valor-lite 0.32.2a2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of valor-lite might be problematic. Click here for more details.
- valor_lite/__init__.py +0 -0
- valor_lite/detection/__init__.py +56 -0
- valor_lite/detection/annotation.py +54 -0
- valor_lite/detection/computation.py +506 -0
- valor_lite/detection/manager.py +845 -0
- valor_lite/detection/metric.py +357 -0
- valor_lite/schemas.py +15 -0
- valor_lite-0.32.2a2.dist-info/LICENSE +21 -0
- valor_lite-0.32.2a2.dist-info/METADATA +40 -0
- valor_lite-0.32.2a2.dist-info/RECORD +12 -0
- valor_lite-0.32.2a2.dist-info/WHEEL +5 -0
- valor_lite-0.32.2a2.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,357 @@
|
|
|
1
|
+
from dataclasses import dataclass
|
|
2
|
+
from enum import Enum
|
|
3
|
+
|
|
4
|
+
from valor_lite.schemas import Metric
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class MetricType(str, Enum):
|
|
8
|
+
Counts = "Counts"
|
|
9
|
+
Accuracy = "Accuracy"
|
|
10
|
+
Precision = "Precision"
|
|
11
|
+
Recall = "Recall"
|
|
12
|
+
F1 = "F1"
|
|
13
|
+
AP = "AP"
|
|
14
|
+
AR = "AR"
|
|
15
|
+
mAP = "mAP"
|
|
16
|
+
mAR = "mAR"
|
|
17
|
+
APAveragedOverIOUs = "APAveragedOverIOUs"
|
|
18
|
+
mAPAveragedOverIOUs = "mAPAveragedOverIOUs"
|
|
19
|
+
ARAveragedOverScores = "ARAveragedOverScores"
|
|
20
|
+
mARAveragedOverScores = "mARAveragedOverScores"
|
|
21
|
+
PrecisionRecallCurve = "PrecisionRecallCurve"
|
|
22
|
+
DetailedPrecisionRecallCurve = "DetailedPrecisionRecallCurve"
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
@dataclass
|
|
26
|
+
class Counts:
|
|
27
|
+
tp: int
|
|
28
|
+
fp: int
|
|
29
|
+
fn: int
|
|
30
|
+
label: tuple[str, str]
|
|
31
|
+
iou: float
|
|
32
|
+
score: float
|
|
33
|
+
|
|
34
|
+
@property
|
|
35
|
+
def metric(self) -> Metric:
|
|
36
|
+
return Metric(
|
|
37
|
+
type=type(self).__name__,
|
|
38
|
+
value={
|
|
39
|
+
"tp": self.tp,
|
|
40
|
+
"fp": self.fp,
|
|
41
|
+
"fn": self.fn,
|
|
42
|
+
},
|
|
43
|
+
parameters={
|
|
44
|
+
"iou": self.iou,
|
|
45
|
+
"score": self.score,
|
|
46
|
+
"label": {
|
|
47
|
+
"key": self.label[0],
|
|
48
|
+
"value": self.label[1],
|
|
49
|
+
},
|
|
50
|
+
},
|
|
51
|
+
)
|
|
52
|
+
|
|
53
|
+
def to_dict(self) -> dict:
|
|
54
|
+
return self.metric.to_dict()
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
@dataclass
|
|
58
|
+
class ClassMetric:
|
|
59
|
+
value: float
|
|
60
|
+
label: tuple[str, str]
|
|
61
|
+
iou: float
|
|
62
|
+
score: float
|
|
63
|
+
|
|
64
|
+
@property
|
|
65
|
+
def metric(self) -> Metric:
|
|
66
|
+
return Metric(
|
|
67
|
+
type=type(self).__name__,
|
|
68
|
+
value=self.value,
|
|
69
|
+
parameters={
|
|
70
|
+
"iou": self.iou,
|
|
71
|
+
"score": self.score,
|
|
72
|
+
"label": {
|
|
73
|
+
"key": self.label[0],
|
|
74
|
+
"value": self.label[1],
|
|
75
|
+
},
|
|
76
|
+
},
|
|
77
|
+
)
|
|
78
|
+
|
|
79
|
+
def to_dict(self) -> dict:
|
|
80
|
+
return self.metric.to_dict()
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
class Precision(ClassMetric):
|
|
84
|
+
pass
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
class Recall(ClassMetric):
|
|
88
|
+
pass
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
class Accuracy(ClassMetric):
|
|
92
|
+
pass
|
|
93
|
+
|
|
94
|
+
|
|
95
|
+
class F1(ClassMetric):
|
|
96
|
+
pass
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
@dataclass
|
|
100
|
+
class AP:
|
|
101
|
+
value: float
|
|
102
|
+
iou: float
|
|
103
|
+
label: tuple[str, str]
|
|
104
|
+
|
|
105
|
+
@property
|
|
106
|
+
def metric(self) -> Metric:
|
|
107
|
+
return Metric(
|
|
108
|
+
type=type(self).__name__,
|
|
109
|
+
value=self.value,
|
|
110
|
+
parameters={
|
|
111
|
+
"iou": self.iou,
|
|
112
|
+
"label": {
|
|
113
|
+
"key": self.label[0],
|
|
114
|
+
"value": self.label[1],
|
|
115
|
+
},
|
|
116
|
+
},
|
|
117
|
+
)
|
|
118
|
+
|
|
119
|
+
def to_dict(self) -> dict:
|
|
120
|
+
return self.metric.to_dict()
|
|
121
|
+
|
|
122
|
+
|
|
123
|
+
@dataclass
|
|
124
|
+
class mAP:
|
|
125
|
+
value: float
|
|
126
|
+
iou: float
|
|
127
|
+
label_key: str
|
|
128
|
+
|
|
129
|
+
@property
|
|
130
|
+
def metric(self) -> Metric:
|
|
131
|
+
return Metric(
|
|
132
|
+
type=type(self).__name__,
|
|
133
|
+
value=self.value,
|
|
134
|
+
parameters={
|
|
135
|
+
"iou": self.iou,
|
|
136
|
+
"label_key": self.label_key,
|
|
137
|
+
},
|
|
138
|
+
)
|
|
139
|
+
|
|
140
|
+
def to_dict(self) -> dict:
|
|
141
|
+
return self.metric.to_dict()
|
|
142
|
+
|
|
143
|
+
|
|
144
|
+
@dataclass
|
|
145
|
+
class APAveragedOverIOUs:
|
|
146
|
+
value: float
|
|
147
|
+
ious: list[float]
|
|
148
|
+
label: tuple[str, str]
|
|
149
|
+
|
|
150
|
+
@property
|
|
151
|
+
def metric(self) -> Metric:
|
|
152
|
+
return Metric(
|
|
153
|
+
type=type(self).__name__,
|
|
154
|
+
value=self.value,
|
|
155
|
+
parameters={
|
|
156
|
+
"ious": self.ious,
|
|
157
|
+
"label": {
|
|
158
|
+
"key": self.label[0],
|
|
159
|
+
"value": self.label[1],
|
|
160
|
+
},
|
|
161
|
+
},
|
|
162
|
+
)
|
|
163
|
+
|
|
164
|
+
def to_dict(self) -> dict:
|
|
165
|
+
return self.metric.to_dict()
|
|
166
|
+
|
|
167
|
+
|
|
168
|
+
@dataclass
|
|
169
|
+
class mAPAveragedOverIOUs:
|
|
170
|
+
value: float
|
|
171
|
+
ious: list[float]
|
|
172
|
+
label_key: str
|
|
173
|
+
|
|
174
|
+
@property
|
|
175
|
+
def metric(self) -> Metric:
|
|
176
|
+
return Metric(
|
|
177
|
+
type=type(self).__name__,
|
|
178
|
+
value=self.value,
|
|
179
|
+
parameters={
|
|
180
|
+
"ious": self.ious,
|
|
181
|
+
"label_key": self.label_key,
|
|
182
|
+
},
|
|
183
|
+
)
|
|
184
|
+
|
|
185
|
+
def to_dict(self) -> dict:
|
|
186
|
+
return self.metric.to_dict()
|
|
187
|
+
|
|
188
|
+
|
|
189
|
+
@dataclass
|
|
190
|
+
class AR:
|
|
191
|
+
value: float
|
|
192
|
+
score: float
|
|
193
|
+
ious: list[float]
|
|
194
|
+
label: tuple[str, str]
|
|
195
|
+
|
|
196
|
+
@property
|
|
197
|
+
def metric(self) -> Metric:
|
|
198
|
+
return Metric(
|
|
199
|
+
type=type(self).__name__,
|
|
200
|
+
value=self.value,
|
|
201
|
+
parameters={
|
|
202
|
+
"score": self.score,
|
|
203
|
+
"ious": self.ious,
|
|
204
|
+
"label": {
|
|
205
|
+
"key": self.label[0],
|
|
206
|
+
"value": self.label[1],
|
|
207
|
+
},
|
|
208
|
+
},
|
|
209
|
+
)
|
|
210
|
+
|
|
211
|
+
def to_dict(self) -> dict:
|
|
212
|
+
return self.metric.to_dict()
|
|
213
|
+
|
|
214
|
+
|
|
215
|
+
@dataclass
|
|
216
|
+
class mAR:
|
|
217
|
+
value: float
|
|
218
|
+
score: float
|
|
219
|
+
ious: list[float]
|
|
220
|
+
label_key: str
|
|
221
|
+
|
|
222
|
+
@property
|
|
223
|
+
def metric(self) -> Metric:
|
|
224
|
+
return Metric(
|
|
225
|
+
type=type(self).__name__,
|
|
226
|
+
value=self.value,
|
|
227
|
+
parameters={
|
|
228
|
+
"score": self.score,
|
|
229
|
+
"ious": self.ious,
|
|
230
|
+
"label_key": self.label_key,
|
|
231
|
+
},
|
|
232
|
+
)
|
|
233
|
+
|
|
234
|
+
def to_dict(self) -> dict:
|
|
235
|
+
return self.metric.to_dict()
|
|
236
|
+
|
|
237
|
+
|
|
238
|
+
@dataclass
|
|
239
|
+
class ARAveragedOverScores:
|
|
240
|
+
value: float
|
|
241
|
+
scores: list[float]
|
|
242
|
+
ious: list[float]
|
|
243
|
+
label: tuple[str, str]
|
|
244
|
+
|
|
245
|
+
@property
|
|
246
|
+
def metric(self) -> Metric:
|
|
247
|
+
return Metric(
|
|
248
|
+
type=type(self).__name__,
|
|
249
|
+
value=self.value,
|
|
250
|
+
parameters={
|
|
251
|
+
"scores": self.scores,
|
|
252
|
+
"ious": self.ious,
|
|
253
|
+
"label": {
|
|
254
|
+
"key": self.label[0],
|
|
255
|
+
"value": self.label[1],
|
|
256
|
+
},
|
|
257
|
+
},
|
|
258
|
+
)
|
|
259
|
+
|
|
260
|
+
def to_dict(self) -> dict:
|
|
261
|
+
return self.metric.to_dict()
|
|
262
|
+
|
|
263
|
+
|
|
264
|
+
@dataclass
|
|
265
|
+
class mARAveragedOverScores:
|
|
266
|
+
value: float
|
|
267
|
+
scores: list[float]
|
|
268
|
+
ious: list[float]
|
|
269
|
+
label_key: str
|
|
270
|
+
|
|
271
|
+
@property
|
|
272
|
+
def metric(self) -> Metric:
|
|
273
|
+
return Metric(
|
|
274
|
+
type=type(self).__name__,
|
|
275
|
+
value=self.value,
|
|
276
|
+
parameters={
|
|
277
|
+
"scores": self.scores,
|
|
278
|
+
"ious": self.ious,
|
|
279
|
+
"label_key": self.label_key,
|
|
280
|
+
},
|
|
281
|
+
)
|
|
282
|
+
|
|
283
|
+
def to_dict(self) -> dict:
|
|
284
|
+
return self.metric.to_dict()
|
|
285
|
+
|
|
286
|
+
|
|
287
|
+
@dataclass
|
|
288
|
+
class PrecisionRecallCurve:
|
|
289
|
+
"""
|
|
290
|
+
Interpolated over recalls 0.0, 0.01, ..., 1.0.
|
|
291
|
+
"""
|
|
292
|
+
|
|
293
|
+
precision: list[float]
|
|
294
|
+
iou: float
|
|
295
|
+
label: tuple[str, str]
|
|
296
|
+
|
|
297
|
+
@property
|
|
298
|
+
def metric(self) -> Metric:
|
|
299
|
+
return Metric(
|
|
300
|
+
type=type(self).__name__,
|
|
301
|
+
value=self.precision,
|
|
302
|
+
parameters={
|
|
303
|
+
"iou": self.iou,
|
|
304
|
+
"label": {"key": self.label[0], "value": self.label[1]},
|
|
305
|
+
},
|
|
306
|
+
)
|
|
307
|
+
|
|
308
|
+
def to_dict(self) -> dict:
|
|
309
|
+
return self.metric.to_dict()
|
|
310
|
+
|
|
311
|
+
|
|
312
|
+
@dataclass
|
|
313
|
+
class DetailedPrecisionRecallPoint:
|
|
314
|
+
score: float
|
|
315
|
+
tp: int
|
|
316
|
+
fp_misclassification: int
|
|
317
|
+
fp_hallucination: int
|
|
318
|
+
fn_misclassification: int
|
|
319
|
+
fn_missing_prediction: int
|
|
320
|
+
tp_examples: list[str]
|
|
321
|
+
fp_misclassification_examples: list[str]
|
|
322
|
+
fp_hallucination_examples: list[str]
|
|
323
|
+
fn_misclassification_examples: list[str]
|
|
324
|
+
fn_missing_prediction_examples: list[str]
|
|
325
|
+
|
|
326
|
+
def to_dict(self) -> dict:
|
|
327
|
+
return {
|
|
328
|
+
"score": self.score,
|
|
329
|
+
"tp": self.tp,
|
|
330
|
+
"fp_misclassification": self.fp_misclassification,
|
|
331
|
+
"fp_hallucination": self.fp_hallucination,
|
|
332
|
+
"fn_misclassification": self.fn_misclassification,
|
|
333
|
+
"fn_missing_prediction": self.fn_missing_prediction,
|
|
334
|
+
"tp_examples": self.tp_examples,
|
|
335
|
+
"fp_misclassification_examples": self.fp_misclassification_examples,
|
|
336
|
+
"fp_hallucination_examples": self.fp_hallucination_examples,
|
|
337
|
+
"fn_misclassification_examples": self.fn_misclassification_examples,
|
|
338
|
+
"fn_missing_prediction_examples": self.fn_missing_prediction_examples,
|
|
339
|
+
}
|
|
340
|
+
|
|
341
|
+
|
|
342
|
+
@dataclass
|
|
343
|
+
class DetailedPrecisionRecallCurve:
|
|
344
|
+
iou: float
|
|
345
|
+
value: list[DetailedPrecisionRecallPoint]
|
|
346
|
+
label: tuple[str, str]
|
|
347
|
+
|
|
348
|
+
def to_dict(self) -> dict:
|
|
349
|
+
return {
|
|
350
|
+
"value": [pt.to_dict() for pt in self.value],
|
|
351
|
+
"iou": self.iou,
|
|
352
|
+
"label": {
|
|
353
|
+
"key": self.label[0],
|
|
354
|
+
"value": self.label[1],
|
|
355
|
+
},
|
|
356
|
+
"type": "DetailedPrecisionRecallCurve",
|
|
357
|
+
}
|
valor_lite/schemas.py
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
1
|
+
from dataclasses import dataclass
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
@dataclass
|
|
5
|
+
class Metric:
|
|
6
|
+
type: str
|
|
7
|
+
value: float | dict | list
|
|
8
|
+
parameters: dict
|
|
9
|
+
|
|
10
|
+
def to_dict(self) -> dict:
|
|
11
|
+
return {
|
|
12
|
+
"type": self.type,
|
|
13
|
+
"value": self.value,
|
|
14
|
+
"parameters": self.parameters,
|
|
15
|
+
}
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2023 Striveworks
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1,40 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: valor-lite
|
|
3
|
+
Version: 0.32.2a2
|
|
4
|
+
Summary: Compute valor metrics directly in your client.
|
|
5
|
+
License: MIT License
|
|
6
|
+
|
|
7
|
+
Copyright (c) 2023 Striveworks
|
|
8
|
+
|
|
9
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
10
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
11
|
+
in the Software without restriction, including without limitation the rights
|
|
12
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
13
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
14
|
+
furnished to do so, subject to the following conditions:
|
|
15
|
+
|
|
16
|
+
The above copyright notice and this permission notice shall be included in all
|
|
17
|
+
copies or substantial portions of the Software.
|
|
18
|
+
|
|
19
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
20
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
21
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
22
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
23
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
24
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
25
|
+
SOFTWARE.
|
|
26
|
+
|
|
27
|
+
Project-URL: homepage, https://www.striveworks.com
|
|
28
|
+
Requires-Python: >=3.10
|
|
29
|
+
Description-Content-Type: text/markdown
|
|
30
|
+
License-File: LICENSE
|
|
31
|
+
Requires-Dist: Pillow >=9.1.0
|
|
32
|
+
Requires-Dist: tqdm
|
|
33
|
+
Requires-Dist: requests
|
|
34
|
+
Requires-Dist: numpy
|
|
35
|
+
Requires-Dist: importlib-metadata ; python_version < "3.8"
|
|
36
|
+
Provides-Extra: test
|
|
37
|
+
Requires-Dist: pytest ; extra == 'test'
|
|
38
|
+
Requires-Dist: coverage ; extra == 'test'
|
|
39
|
+
|
|
40
|
+
# valor-lite: Compute classification, object detection, and segmentation metrics locally.
|
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
valor_lite/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
2
|
+
valor_lite/schemas.py,sha256=r4cC10w1xYsA785KmGE4ePeOX3wzEs846vT7QAiVg_I,293
|
|
3
|
+
valor_lite/detection/__init__.py,sha256=vkV907Sjx09tgOHpDaLyR_-aFGfu2c1Kpb7hg220vBY,1099
|
|
4
|
+
valor_lite/detection/annotation.py,sha256=ON9iVa33pxysUmZVTCb0wNz-eFX6MDOqDhGDz-ouymc,1466
|
|
5
|
+
valor_lite/detection/computation.py,sha256=VIYZUeBd3KpwCPDBQCKCa0cY0hVb4mq_yGtY2ZP9gGE,16512
|
|
6
|
+
valor_lite/detection/manager.py,sha256=i-C72aQfuakeYFWsERQX-KoOGdGsDMrKMVQsqN82TnY,31527
|
|
7
|
+
valor_lite/detection/metric.py,sha256=wn9JAZMNbUIXUvH2C79jNKJswca1QEyXrCfs7isi1hU,8144
|
|
8
|
+
valor_lite-0.32.2a2.dist-info/LICENSE,sha256=M0L53VuwfEEqezhHb7NPeYcO_glw7-k4DMLZQ3eRN64,1068
|
|
9
|
+
valor_lite-0.32.2a2.dist-info/METADATA,sha256=1Q-jyOmW3wUs4NUYCbvqEt0suQfYRbTSrx5TkkWzbHA,1844
|
|
10
|
+
valor_lite-0.32.2a2.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
|
|
11
|
+
valor_lite-0.32.2a2.dist-info/top_level.txt,sha256=9ujykxSwpl2Hu0_R95UQTR_l07k9UUTSdrpiqmq6zc4,11
|
|
12
|
+
valor_lite-0.32.2a2.dist-info/RECORD,,
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
valor_lite
|