valor-lite 0.33.0__py3-none-any.whl → 0.33.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -19,7 +19,7 @@ class MetricType(str, Enum):
19
19
  ARAveragedOverScores = "ARAveragedOverScores"
20
20
  mARAveragedOverScores = "mARAveragedOverScores"
21
21
  PrecisionRecallCurve = "PrecisionRecallCurve"
22
- DetailedPrecisionRecallCurve = "DetailedPrecisionRecallCurve"
22
+ DetailedCounts = "DetailedCounts"
23
23
 
24
24
 
25
25
  @dataclass
@@ -28,8 +28,8 @@ class Counts:
28
28
  fp: int
29
29
  fn: int
30
30
  label: tuple[str, str]
31
- iou: float
32
- score: float
31
+ iou_threshold: float
32
+ score_threshold: float
33
33
 
34
34
  @property
35
35
  def metric(self) -> Metric:
@@ -41,8 +41,8 @@ class Counts:
41
41
  "fn": self.fn,
42
42
  },
43
43
  parameters={
44
- "iou": self.iou,
45
- "score": self.score,
44
+ "iou_threshold": self.iou_threshold,
45
+ "score_threshold": self.score_threshold,
46
46
  "label": {
47
47
  "key": self.label[0],
48
48
  "value": self.label[1],
@@ -58,8 +58,8 @@ class Counts:
58
58
  class ClassMetric:
59
59
  value: float
60
60
  label: tuple[str, str]
61
- iou: float
62
- score: float
61
+ iou_threshold: float
62
+ score_threshold: float
63
63
 
64
64
  @property
65
65
  def metric(self) -> Metric:
@@ -67,8 +67,8 @@ class ClassMetric:
67
67
  type=type(self).__name__,
68
68
  value=self.value,
69
69
  parameters={
70
- "iou": self.iou,
71
- "score": self.score,
70
+ "iou_threshold": self.iou_threshold,
71
+ "score_threshold": self.score_threshold,
72
72
  "label": {
73
73
  "key": self.label[0],
74
74
  "value": self.label[1],
@@ -99,7 +99,7 @@ class F1(ClassMetric):
99
99
  @dataclass
100
100
  class AP:
101
101
  value: float
102
- iou: float
102
+ iou_threshold: float
103
103
  label: tuple[str, str]
104
104
 
105
105
  @property
@@ -108,7 +108,7 @@ class AP:
108
108
  type=type(self).__name__,
109
109
  value=self.value,
110
110
  parameters={
111
- "iou": self.iou,
111
+ "iou_threshold": self.iou_threshold,
112
112
  "label": {
113
113
  "key": self.label[0],
114
114
  "value": self.label[1],
@@ -123,7 +123,7 @@ class AP:
123
123
  @dataclass
124
124
  class mAP:
125
125
  value: float
126
- iou: float
126
+ iou_threshold: float
127
127
  label_key: str
128
128
 
129
129
  @property
@@ -132,7 +132,7 @@ class mAP:
132
132
  type=type(self).__name__,
133
133
  value=self.value,
134
134
  parameters={
135
- "iou": self.iou,
135
+ "iou_threshold": self.iou_threshold,
136
136
  "label_key": self.label_key,
137
137
  },
138
138
  )
@@ -144,7 +144,7 @@ class mAP:
144
144
  @dataclass
145
145
  class APAveragedOverIOUs:
146
146
  value: float
147
- ious: list[float]
147
+ iou_thresholds: list[float]
148
148
  label: tuple[str, str]
149
149
 
150
150
  @property
@@ -153,7 +153,7 @@ class APAveragedOverIOUs:
153
153
  type=type(self).__name__,
154
154
  value=self.value,
155
155
  parameters={
156
- "ious": self.ious,
156
+ "iou_thresholds": self.iou_thresholds,
157
157
  "label": {
158
158
  "key": self.label[0],
159
159
  "value": self.label[1],
@@ -168,7 +168,7 @@ class APAveragedOverIOUs:
168
168
  @dataclass
169
169
  class mAPAveragedOverIOUs:
170
170
  value: float
171
- ious: list[float]
171
+ iou_thresholds: list[float]
172
172
  label_key: str
173
173
 
174
174
  @property
@@ -177,7 +177,7 @@ class mAPAveragedOverIOUs:
177
177
  type=type(self).__name__,
178
178
  value=self.value,
179
179
  parameters={
180
- "ious": self.ious,
180
+ "iou_thresholds": self.iou_thresholds,
181
181
  "label_key": self.label_key,
182
182
  },
183
183
  )
@@ -189,8 +189,8 @@ class mAPAveragedOverIOUs:
189
189
  @dataclass
190
190
  class AR:
191
191
  value: float
192
- score: float
193
- ious: list[float]
192
+ score_threshold: float
193
+ iou_thresholds: list[float]
194
194
  label: tuple[str, str]
195
195
 
196
196
  @property
@@ -199,8 +199,8 @@ class AR:
199
199
  type=type(self).__name__,
200
200
  value=self.value,
201
201
  parameters={
202
- "score": self.score,
203
- "ious": self.ious,
202
+ "score_threshold": self.score_threshold,
203
+ "iou_thresholds": self.iou_thresholds,
204
204
  "label": {
205
205
  "key": self.label[0],
206
206
  "value": self.label[1],
@@ -215,8 +215,8 @@ class AR:
215
215
  @dataclass
216
216
  class mAR:
217
217
  value: float
218
- score: float
219
- ious: list[float]
218
+ score_threshold: float
219
+ iou_thresholds: list[float]
220
220
  label_key: str
221
221
 
222
222
  @property
@@ -225,8 +225,8 @@ class mAR:
225
225
  type=type(self).__name__,
226
226
  value=self.value,
227
227
  parameters={
228
- "score": self.score,
229
- "ious": self.ious,
228
+ "score_threshold": self.score_threshold,
229
+ "iou_thresholds": self.iou_thresholds,
230
230
  "label_key": self.label_key,
231
231
  },
232
232
  )
@@ -238,8 +238,8 @@ class mAR:
238
238
  @dataclass
239
239
  class ARAveragedOverScores:
240
240
  value: float
241
- scores: list[float]
242
- ious: list[float]
241
+ score_thresholds: list[float]
242
+ iou_thresholds: list[float]
243
243
  label: tuple[str, str]
244
244
 
245
245
  @property
@@ -248,8 +248,8 @@ class ARAveragedOverScores:
248
248
  type=type(self).__name__,
249
249
  value=self.value,
250
250
  parameters={
251
- "scores": self.scores,
252
- "ious": self.ious,
251
+ "score_thresholds": self.score_thresholds,
252
+ "iou_thresholds": self.iou_thresholds,
253
253
  "label": {
254
254
  "key": self.label[0],
255
255
  "value": self.label[1],
@@ -264,8 +264,8 @@ class ARAveragedOverScores:
264
264
  @dataclass
265
265
  class mARAveragedOverScores:
266
266
  value: float
267
- scores: list[float]
268
- ious: list[float]
267
+ score_thresholds: list[float]
268
+ iou_thresholds: list[float]
269
269
  label_key: str
270
270
 
271
271
  @property
@@ -274,8 +274,8 @@ class mARAveragedOverScores:
274
274
  type=type(self).__name__,
275
275
  value=self.value,
276
276
  parameters={
277
- "scores": self.scores,
278
- "ious": self.ious,
277
+ "score_thresholds": self.score_thresholds,
278
+ "iou_thresholds": self.iou_thresholds,
279
279
  "label_key": self.label_key,
280
280
  },
281
281
  )
@@ -291,7 +291,7 @@ class PrecisionRecallCurve:
291
291
  """
292
292
 
293
293
  precision: list[float]
294
- iou: float
294
+ iou_threshold: float
295
295
  label: tuple[str, str]
296
296
 
297
297
  @property
@@ -300,7 +300,7 @@ class PrecisionRecallCurve:
300
300
  type=type(self).__name__,
301
301
  value=self.precision,
302
302
  parameters={
303
- "iou": self.iou,
303
+ "iou_threshold": self.iou_threshold,
304
304
  "label": {"key": self.label[0], "value": self.label[1]},
305
305
  },
306
306
  )
@@ -310,48 +310,48 @@ class PrecisionRecallCurve:
310
310
 
311
311
 
312
312
  @dataclass
313
- class DetailedPrecisionRecallPoint:
314
- score: float
315
- tp: int
316
- fp_misclassification: int
317
- fp_hallucination: int
318
- fn_misclassification: int
319
- fn_missing_prediction: int
320
- tp_examples: list[str]
321
- fp_misclassification_examples: list[str]
322
- fp_hallucination_examples: list[str]
323
- fn_misclassification_examples: list[str]
324
- fn_missing_prediction_examples: list[str]
325
-
326
- def to_dict(self) -> dict:
327
- return {
328
- "score": self.score,
329
- "tp": self.tp,
330
- "fp_misclassification": self.fp_misclassification,
331
- "fp_hallucination": self.fp_hallucination,
332
- "fn_misclassification": self.fn_misclassification,
333
- "fn_missing_prediction": self.fn_missing_prediction,
334
- "tp_examples": self.tp_examples,
335
- "fp_misclassification_examples": self.fp_misclassification_examples,
336
- "fp_hallucination_examples": self.fp_hallucination_examples,
337
- "fn_misclassification_examples": self.fn_misclassification_examples,
338
- "fn_missing_prediction_examples": self.fn_missing_prediction_examples,
339
- }
340
-
341
-
342
- @dataclass
343
- class DetailedPrecisionRecallCurve:
344
- iou: float
345
- value: list[DetailedPrecisionRecallPoint]
313
+ class DetailedCounts:
314
+ tp: list[int]
315
+ fp_misclassification: list[int]
316
+ fp_hallucination: list[int]
317
+ fn_misclassification: list[int]
318
+ fn_missing_prediction: list[int]
319
+ tp_examples: list[list[str]]
320
+ fp_misclassification_examples: list[list[str]]
321
+ fp_hallucination_examples: list[list[str]]
322
+ fn_misclassification_examples: list[list[str]]
323
+ fn_missing_prediction_examples: list[list[str]]
324
+ score_thresholds: list[float]
325
+ iou_threshold: float
346
326
  label: tuple[str, str]
347
327
 
348
- def to_dict(self) -> dict:
349
- return {
350
- "value": [pt.to_dict() for pt in self.value],
351
- "iou": self.iou,
352
- "label": {
353
- "key": self.label[0],
354
- "value": self.label[1],
328
+ @property
329
+ def metric(self) -> Metric:
330
+ return Metric(
331
+ type=type(self).__name__,
332
+ value={
333
+ "tp": self.tp,
334
+ "fp_misclassification": self.fp_misclassification,
335
+ "fp_hallucination": self.fp_hallucination,
336
+ "fn_misclassification": self.fn_misclassification,
337
+ "fn_missing_prediction": self.fn_missing_prediction,
338
+ "tn": None,
339
+ "tp_examples": self.tp_examples,
340
+ "fp_misclassification_examples": self.fp_misclassification_examples,
341
+ "fp_hallucination_examples": self.fp_hallucination_examples,
342
+ "fn_misclassification_examples": self.fn_misclassification_examples,
343
+ "fn_missing_prediction_examples": self.fn_missing_prediction_examples,
344
+ "tn_examples": None,
355
345
  },
356
- "type": "DetailedPrecisionRecallCurve",
357
- }
346
+ parameters={
347
+ "score_thresholds": self.score_thresholds,
348
+ "iou_threshold": self.iou_threshold,
349
+ "label": {
350
+ "key": self.label[0],
351
+ "value": self.label[1],
352
+ },
353
+ },
354
+ )
355
+
356
+ def to_dict(self) -> dict:
357
+ return self.metric.to_dict()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: valor-lite
3
- Version: 0.33.0
3
+ Version: 0.33.2
4
4
  Summary: Compute valor metrics directly in your client.
5
5
  License: MIT License
6
6
 
@@ -0,0 +1,12 @@
1
+ valor_lite/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ valor_lite/schemas.py,sha256=r4cC10w1xYsA785KmGE4ePeOX3wzEs846vT7QAiVg_I,293
3
+ valor_lite/detection/__init__.py,sha256=WHLHwHoKzXTBjkjC6E1_lhqB7gRWkiGWVWPqkKn-yK8,997
4
+ valor_lite/detection/annotation.py,sha256=ON9iVa33pxysUmZVTCb0wNz-eFX6MDOqDhGDz-ouymc,1466
5
+ valor_lite/detection/computation.py,sha256=L8FIwZ-qxOQnoT7mxgNzLyNyI-Bvga0i-gtbow3hN-o,22575
6
+ valor_lite/detection/manager.py,sha256=Y45Wy3PWi7dQ0VnDERdtpOixUbKVXTZxBcCR92ny0QY,34278
7
+ valor_lite/detection/metric.py,sha256=hHqClS7c71ztoUnfoaW3T7RmGYaVNU1SlM6vUs1P08I,8809
8
+ valor_lite-0.33.2.dist-info/LICENSE,sha256=M0L53VuwfEEqezhHb7NPeYcO_glw7-k4DMLZQ3eRN64,1068
9
+ valor_lite-0.33.2.dist-info/METADATA,sha256=fe-Sj568DB-E9cyC5P8GA_lLjmM1t3MZUHj1f0JF6fM,1842
10
+ valor_lite-0.33.2.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
11
+ valor_lite-0.33.2.dist-info/top_level.txt,sha256=9ujykxSwpl2Hu0_R95UQTR_l07k9UUTSdrpiqmq6zc4,11
12
+ valor_lite-0.33.2.dist-info/RECORD,,
@@ -1,12 +0,0 @@
1
- valor_lite/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- valor_lite/schemas.py,sha256=r4cC10w1xYsA785KmGE4ePeOX3wzEs846vT7QAiVg_I,293
3
- valor_lite/detection/__init__.py,sha256=vkV907Sjx09tgOHpDaLyR_-aFGfu2c1Kpb7hg220vBY,1099
4
- valor_lite/detection/annotation.py,sha256=ON9iVa33pxysUmZVTCb0wNz-eFX6MDOqDhGDz-ouymc,1466
5
- valor_lite/detection/computation.py,sha256=VIYZUeBd3KpwCPDBQCKCa0cY0hVb4mq_yGtY2ZP9gGE,16512
6
- valor_lite/detection/manager.py,sha256=i-C72aQfuakeYFWsERQX-KoOGdGsDMrKMVQsqN82TnY,31527
7
- valor_lite/detection/metric.py,sha256=wn9JAZMNbUIXUvH2C79jNKJswca1QEyXrCfs7isi1hU,8144
8
- valor_lite-0.33.0.dist-info/LICENSE,sha256=M0L53VuwfEEqezhHb7NPeYcO_glw7-k4DMLZQ3eRN64,1068
9
- valor_lite-0.33.0.dist-info/METADATA,sha256=1JyXg3OdEhmSTMWnzQqm2FBOlrpmex3TuizlnkLvdeE,1842
10
- valor_lite-0.33.0.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
11
- valor_lite-0.33.0.dist-info/top_level.txt,sha256=9ujykxSwpl2Hu0_R95UQTR_l07k9UUTSdrpiqmq6zc4,11
12
- valor_lite-0.33.0.dist-info/RECORD,,