, label_idx, :, 0]
|
|
140
|
-
.
|
|
141
|
-
.tolist(),
|
|
142
|
-
scores=pr_curves[iou_idx, label_idx, :, 1].astype(float).tolist(),
|
|
140
|
+
precisions=pr_curves[iou_idx, label_idx, :, 0].tolist(), # type: ignore[reportArgumentType]
|
|
141
|
+
scores=pr_curves[iou_idx, label_idx, :, 1].tolist(), # type: ignore[reportArgumentType]
|
|
143
142
|
iou_threshold=iou_threshold,
|
|
144
143
|
label=label,
|
|
145
144
|
)
|
|
@@ -4,6 +4,7 @@ from dataclasses import dataclass
|
|
|
4
4
|
import numpy as np
|
|
5
5
|
from numpy.typing import NDArray
|
|
6
6
|
from tqdm import tqdm
|
|
7
|
+
|
|
7
8
|
from valor_lite.semantic_segmentation.annotation import Segmentation
|
|
8
9
|
from valor_lite.semantic_segmentation.computation import (
|
|
9
10
|
compute_intermediate_confusion_matrices,
|
|
@@ -37,7 +38,7 @@ filtered_metrics = evaluator.evaluate(filter_mask=filter_mask)
|
|
|
37
38
|
|
|
38
39
|
@dataclass
|
|
39
40
|
class Filter:
|
|
40
|
-
indices: NDArray[np.
|
|
41
|
+
indices: NDArray[np.intp]
|
|
41
42
|
label_metadata: NDArray[np.int32]
|
|
42
43
|
n_pixels: int
|
|
43
44
|
|
|
@@ -1,6 +1,3 @@
|
|
|
1
|
-
import evaluate
|
|
2
|
-
from nltk.tokenize import RegexpTokenizer
|
|
3
|
-
from nltk.translate import bleu_score
|
|
4
1
|
from valor_lite.text_generation.llm.generation import (
|
|
5
2
|
generate_answer_correctness_verdicts,
|
|
6
3
|
generate_answer_relevance_verdicts,
|
|
@@ -550,6 +547,8 @@ def calculate_rouge_scores(
|
|
|
550
547
|
use_stemmer: bool, default=False
|
|
551
548
|
If True, uses Porter stemmer to strip word suffixes. Defaults to False.
|
|
552
549
|
"""
|
|
550
|
+
import evaluate
|
|
551
|
+
|
|
553
552
|
rouge = evaluate.load("rouge")
|
|
554
553
|
|
|
555
554
|
metrics = rouge.compute(
|
|
@@ -588,6 +587,9 @@ def calculate_sentence_bleu(
|
|
|
588
587
|
higher/lower order ngrams, use customized weights. Example: when accounting
|
|
589
588
|
for up to 5-grams with uniform weights (this is called BLEU-5) use [1/5]*5
|
|
590
589
|
"""
|
|
590
|
+
from nltk.tokenize import RegexpTokenizer
|
|
591
|
+
from nltk.translate import bleu_score
|
|
592
|
+
|
|
591
593
|
if len(weights) == 0:
|
|
592
594
|
raise ValueError("At least one weight should be defined.")
|
|
593
595
|
|
|
@@ -1,50 +1,36 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
2
|
Name: valor-lite
|
|
3
|
-
Version: 0.
|
|
4
|
-
Summary:
|
|
5
|
-
License: MIT License
|
|
6
|
-
|
|
7
|
-
Copyright (c) 2023 Striveworks
|
|
8
|
-
|
|
9
|
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
10
|
-
of this software and associated documentation files (the "Software"), to deal
|
|
11
|
-
in the Software without restriction, including without limitation the rights
|
|
12
|
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
13
|
-
copies of the Software, and to permit persons to whom the Software is
|
|
14
|
-
furnished to do so, subject to the following conditions:
|
|
15
|
-
|
|
16
|
-
The above copyright notice and this permission notice shall be included in all
|
|
17
|
-
copies or substantial portions of the Software.
|
|
18
|
-
|
|
19
|
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
20
|
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
21
|
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
22
|
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
23
|
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
24
|
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
25
|
-
SOFTWARE.
|
|
26
|
-
|
|
3
|
+
Version: 0.34.1
|
|
4
|
+
Summary: Evaluate machine learning models.
|
|
27
5
|
Project-URL: homepage, https://www.striveworks.com
|
|
28
6
|
Requires-Python: >=3.10
|
|
29
7
|
Description-Content-Type: text/markdown
|
|
30
|
-
License-File: LICENSE
|
|
31
|
-
Requires-Dist: evaluate
|
|
32
|
-
Requires-Dist: importlib_metadata; python_version < "3.8"
|
|
33
|
-
Requires-Dist: nltk
|
|
34
8
|
Requires-Dist: numpy
|
|
35
|
-
Requires-Dist: Pillow>=9.1.0
|
|
36
|
-
Requires-Dist: requests
|
|
37
|
-
Requires-Dist: rouge_score
|
|
38
|
-
Requires-Dist: shapely
|
|
39
9
|
Requires-Dist: tqdm
|
|
10
|
+
Requires-Dist: shapely
|
|
11
|
+
Provides-Extra: nlp
|
|
12
|
+
Requires-Dist: evaluate; extra == "nlp"
|
|
13
|
+
Requires-Dist: nltk; extra == "nlp"
|
|
14
|
+
Requires-Dist: rouge_score; extra == "nlp"
|
|
40
15
|
Provides-Extra: mistral
|
|
41
16
|
Requires-Dist: mistralai>=1.0; extra == "mistral"
|
|
42
17
|
Provides-Extra: openai
|
|
43
18
|
Requires-Dist: openai; extra == "openai"
|
|
19
|
+
Provides-Extra: docs
|
|
20
|
+
Requires-Dist: mkdocs; extra == "docs"
|
|
21
|
+
Requires-Dist: mkdocs-material; extra == "docs"
|
|
22
|
+
Requires-Dist: mkdocstrings; extra == "docs"
|
|
23
|
+
Requires-Dist: mkdocstrings-python; extra == "docs"
|
|
24
|
+
Requires-Dist: mkdocs-include-dir-to-nav; extra == "docs"
|
|
25
|
+
Requires-Dist: mkdocs-swagger-ui-tag; extra == "docs"
|
|
44
26
|
Provides-Extra: test
|
|
45
27
|
Requires-Dist: pytest; extra == "test"
|
|
46
28
|
Requires-Dist: coverage; extra == "test"
|
|
47
29
|
Requires-Dist: pre-commit; extra == "test"
|
|
30
|
+
Provides-Extra: benchmark
|
|
31
|
+
Requires-Dist: requests; extra == "benchmark"
|
|
32
|
+
Provides-Extra: dev
|
|
33
|
+
Requires-Dist: valor-lite[benchmark,docs,mistral,nlp,openai,test]; extra == "dev"
|
|
48
34
|
|
|
49
35
|
# valor-lite: Fast, local machine learning evaluation.
|
|
50
36
|
|
|
@@ -4,26 +4,26 @@ valor_lite/profiling.py,sha256=TLIROA1qccFw9NoEkMeQcrvvGGO75c4K5yTIWoCUix8,11746
|
|
|
4
4
|
valor_lite/schemas.py,sha256=pB0MrPx5qFLbwBWDiOUUm-vmXdWvbJLFCBmKgbcbI5g,198
|
|
5
5
|
valor_lite/classification/__init__.py,sha256=8MI8bGwCxYGqRP7KxG7ezhYv4qQ5947XGvvlF8WPM5g,392
|
|
6
6
|
valor_lite/classification/annotation.py,sha256=0aUOvcwBAZgiNOJuyh-pXyNTG7vP7r8CUfnU3OmpUwQ,1113
|
|
7
|
-
valor_lite/classification/computation.py,sha256=
|
|
8
|
-
valor_lite/classification/manager.py,sha256=
|
|
7
|
+
valor_lite/classification/computation.py,sha256=y0xU2M1vCEJ5P7meiZRSGowKg0tD1zrqO2LzMLTekPg,12194
|
|
8
|
+
valor_lite/classification/manager.py,sha256=cZ6-DKao59QqF0JF_U26tBoydpCElAAH8rRyX_Kc6bc,16618
|
|
9
9
|
valor_lite/classification/metric.py,sha256=_mW3zynmpW8jUIhK2OeX4usdftHgHM9_l7EAbEe2N3w,12288
|
|
10
|
-
valor_lite/classification/utilities.py,sha256=
|
|
10
|
+
valor_lite/classification/utilities.py,sha256=eG-Qhd213uf2GXuuqsPxCgBRBFV-z_ADbzneF1kE368,6964
|
|
11
11
|
valor_lite/object_detection/__init__.py,sha256=Ql8rju2q7y0Zd9zFvtBJDRhgQFDm1RSYkTsyH3ZE6pA,648
|
|
12
12
|
valor_lite/object_detection/annotation.py,sha256=x9bsl8b75yvkMByXXiIYI9d9T03olDqtykSvKJc3aFw,7729
|
|
13
|
-
valor_lite/object_detection/computation.py,sha256=
|
|
14
|
-
valor_lite/object_detection/manager.py,sha256=
|
|
13
|
+
valor_lite/object_detection/computation.py,sha256=zfVTl_TDK3rho3282VcruTvBK6DqbxduP7tE7esMFUY,28345
|
|
14
|
+
valor_lite/object_detection/manager.py,sha256=uo9o0gWBQUkTTgwTluhXk0ouVDW8qiyrqTwJD6PJDKE,23043
|
|
15
15
|
valor_lite/object_detection/metric.py,sha256=npK2sxiwCUTKlRlFym1AlZTvP9herf9lakbsBDwljGM,24901
|
|
16
|
-
valor_lite/object_detection/utilities.py,sha256=
|
|
16
|
+
valor_lite/object_detection/utilities.py,sha256=42RRyP6L3eWtDY_f7qs7f0WTjhcibmUBu2I4yAwupF0,16456
|
|
17
17
|
valor_lite/semantic_segmentation/__init__.py,sha256=BhTUbwbdJa1FdS4ZA3QSIZ8TuJmdGGLGCd5hX6SzKa4,297
|
|
18
18
|
valor_lite/semantic_segmentation/annotation.py,sha256=xd2qJyIeTW8CT_Goyu3Kvl_51b9b6D3WvUfqwShR0Sk,4990
|
|
19
19
|
valor_lite/semantic_segmentation/benchmark.py,sha256=iVdxUo9LgDbbXUa6eRhZ49LOYw-yyr2W4p9FP3KHg0k,3848
|
|
20
20
|
valor_lite/semantic_segmentation/computation.py,sha256=l98h8s9RTWQOB_eg2rconqGL1ZbTS4GMtz69vbyEdQ0,4741
|
|
21
|
-
valor_lite/semantic_segmentation/manager.py,sha256=
|
|
21
|
+
valor_lite/semantic_segmentation/manager.py,sha256=p0RuV27S1NTBeYZD6G9dSdOcl3yuRLrjL_SMUjEgRXE,14322
|
|
22
22
|
valor_lite/semantic_segmentation/metric.py,sha256=T9RfPJf4WgqGQTXYvSy08vJG5bjXXJnyYZeW0mlxMa8,7132
|
|
23
|
-
valor_lite/semantic_segmentation/utilities.py,sha256=
|
|
23
|
+
valor_lite/semantic_segmentation/utilities.py,sha256=UD0X-iCWMR8Rmw2YaP4HM3lxwhYwo-yNGzF-taAJ8RA,2959
|
|
24
24
|
valor_lite/text_generation/__init__.py,sha256=pGhpWCSZjLM0pPHCtPykAfos55B8ie3mi9EzbNxfj-U,356
|
|
25
25
|
valor_lite/text_generation/annotation.py,sha256=O5aXiwCS4WjA-fqn4ly-O0MsTHoIOmqxqCaAp9IeI3M,1270
|
|
26
|
-
valor_lite/text_generation/computation.py,sha256=
|
|
26
|
+
valor_lite/text_generation/computation.py,sha256=hGDkPfzWY9SDTdozd-nArexJ3ZSNlCIWqHGoD8vO2Cc,18652
|
|
27
27
|
valor_lite/text_generation/manager.py,sha256=C4QwvronGHXmYSkaRmUGy7TN0C0aeyDx9Hb-ClNYXK4,24810
|
|
28
28
|
valor_lite/text_generation/metric.py,sha256=C9gbWejjOJ23JVLecuUhYW5rkx30NUCfRtgsM46uMds,10409
|
|
29
29
|
valor_lite/text_generation/llm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -33,8 +33,7 @@ valor_lite/text_generation/llm/instructions.py,sha256=fz2onBZZWcl5W8iy7zEWkPGU9N
|
|
|
33
33
|
valor_lite/text_generation/llm/integrations.py,sha256=-rTfdAjq1zH-4ixwYuMQEOQ80pIFzMTe0BYfroVx3Pg,6974
|
|
34
34
|
valor_lite/text_generation/llm/utilities.py,sha256=bjqatGgtVTcl1PrMwiDKTYPGJXKrBrx7PDtzIblGSys,1178
|
|
35
35
|
valor_lite/text_generation/llm/validators.py,sha256=Wzr5RlfF58_2wOU-uTw7C8skan_fYdhy4Gfn0jSJ8HM,2700
|
|
36
|
-
valor_lite-0.
|
|
37
|
-
valor_lite-0.
|
|
38
|
-
valor_lite-0.
|
|
39
|
-
valor_lite-0.
|
|
40
|
-
valor_lite-0.33.19.dist-info/RECORD,,
|
|
36
|
+
valor_lite-0.34.1.dist-info/METADATA,sha256=1CDSurHwdrTJMTHvcKF_-JUoztcCSPJTrXuL6DpMDBQ,5062
|
|
37
|
+
valor_lite-0.34.1.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
|
|
38
|
+
valor_lite-0.34.1.dist-info/top_level.txt,sha256=9ujykxSwpl2Hu0_R95UQTR_l07k9UUTSdrpiqmq6zc4,11
|
|
39
|
+
valor_lite-0.34.1.dist-info/RECORD,,
|
|
@@ -1,21 +0,0 @@
|
|
|
1
|
-
MIT License
|
|
2
|
-
|
|
3
|
-
Copyright (c) 2023 Striveworks
|
|
4
|
-
|
|
5
|
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
-
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
-
in the Software without restriction, including without limitation the rights
|
|
8
|
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
-
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
-
furnished to do so, subject to the following conditions:
|
|
11
|
-
|
|
12
|
-
The above copyright notice and this permission notice shall be included in all
|
|
13
|
-
copies or substantial portions of the Software.
|
|
14
|
-
|
|
15
|
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
-
SOFTWARE.
|
|
File without changes
|